JPH07156432A - Thermal medium contrast recording method - Google Patents

Thermal medium contrast recording method

Info

Publication number
JPH07156432A
JPH07156432A JP30269193A JP30269193A JPH07156432A JP H07156432 A JPH07156432 A JP H07156432A JP 30269193 A JP30269193 A JP 30269193A JP 30269193 A JP30269193 A JP 30269193A JP H07156432 A JPH07156432 A JP H07156432A
Authority
JP
Japan
Prior art keywords
recording
pixel
pulses
printing
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30269193A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishii
努 石井
Jiro Mitsunabe
治郎 三鍋
Shinobu Koseki
忍 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP30269193A priority Critical patent/JPH07156432A/en
Publication of JPH07156432A publication Critical patent/JPH07156432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

PURPOSE:To provide a method suitable for a sub-scanning dividing system preventing the generation of streak noise in a printing image and not affected by the heat generating state of adjacent pixels or the pixels of a previous line. CONSTITUTION:A heating resistor recording one pixel is heated by a short pulse row (e.g; 88 pulses per 4 printing cycle T=25ms) of the same width. The first pulse becomes the rising pulse of the heating resistor and printing is executed from a part where image data shows the min. density. The number of pulses is successively increased to increase the printing width in the sub-scanning direction of one pixel to successively increase printing density. For example, when medium contrast density is recorded by 22 pulses, printing is applied to the part of 1/4 in the sub-scanning directions of each pixel. When the printing start position of one pixel is shifted within a printing cycle with respect to the printing start position of adjacent pixels and the pixel 92 adjacent to a pixel 91 is shifted by 11/88 quantity and recording start is shifted by 11/88 quantity in the order of respective adjacent pixels, a recording start period is successively shifted and streak noise is not generated in a printing image in medium contrast recording.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の発熱抵抗体を主
走査方向に並設したサーマルヘッドにおける感熱中間調
記録方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal halftone recording method in a thermal head in which a plurality of heating resistors are arranged side by side in the main scanning direction.

【0002】[0002]

【従来の技術】従来、サーマルヘッドを用いたカラー中
間調記録方法として昇華型熱転写記録があるが、大きな
エネルギーが必要であるため、印字時間がかかること、
また特殊紙を用いるためコストがかかる等の問題があっ
た。一方、溶融型熱転写記録は、小さなエネルギーで印
字できコストも安いが、インクドナーフィルム自体は印
加エネルギーをかえても階調がとれないため多階調記録
が困難で、ディザ法などのマトリックス法や、副走査分
割、熱集中など発熱領域を小さくして階調をとる方式が
提案されている。例えば、特開昭60−248074号
公報、特開平3−219969号公報等に開示されてい
る感熱中間調記録方式を図面により説明する。この感熱
中間調記録方式は副走査方法の幅を主走査方向の幅より
小さくした発熱体素子を用いている(以下この方式を副
走査分割方式と呼ぶ)。
2. Description of the Related Art Conventionally, sublimation type thermal transfer recording has been known as a color halftone recording method using a thermal head, but it requires a large amount of energy and therefore requires a long printing time.
Further, there is a problem that the cost is high because special paper is used. On the other hand, in the fusion type thermal transfer recording, printing can be performed with a small amount of energy and the cost is low, but since the ink donor film itself cannot obtain gradation even if the applied energy is changed, it is difficult to perform multi-gradation recording. A method has been proposed in which a heat generation area such as sub-scanning division and heat concentration is reduced to obtain gradation. For example, the heat-sensitive halftone recording method disclosed in JP-A-60-248074 and JP-A-3-219969 will be described with reference to the drawings. This heat-sensitive halftone recording method uses a heating element whose width in the sub-scanning method is smaller than that in the main scanning direction (hereinafter, this method is referred to as a sub-scanning division method).

【0003】図14は、この方式に用いられるサーマル
ヘッドの発熱部の平面図である。電極構造は周知の交互
リード型である。交互リ−ド型電極は、櫛状の電極11
〜16を備えた共通電極10と櫛状選択電極31〜35
を対向して配設し、両極上に、主走査方向に1列な帯状
抵抗体20を配置して構成されている。このサ−マルヘ
ッドによる印字は、選択電極を選択・通電することによ
り、選択した選択電極、例えば選択電極31とその両側
の共通電極11,12で挾まれた抵抗体の部分20aが
発熱し行なわれる。
FIG. 14 is a plan view of a heat generating portion of a thermal head used in this system. The electrode structure is a well-known alternating lead type. The alternating lead type electrode is a comb-shaped electrode 11.
To 16 and comb-shaped selection electrodes 31 to 35
Are arranged so as to face each other, and the strip-shaped resistors 20 arranged in one line in the main scanning direction are arranged on both poles. Printing by the thermal head is performed by selecting and energizing the selection electrode, for example, the selected selection electrode, for example, the selection electrode 31 and the resistor portion 20a sandwiched by the common electrodes 11 and 12 on both sides of the selection electrode 31 generate heat. .

【0004】このサーマルヘッドを用いて中間調記録を
実行したときの印字記録例を図15に示す。カラ−記録
における中間調記録ではイエロ−、マゼンタ、シアンの
重ね刷りをするが、この印字記録は各色毎の印字状態を
示している。例えば、(a)は第1色目の各画素毎(画
素41,42,43,44,45)の印字状態、(b)
は第2色目、(c)は第3色目の印字状態をそれぞれ示
している。この図に示すように中間調記録では各画素が
印字される場合が多く、また各画素41〜45の記録開
始タイミングが同じであるため、カラ−における重ね刷
りをしたとき各画素の記録開始が揃ってしまい、主走査
方向にラインを形成してしまった。このライン形成によ
って、印字画像ですじ状ノイズが発生し印字品質を低下
させた。そのため色毎でのレジストレーションを正確に
行なわないと各色で形成されたラインの重なり具合がか
わり色ずれという問題が発生した。
FIG. 15 shows an example of print recording when halftone recording is performed using this thermal head. In halftone recording in color recording, yellow, magenta, and cyan are overprinted, and this print record shows the print state for each color. For example, (a) is the printing state of each pixel of the first color (pixels 41, 42, 43, 44, 45), (b)
Shows the printing state of the second color, and (c) shows the printing state of the third color. As shown in this figure, each pixel is often printed in halftone recording, and since the recording start timing of each pixel 41 to 45 is the same, the recording start of each pixel does not start when overprinting in color. They were aligned and formed a line in the main scanning direction. This line formation causes streak noise in the printed image and deteriorates the printing quality. Therefore, if registration is not performed accurately for each color, the degree of overlap of the lines formed by each color will change, causing a problem of color misregistration.

【0005】また、図16、図17には副走査分割方式
による印字の場合の隣接画素の発熱による蓄熱で印字ド
ットサイズが変化する様子を示している。図16では同
一階調の印字ドットを再現しようとしているが、抵抗体
20の隣接画素の発熱数の増加に伴い副走査方向に印字
ドット411,421,431が部分400、部分41
0のように拡大している。また、図17では前ラインの
発熱履歴による蓄熱で印字ドットサイズ411,42
2,432が変化する様子を示している。この印字例で
は、各印字ドット412,422,432は同一階調の
印字ドットを再現しようとしているが、階調数の増加に
伴い前ラインとの印字間隔が狭くなり、前ラインの発熱
履歴による蓄熱が増加して副走査方向に印字ドットが部
分430、部分433で拡大している様子がわかる。こ
のように、隣接画素や前ライン画素の発熱状況で再現す
る印字ドットの寸法が変化してしまうと、中間調の再現
性や色の再現性を悪くし印字品質を低下させる問題が発
生した。
Further, FIGS. 16 and 17 show how the print dot size changes due to heat accumulation due to heat generation of adjacent pixels in the case of printing by the sub-scanning division method. In FIG. 16, the print dots of the same gradation are to be reproduced, but the print dots 411, 421, 431 are part 400, part 41 in the sub-scanning direction as the number of heat generation of the adjacent pixels of the resistor 20 increases.
It is expanding like 0. In addition, in FIG. 17, the print dot sizes 411, 42
2, 432 changes. In this print example, the print dots 412, 422, and 432 are trying to reproduce print dots of the same gradation, but the print interval with the previous line becomes narrower as the number of gradations increases, and it depends on the heat history of the previous line. It can be seen that the heat storage increases and the print dots expand in the portions 430 and 433 in the sub-scanning direction. As described above, when the size of the print dot reproduced in the heat generation condition of the adjacent pixel or the previous line pixel is changed, there is a problem that the halftone reproducibility and the color reproducibility are deteriorated and the print quality is deteriorated.

【0006】[0006]

【発明が解決しようとする課題】この発明はかかる問題
に鑑み、印字画像にすじ状ノイズが発生することなく、
かつ隣接画素や前ライン画素の発熱状況に左右されるこ
とのない、副走査分割方式に適した感熱中間調記録方法
を提案するものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention is capable of preventing streak noise from being generated in a printed image.
In addition, the present invention proposes a thermal halftone recording method suitable for the sub-scanning division method, which is not affected by the heat generation status of the adjacent pixels or the preceding line pixels.

【0007】[0007]

【課題を解決するための手段】第1の発明の感熱中間調
記録方法は、1画素を記録する発熱抵抗体を同一幅の多
数のパルス列で発熱させて1画素の副走査方向の記録幅
を変調し、最小濃度の記録画素は多数のパルスの中の初
期の複数個のパルスを用いて記録し、最小濃度の記録画
素以降は順次パルス数を増加させて記録すると共に、1
画素の副走査方向の記録開始位置を1画素の幅以内で隣
接画素と異ならせた構成を具備する。さらに細線や文字
の検出機能が細線や文字を検出したとき、細線や文字を
示すドットの記録開始位置を同時とする構成を具備す
る。
According to the heat-sensitive halftone recording method of the first invention, a heating resistor for recording one pixel is caused to generate heat by a large number of pulse trains of the same width so that the recording width of one pixel in the sub-scanning direction is reduced. The modulated and minimum density recording pixel is recorded using a plurality of initial pulses out of a large number of pulses, and after the minimum density recording pixel, the number of pulses is sequentially increased and recording is performed.
The recording start position of the pixel in the sub-scanning direction is different from that of the adjacent pixel within the width of one pixel. Furthermore, when the thin line or character detection function detects a thin line or a character, a recording start position of dots indicating the thin line or the character is provided at the same time.

【0008】第2の発明の感熱中間調記録方法は、1画
素を記録する発熱抵抗体を同一幅の多数のパルス列で発
熱させて1画素の副走査方向の記録幅を変調し、最小濃
度の記録画素は多数のパルスの中の初期の複数個のパル
スを用いて記録し、最小濃度の画素記録後は順次パルス
数を増加させて記録すると共に、記録以前の履歴による
発熱抵抗体の蓄熱を初期の複数個のパルスの数を変化さ
せて補正し、記録時に発熱している隣接画素による発熱
抵抗体の蓄熱を、最小濃度の画素記録後に順次印加され
るパルスの数を変化させて補正する構成を具備する。
In the thermal halftone recording method of the second aspect of the invention, the heating resistor for recording one pixel is heated by a large number of pulse trains of the same width to modulate the recording width of one pixel in the sub-scanning direction to obtain the minimum density. Recording pixels are recorded using a plurality of initial pulses out of a large number of pulses, and after recording the pixel with the minimum density, the number of pulses is sequentially increased and the heat is accumulated in the heating resistor due to the history before recording. The initial number of pulses is changed and corrected, and the heat accumulation of the heating resistor by the adjacent pixels that are generating heat during recording is corrected by changing the number of pulses that are sequentially applied after recording the pixel with the minimum density. It has a configuration.

【0009】[0009]

【作用】第1の発明の感熱中間調記録方法は、1画素を
記録する発熱抵抗体を同一幅の多数のパルス列で発熱さ
せているので、記録開始位置を自由に選択できると共
に、各発熱抵抗体で記録される印字ドットの副走査方向
の記録開始位置は副走査方向に1画素の幅方向の幅以内
で隣接画素と異なるように記録されるため、中間調を行
っても主走査方向のラインをほとんど発生しない。この
ため、主走査方向のライン形成によるすじ状ノイズや色
ずれという画質の低下の問題が解消され、良好な中間調
記録が実現できる。
In the heat-sensitive halftone recording method of the first aspect of the invention, since the heating resistor for recording one pixel is heated by a large number of pulse trains of the same width, the recording start position can be freely selected and each heating resistor can be selected. Since the print start position of the print dots printed by the body in the sub-scanning direction is different from that of adjacent pixels within the width of one pixel in the sub-scanning direction, even if halftone is performed, the print dots are printed in the main scanning direction. Almost no lines are generated. Therefore, the problem of image quality deterioration such as streak noise and color shift due to line formation in the main scanning direction is solved, and good halftone recording can be realized.

【0010】第2の発明の感熱中間調記録方法は、さら
に、前ラインの履歴や隣接画素による蓄熱からの影響が
ほぼ解消され、各発熱抵抗体で記録される印字ドットの
寸法はほぼ一定になる。このため、蓄熱による階調再現
性や色再現性画質の低下の問題が解消され、良好な中間
調記録が実現できる。
In the heat-sensitive halftone recording method of the second invention, further, the influence of the history of the previous line and the heat accumulated by the adjacent pixels is almost eliminated, and the size of the print dot recorded by each heating resistor is substantially constant. Become. Therefore, the problem of deterioration in gradation reproducibility and color reproducibility due to heat storage is solved, and good halftone recording can be realized.

【0011】[0011]

【実施例】以下、この発明にかかる感熱中間調記録方法
を図面に示す実施例に従って詳細に説明する。実施例1 図1は、本発明の感熱中間調記録方法による中間調表現
を説明するための図であって、(a)は印字状態の説明
図、(b)は印字に対応した抵抗体へのパルス印加状態
を示している。本実施例では、1画素の主走査方向の幅
を84.7μm、副走査方向の幅を170μm(84.
7μm×2)として、おおよそ64階調の中間調記録を
実行する場合を説明する。サーマルヘッドは交互リード
型であり、主走査方向解像度は300dpiで、副走査
方向の抵抗体幅を約43μm、1画素の副走査方向の幅
170μmの約1/4とする。高解像インクドナーフィ
ルム(PET基材厚4.5μm・インク塗布量2.0g
/m2)を用いて合成紙に印字記録した。記録紙は定速
度で送られるようにしておき、その速度は印字周期Tを
T=25msとし、1画素の副走査方向の幅だけ送られ
る速度にしておく。発熱抵抗体は(b)に示すように、
印字周期T当たり88個の短パルスで駆動する。短パル
スは図3に示すように周期が約284μsec.で、約
284μsec.の1/3で抵抗体を発熱させている。
この印加電力は約0.05wattとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The thermal halftone recording method according to the present invention will be described in detail below with reference to the embodiments shown in the drawings. Example 1 FIG. 1 is a diagram for explaining halftone expression by a heat-sensitive halftone recording method of the present invention, in which (a) is an explanatory view of a printed state and (b) is a resistor corresponding to printing. The pulse application state of is shown. In this embodiment, the width of one pixel in the main scanning direction is 84.7 μm and the width in the sub-scanning direction is 170 μm (84.
7 μm × 2), a case of executing halftone recording of approximately 64 gradations will be described. The thermal head is an alternating read type, the resolution in the main scanning direction is 300 dpi, and the width of the resistor in the sub-scanning direction is about 43 μm and about 1/4 of the width of one pixel in the sub-scanning direction of 170 μm. High-resolution ink donor film (PET substrate thickness 4.5 μm, ink application amount 2.0 g
/ M 2 ) was used for printing and recording on synthetic paper. The recording paper is fed at a constant speed, and the printing cycle T is set to T = 25 ms so that the recording paper is fed by the width of one pixel in the sub-scanning direction. The heating resistor is, as shown in (b),
It is driven by 88 short pulses per printing cycle T. As shown in FIG. 3, the short pulse has a period of about 284 μsec. Then, about 284 μsec. The resistor heats up in 1/3 of the above.
The applied power is about 0.05 watt.

【0012】このパルス条件を選択した理由を抵抗体の
表面温度から説明する。抵抗体表面の温度の測定は、日
本バーンズ社製赤外顕微RM−2Aを使って測定した。
測定する測定スポット50の位置は、図4に示すよう
に、共通電極11と選択電極31の間の発熱抵抗体20
の中心中心位置とし、測定スポット50の径は34μm
φとした。抵抗体表面温度の測定結果を図2に示す。測
定結果が示すように、この印字条件では、初期の約20
パルスまで抵抗体表面は温度上昇するが、それ以降は印
加パルスを増加しても定常状態になっている。インクド
ナーフィルムのインクの融点は約70℃付近であるた
め、発熱抵抗体を70℃以上の温度で数ms程度の間維
持すれば記録紙への印字ができる。この事柄から、初期
から約20パルス目付近で発熱抵抗体20の表面温度を
インクを溶融して印字可能の温度まで上昇させ、そのあ
とのパルスは発熱抵抗体20の温度をインクが溶融して
いる温度付近で維持させればよい。
The reason why the pulse condition is selected will be described from the surface temperature of the resistor. The temperature of the resistor surface was measured using an infrared microscope RM-2A manufactured by Nippon Burns.
The position of the measurement spot 50 to be measured is, as shown in FIG. 4, the heating resistor 20 between the common electrode 11 and the selection electrode 31.
The center position of the measurement spot 50 is 34 μm in diameter.
It was φ. The measurement result of the resistor surface temperature is shown in FIG. As the measurement results show, under these printing conditions, the initial
The temperature of the resistor surface rises up to the pulse, but after that, it is in a steady state even if the applied pulse is increased. Since the melting point of the ink of the ink donor film is about 70 ° C., printing on the recording paper can be performed by maintaining the heating resistor at a temperature of 70 ° C. or more for about several ms. From this matter, the surface temperature of the heating resistor 20 is melted to raise it to a printable temperature in the vicinity of the 20th pulse from the initial stage, and in the subsequent pulse, the temperature of the heating resistor 20 is melted by the ink. It may be maintained near the temperature where it exists.

【0013】一方、熱転写記録では、発熱抵抗体寸法程
度の印字ドットでないと安定した記録再現性が得られな
い。従って、初期の印字ドット寸法が発熱抵抗体寸法程
度になるためには、印字使用した抵抗体の副走査方向の
幅が1画素の副走査方向の幅の約1/4となっているの
で、1周期の全パルス数88個の約1/4である20パ
ルス程度で印字し始めればよいこととなる。また、この
印字方式である副走査分割方式では、1画素の中を細か
く分割して印字するため、印字発熱終了後、速やかに発
熱抵抗体温度が低下しないと尾引き等が発生し、階調特
性を悪くする。しかし、本実施では、初期階調を印字
後、抵抗体はインクの溶融温度付近で維持されているの
で、印字パルスを中止すると速やかにインクの溶融温度
以下に下降し、尾引き等の不都合を防ぐことができる。
また、発熱抵抗体は温度の急激な上昇下降によるストレ
スの繰り返しで寿命を迎えるが、本方式では図2の温度
波形からわかるように、最高温度が低く温度の上昇下降
の幅が狭いので、従来の熱転写記録に比べ熱ストレスが
少なく、サーマルヘッドの信頼性が向上する。さらに、
サ−マルヘッドの温度変化が少ないことから、インクド
ナーフィルムに対する熱ストレスも減少し、インクドナ
ーフィルムの耐熱性を下げることができインクドナーフ
ィルムの低コスト化が可能である。また、インクドナー
フィルムの基材厚を薄くできインクドナーフィルムの解
像力向上を実現できる。
On the other hand, in the thermal transfer recording, stable recording reproducibility cannot be obtained unless the size of the printed dots is about the size of the heating resistor. Therefore, in order for the initial printed dot size to be about the size of the heating resistor, the width of the resistor used for printing in the sub-scanning direction is about 1/4 of the width of one pixel in the sub-scanning direction. It is sufficient to start printing with about 20 pulses, which is about ¼ of the total number of 88 pulses in one cycle. Further, in the sub-scanning division method, which is this printing method, one pixel is divided into fine pieces for printing, so that tailing or the like occurs if the temperature of the heating resistor does not immediately drop after the end of printing heat generation, and gradation Make the characteristics worse. However, in this embodiment, after the initial gradation is printed, the resistor is maintained near the ink melting temperature, so when the printing pulse is stopped, the resistance rapidly drops to below the ink melting temperature, causing problems such as tailing. Can be prevented.
Moreover, the heating resistor reaches the end of its life due to repeated stress caused by the rapid rise and fall of temperature, but in this method, the maximum temperature is low and the range of rise and fall of the temperature is narrow, as can be seen from the temperature waveform in FIG. The thermal stress is less than that of the thermal transfer recording, and the reliability of the thermal head is improved. further,
Since the temperature change of the thermal head is small, the thermal stress on the ink donor film is also reduced, the heat resistance of the ink donor film can be lowered, and the cost of the ink donor film can be reduced. In addition, the substrate thickness of the ink donor film can be reduced, and the resolution of the ink donor film can be improved.

【0014】次に中間調記録を、図1に示す記録例によ
り説明する。実際の印字において、画素51、画素52
のように0〜10パルス程度では印字されず、10数パ
ルス程度から印字しはじめ、15パルスでは交互リード
電極のため1画素53の中が2分割されて印字される。
20パルス付近で抵抗体寸法(1画素の1/4)程度の
印字ドットが再現できる。さらに順次加える印字パルス
の数を増加させていくと、画素56、画素57に示すよ
うに副走査方向に印字ドットが拡大し、中間調記録が行
える。ここで、パルス数と印字濃度の関係をみる(図5
参照)。濃度測定は、X−Rite社製濃度計(型番9
38)を用い、2cm角の中間長パッチを測定して行っ
た。この測定結果を示すグラフからわかるように、印加
パルスが少ない場合は濃度が低く、印加パルスを増加す
るに従って徐々に濃度が増している。すなわち、パルス
数の増減により滑らかな中間調特性が得られていること
が判明した。この方式による階調表現は64階調以上が
可能である。
Next, halftone recording will be described with reference to a recording example shown in FIG. In actual printing, pixel 51, pixel 52
As described above, printing is not performed in about 0 to 10 pulses, and printing is started from about 10 pulses, and in 15 pulses, one pixel 53 is divided into two and printed due to the alternate lead electrodes.
A printed dot having a resistor size (1/4 of one pixel) can be reproduced in the vicinity of 20 pulses. When the number of print pulses applied sequentially is further increased, the print dots are enlarged in the sub-scanning direction as shown by the pixels 56 and 57, and halftone recording can be performed. Here, the relationship between the number of pulses and the print density is examined (Fig. 5
reference). Concentration measurement is made by X-Rite Densitometer (Model No. 9
38) was used to measure a 2 cm square intermediate length patch. As can be seen from the graph showing the measurement results, the concentration is low when the applied pulse is small, and the concentration is gradually increased as the applied pulse is increased. That is, it was found that a smooth halftone characteristic was obtained by increasing or decreasing the number of pulses. The gradation expression by this method can be 64 gradations or more.

【0015】次に、記録画素の副走査方向の記録開始位
置を1画素の幅以内で任意の位置にするパルス印加方法
(駆動方法)を、サーマルヘッドによる印字ドットで中
間調記録を行った記録例により説明する(図6参照)。
印字周期の最初のタイミングで記録を開始すれば図1に
示す記録例と同様の記録が行われるのであるが、この印
字記録は記録のタイミングを印字周期の0/88〜66
/88で変更することによって、1画素内で記録開始位
置を変更している。例えば、印字周期の最初のタイミン
グで印字すると、第1画素91に示すように画素の副走
査方向最初から印字される。第2画素92は第1画素9
1印字開始から11パルスずらして、印字を開始するこ
とにより、第1画素91の印字スペ−スに半スペ−スず
れて印字される。すなわち、隣接の画素の印字開始パル
スに対して一定パルスずらす、この実施例においては1
1パルスずつずらして印字を開始することにより、記録
画素の副走査方向への記録開始位置が順次変更する。
Next, a pulse application method (driving method) for setting the recording start position of the recording pixel in the sub-scanning direction to an arbitrary position within the width of one pixel is performed by performing halftone recording with print dots by a thermal head. An example will be described (see FIG. 6).
If the recording is started at the first timing of the printing cycle, the same recording as that of the recording example shown in FIG. 1 is performed. However, in this printing recording, the recording timing is 0/88 to 66 of the printing cycle.
The recording start position is changed within one pixel by changing / 88. For example, when printing is performed at the first timing of the printing cycle, the pixels are printed from the beginning in the sub-scanning direction as indicated by the first pixel 91. The second pixel 92 is the first pixel 9
By starting the printing by shifting 11 pulses from the start of one printing, the printing space of the first pixel 91 is shifted by a half space. That is, the pulse is shifted by a constant pulse with respect to the print start pulse of the adjacent pixel.
By starting the printing by shifting by one pulse, the recording start position of the recording pixel in the sub-scanning direction is sequentially changed.

【0016】このように記録のタイミングを印字周期内
で変更することにより、記録画素の副走査方向の記録開
始位置を1画素の幅以内で任意の位置とすることがで
き、各発熱抵抗体で記録される印字ドットは、副走査方
向に1画素の幅内で任意の位置に記録することができ、
主走査方向に記録画素が連続することがなくなる。実際
にこの方法を用いた22パルスによる記録画素の印字記
録例を図7に示す。この記録例の記録開始タイミングは
マイクロプロセッサ等を使って乱数を発生させ、この値
を記録開始タイミングとしている。各記録画素の記録の
タイミングを印字周期の0/88〜66/88の範囲で
ばらつかせることによって、各発熱抵抗体で記録される
印字ドットは副走査方向に1画素の幅内で任意の位置に
記録される。すなわち、中間調記録を行ったとき、第1
画素110と隣接の第2画素120との印字ドット10
0が主走査方向に直線状に連続してつながることがない
ので、主走査方向のラインを発生しない。このため、主
走査方向のライン形成によるすじ状ノイズや色ずれとい
う画質の低下を発生させる問題が解消され、良好な中間
調記録が実現可能となる。この場合、発熱抵抗体は同一
幅の多数のパルス列で発熱させているので、記録開始タ
イミングが自由に操作できる。また、この記録例では隣
接画素とのずらし量を任意の値としたが一定量ずらして
もよく、たとえば隣接画素とのずれ量を1画素の半分と
して印字してもよく、これらの場合でもすじ状ノイズや
色ずれという画質の低下の問題が解消される。
By changing the recording timing within the printing cycle as described above, the recording start position of the recording pixel in the sub-scanning direction can be set at any position within the width of one pixel, and each heating resistor can be used. The print dots to be recorded can be recorded at any position within the width of one pixel in the sub-scanning direction,
Recording pixels do not continue in the main scanning direction. FIG. 7 shows an example of print recording of recording pixels by 22 pulses actually using this method. The recording start timing of this recording example uses a microprocessor or the like to generate a random number, and this value is used as the recording start timing. By varying the recording timing of each recording pixel in the range of 0/88 to 66/88 of the printing cycle, the print dot recorded by each heating resistor can be set within the width of one pixel in the sub-scanning direction. Recorded in position. That is, when halftone recording is performed, the first
Print dots 10 of the pixel 110 and the adjacent second pixel 120
Since 0s are not continuously connected linearly in the main scanning direction, no line in the main scanning direction is generated. As a result, the problem of streak-like noise and color misregistration that cause deterioration of image quality due to line formation in the main scanning direction is solved, and good halftone recording can be realized. In this case, since the heating resistor is heated by a large number of pulse trains having the same width, the recording start timing can be freely manipulated. Further, in this recording example, the shift amount with respect to the adjacent pixel is set to an arbitrary value, but it may be shifted with a constant amount, for example, the shift amount with respect to the adjacent pixel may be printed as half of one pixel. The problem of deterioration of image quality such as noise and color shift is solved.

【0017】次に、副走査方向の解像度150dpi、
88パルスによる中間調記録を行う場合の階調変換回路
による印字データの発生方法を、図8の制御フロ−で説
明する。ステップ200で1〜256階調の画像データ
を入力し、ステップ210でこの方法による階調特性に
適合するようにγ補正しながら0〜88の数値に変換す
る。nパルス数データ(0≦n≦88)とマイクロプロ
セッサを用いて発生させた乱数から、ステップ220で
記録開始タイミングのずらし量を計算すると共に、nパ
ルスによる記録画素では、0/88〜(88−n)/8
8までの範囲でずらし量をばらつかせることができるの
で、乱数を用いて0〜(88−n)の範囲でばらつき値
を発生させる。次にステップ230で、変換されたnパ
ルス数データと発生させたずらし量から、印字データ発
生回路でサーマルヘッド用の2値データ(88ビット
分)を発生させ、さらにこのデータの並びかえやパラレ
ル・シリアル変換等をしてサーマルヘッドに転送し、ス
テップ240で印字が行われる。
Next, the resolution in the sub-scanning direction is 150 dpi,
A method of generating print data by the gradation conversion circuit when performing halftone recording with 88 pulses will be described with reference to the control flow of FIG. In step 200, image data of 1 to 256 gradations is input, and in step 210, it is converted into a numerical value of 0 to 88 while being .gamma.-corrected so as to match the gradation characteristic by this method. In step 220, the shift amount of the recording start timing is calculated from the n pulse number data (0 ≦ n ≦ 88) and the random number generated using the microprocessor, and 0/88 to (88) -N) / 8
Since the shift amount can be varied in the range of up to 8, a variation value is generated in the range of 0 to (88-n) using random numbers. Next, in step 230, binary data (88 bits) for the thermal head is generated in the print data generation circuit from the converted n pulse number data and the generated shift amount, and this data is rearranged and parallelized. -Serial conversion etc. is performed and it transfers to a thermal head, and printing is performed in step 240.

【0018】次に、原稿の細線(ライン)・文字部分を
分離して印字記録を実施する場合の、印字デ−タの発生
方法を図9の制御フロ−で説明する。画像デ−タの解像
度は文字(ライン)を表現するために主走査、副走査方
向共に300dpiとする。ステップ300で1〜25
6階調の画像データを入力する。ステップ310で画像
デ−タから画像が文字(ライン)か、中間調かの判定を
する。この判定は、例えば、主走査方向に同じ階調デ−
タがxビット以上続くと細線、または文字として検出す
る検出アルゴリズムを付加して行う。中間調と判定され
ると前述の中間調の制御フロ−によって、処理される。
しかし、前述の処理は解像度が150dpiの場合を示
しているので、解像度が300dpiとなった場合の処
理に副走査方向の解像度を変換する。すなわち、ステッ
プ340で、副走査方向の2画素を平均化して副走査方
向の解像度変換をする。そして、ステップ350で階調
特性に適合するようγ補正して0〜88の数値に換算す
る。ステップ360でずらし量を発生させ、ステップ3
70で印字の2値デ−タを発生させ、中間調の処理を行
う。ステップ310で同階調がxビット続き、文字(ラ
イン)と判定されたとき、ステップ320に進み300
dpiの記録画素があれば44パルスとし、なければ0
パルスとする。そして、ステップ330で中間調とあわ
せるため印字デ−タを1回に150dpi分、88パル
ス(44パルス×2)分発生させ、2値デ−タに変換
し、ステップ380でサ−マルヘッドにより印字が実行
される。
Next, a method of generating print data in the case of performing print recording by separating the fine line (line) / character portion of the document will be described with reference to the control flow of FIG. The resolution of the image data is 300 dpi in both the main scanning direction and the sub-scanning direction in order to express the character (line). 1 to 25 in step 300
Input 6-gradation image data. In step 310, it is determined from the image data whether the image is a character (line) or halftone. This determination is made by, for example, the same gradation data in the main scanning direction.
If the data continues for x bits or more, a detection algorithm for detecting a thin line or a character is added. When it is determined that the tone is a halftone, the process is performed by the above-described halftone control flow.
However, since the above-described processing shows the case where the resolution is 150 dpi, the resolution in the sub-scanning direction is converted to the processing when the resolution becomes 300 dpi. That is, in step 340, the resolution conversion in the sub-scanning direction is performed by averaging the two pixels in the sub-scanning direction. Then, in step 350, γ correction is performed so as to match the gradation characteristics, and the value is converted into a numerical value of 0 to 88. A shift amount is generated in step 360, and step 3
At 70, binary data for printing is generated and halftone processing is performed. When it is determined in step 310 that the same gradation continues for x bits and is a character (line), the process proceeds to step 320 and 300
If there is a recording pixel of dpi, it is set to 44 pulses, and if there is no recording pixel, it is set to 0.
Use pulse. Then, in order to match with the halftone in step 330, print data of 150 dpi and 88 pulses (44 pulses x 2) are generated at one time, converted into binary data, and printed by the thermal head in step 380. Is executed.

【0019】ここで、解像度の変換方法として、この実
施例では2画素の平均としたが、その他近傍の画素を加
えて平均化してもよいし、あるいは平均化せずに間引き
による変換方法等が可能である。また、各抵抗体印字開
始の副走査方向の位置のばらつかせ方法は本実施例に限
定されるものでなく乱数などを使わず、隣接抵抗体との
副走査方向のずれ量が異なるような規則を設けてもよ
い。
Here, as the resolution conversion method, the average of two pixels is used in this embodiment, but other neighboring pixels may be added for averaging, or a conversion method by thinning without averaging may be used. It is possible. Further, the method of varying the position of the printing of each resistor in the sub-scanning direction is not limited to this embodiment, and random numbers or the like are not used, and the amount of deviation in the sub-scanning direction from an adjacent resistor is different. Rules may be set.

【0020】さらに、本実施例の場合では、各抵抗体の
副走査方向の印字開始位置は1画素の副走査方向の幅約
170μmの範囲内で変化している。しかし画素密度が
小さい場合や使用用途によっては、1画素の副走査方向
の幅で位置を変化させると、1ライン目の各印字ドット
のずれが画質を低下させるときがあるので、そのような
場合には1画素の副走査方向の幅よりも小さい範囲で記
録位置を変化させてもよい。また、本実施例では88パ
ルスによって中間調記録を実現したが、パルス数はこの
例に限定されるものではない。パルス数は、画素密度・
抵抗体寸法・印字周期・階調数などで変更することが可
能であり、その場合にはさらにパルス幅・電力等も調整
する必要がある。一連の処理は、サーマルヘッド制御用
のマイクロプロセッサやROMを用いたルックアップテ
ーブル等による。
Further, in the case of this embodiment, the printing start position of each resistor in the sub-scanning direction changes within a range of about 170 μm in width in the sub-scanning direction of one pixel. However, if the pixel density is low or if the position is changed by the width of one pixel in the sub-scanning direction, the deviation of each print dot on the first line may deteriorate the image quality depending on the intended use. In addition, the recording position may be changed within a range smaller than the width of one pixel in the sub-scanning direction. Further, although the halftone recording is realized by 88 pulses in this embodiment, the number of pulses is not limited to this example. The number of pulses is the pixel density
It is possible to change the size of the resistor, the printing cycle, the number of gradations, etc. In that case, it is necessary to further adjust the pulse width, power, etc. A series of processing is performed by a look-up table using a microprocessor for controlling the thermal head or a ROM.

【0021】この実施例における記録方法は、文字(ラ
イン)領域と中間調領域ともに88パルスで同時の印字
が可能であり、しかも、文字(ライン)領域においては
ずらし量をなくし、中間調領域においてはずらし量を設
けて印字できる。そして、中間調記録では各印字ドット
が直線状に連続してつながることがないので、主走査方
向へのラインが発生せず、良好な中間調画像が得られ
る。また、文字(ライン)の記録においては各印字ドッ
トの開始位置が揃い、細線や文字の再現性も良好とな
る。
In the recording method of this embodiment, both the character (line) area and the halftone area can be simultaneously printed with 88 pulses, and the offset amount is eliminated in the character (line) area so that the halftone area can be removed. It is possible to print with an offset amount. Further, in the halftone recording, since the print dots are not continuously connected linearly, a line in the main scanning direction does not occur, and a good halftone image can be obtained. Further, in the recording of characters (lines), the start positions of the respective print dots are aligned, and the reproducibility of fine lines and characters is improved.

【0022】実施例2 この実施例は副走査方向分割方式における隣接画素、前
ライン画素の発熱状況の影響を除去した記録方法を示し
ている。実施例1と同条件(抵抗体のサイズ、パルス印
加条件等)で印字した場合の記録例から、実際に測定さ
れたパルス数と印字ドットの面積率との関係を図10に
示す。印字ドットの面積率の測定は、蓄熱の影響を無視
できる孤立状態で印字ドットを記録し、これを顕微鏡を
通じてCCDカメラでデジタル化して行った。この測定
結果から10数パルス以下では安定したドットは得られ
にくかったので、図10に示すグラフにおいては10数
パルス以上を示している。このグラフからわかるよう
に、孤立ドット状態では10数パルス付近から滑らかな
中間調特性が得られており、階調表現は64階調以上が
可能である。
Embodiment 2 This embodiment shows a recording method in which the influence of the heat generation condition of the adjacent pixel and the preceding line pixel in the sub-scanning direction division method is removed. FIG. 10 shows the relationship between the actually measured number of pulses and the area ratio of the printed dots from the recording example when printing was performed under the same conditions as in Example 1 (resistor size, pulse application conditions, etc.). The area ratio of the printed dots was measured by recording the printed dots in an isolated state in which the effect of heat storage can be ignored and digitizing the dots with a CCD camera through a microscope. From this measurement result, it was difficult to obtain a stable dot when the number of pulses was less than 10 and several pulses. Therefore, the graph shown in FIG. As can be seen from this graph, in the isolated dot state, a smooth halftone characteristic is obtained from around ten or more pulses, and gradation expression can be 64 gradations or more.

【0023】次に、同印字条件で、隣接画素を発熱させ
ず連続したラインで同一階調を記録したとき、測定され
たパルス数と印字ドットの面積率との関係を図11に示
す。蓄熱の影響の無い場合の測定結果を点線で示し、実
線が連続したラインで記録した場合の測定結果である。
このグラフからわかるように、66パルスを越えた付近
から連続したラインで記録した場合、面積率の増加が確
認できる。すなわち、この面積率の増加は前ラインでの
蓄熱の影響によるものとみられる。そこで、この実施例
では蓄熱による面積率の増加を、初期に印加するパルス
を減少させることにより補正することを試みた。すなわ
ち、66パルス以上であって、蓄熱による面積率の増加
が見られる範囲において、パルス数を徐々に減少させ
た。
Next, FIG. 11 shows the relationship between the number of measured pulses and the area ratio of print dots when the same gradation is recorded on continuous lines without heating adjacent pixels under the same printing conditions. The measurement result when there is no effect of heat storage is shown by the dotted line, and the solid line is the measurement result when recorded by a continuous line.
As can be seen from this graph, an increase in the area ratio can be confirmed when recording is performed on a continuous line from the vicinity of more than 66 pulses. In other words, this increase in area ratio is considered to be due to the effect of heat storage in the previous line. Therefore, in this embodiment, an attempt was made to correct the increase in the area ratio due to heat storage by decreasing the pulse applied initially. That is, the number of pulses was gradually decreased within the range of 66 pulses or more and the increase of the area ratio due to heat storage.

【0024】面積率によって減少させるパルス数の最適
化した条件を表1に示す。
Table 1 shows the optimized conditions for the number of pulses to be reduced depending on the area ratio.

【表1】 [Table 1]

【0025】この条件でパルス数の補正を実行し、隣接
画素を発熱させず連続したラインで同一階調を記録した
とき、測定されたパルス数と印字ドットの面積率を求め
た。この結果を図11のグラフ中に▲印で示す。この測
定結果からわかるように、補正後の測定結果は蓄熱の影
響の無い場合の測定結果とほぼ一致し、この補正方法に
より連続したラインでの蓄熱による印字面積率の増加は
ほぼ解消させることができた。
The pulse number was corrected under these conditions, and when the same gradation was recorded on continuous lines without causing adjacent pixels to generate heat, the measured pulse number and the area ratio of the printed dots were obtained. The result is shown by a triangle in the graph of FIG. As can be seen from this measurement result, the corrected measurement result almost agrees with the measurement result when there is no influence of heat storage, and this correction method can almost eliminate the increase in the printing area ratio due to heat storage in continuous lines. did it.

【0026】次に、前ラインを発熱させず隣接画素のみ
を発熱させて同一階調を記録したとき、測定されたパル
ス数とドットの面積率との関係を図12に示す。点線が
蓄熱の影響の無い場合の測定結果であり、〇印が片側の
隣接画素を発熱させたときの測定値、■印が両側の隣接
画素を発熱させたときの測定値を示す。この測定結果か
らわかるように、隣接画素の蓄熱の面積率への影響は、
20階調以上で大きくまたパルス数にはあまり依存して
いない。
FIG. 12 shows the relationship between the number of measured pulses and the dot area ratio when the same gradation is recorded by heating only the adjacent pixels without heating the preceding line. The dotted line is the measurement result when there is no effect of heat storage, and the ∘ mark indicates the measured value when the adjacent pixels on one side are heated, and the ■ mark indicates the measured value when the adjacent pixels on both sides are heated. As can be seen from this measurement result, the influence of the heat storage of adjacent pixels on the area ratio is
It is large at 20 gradations or more and does not much depend on the number of pulses.

【0027】本実施例ではこの蓄熱による面積率の増加
を最小ドットを再現して、パルス(15パルス)以降の
パルス数を減少させて補正することを試みた。最後のパ
ルス印加以降の熱特性を揃える目的で、減少させるパル
スは最後の2パルスを残しその前のパルスで減少させ
た。パルス数と面積率の関係を最適化した結果が表2に
示す条件である。
In the present embodiment, an attempt was made to reproduce the increase of the area ratio due to this heat storage by reproducing the smallest dot and reducing the number of pulses after the pulse (15 pulses) to correct it. For the purpose of aligning the thermal characteristics after the last pulse was applied, the last two pulses were left as the pulses to be reduced, and the pulses before the last pulse were reduced. Table 2 shows the results obtained by optimizing the relationship between the number of pulses and the area ratio.

【0028】[0028]

【表2】 [Table 2]

【0029】この条件で前ラインを発熱させず隣接画素
のみを発熱させて同一階調を記録した時の測定されたパ
ルス数とドットの面積率との関係をみる。片側発熱補正
後の測定結果を図12の×印であらわし、両側発熱補正
後の測定結果を△印であらわした。図12のグラフから
わかるように、×印、△印とも点線で表す孤立ドット状
態の測定結果と同位置となっている。これらのことから
この補正方法を採用することにより隣接画素の発熱によ
る影響はほぼ解消したことがわかる。
Under this condition, the relationship between the measured pulse number and the dot area ratio when the same gradation is recorded by heating only the adjacent pixels without heating the preceding line will be examined. The measurement result after the one-sided heat generation correction is represented by the mark X in FIG. 12, and the measurement result after the both-sided heat generation correction is represented by the triangle mark. As can be seen from the graph of FIG. 12, both the X mark and the Δ mark are at the same position as the measurement result of the isolated dot state represented by the dotted line. From these facts, it is understood that the influence of heat generation of the adjacent pixels is almost eliminated by adopting this correction method.

【0030】つぎに、前ラインによる蓄熱と隣接画素の
発熱による蓄熱の両状況からの補正を同時に確認するた
めに、上記の補正を行いながら2mm角の各階調のパッ
チを印字して、パルス数と面積率の関係を測定した。そ
の結果を図13に示す。孤立ドットの場合を点線で示
し、2mm角の各階調のパッチにおける補正後の測定結
果を直線で表している。点線で表す孤立ドットの測定結
果と直線で表す各階調のパッチの測定結果はほぼ一致
し、本方法の補正により前ラインによる蓄熱と隣接画素
の発熱による蓄熱の両影響がほぼ補正されて解消されて
いることがわかる。この測定結果において、パルス数の
多い領域で測定値に少しの差異がみられるが、これは前
ラインの隣接画素の発熱による蓄熱の影響を無視してい
るためであり、精度を向上させるには、さらにこれらの
影響を補正するようにしてもよい。
Next, in order to confirm simultaneously the corrections from both the heat accumulation due to the preceding line and the heat accumulation due to the heat generation of the adjacent pixels, the patch of each gradation of 2 mm square is printed while performing the above correction, and the number of pulses is increased. And the area ratio was measured. The result is shown in FIG. The case of an isolated dot is shown by a dotted line, and the measurement result after correction in a 2 mm square patch of each gradation is shown by a straight line. The measurement result of the isolated dot represented by the dotted line and the measurement result of the patch of each gradation represented by the straight line are almost the same, and the effects of both the heat accumulation by the previous line and the heat accumulation by the heat generation of the adjacent pixels are almost corrected and eliminated by the correction of this method. You can see that In this measurement result, there is a slight difference in the measured values in the region where the number of pulses is large, but this is because the effect of heat accumulation due to the heat generation of the adjacent pixels on the previous line is ignored, and to improve the accuracy. Further, these influences may be corrected.

【0031】さらに、蓄熱の影響を補正するためにパル
スを減少させているが、パルスを減らす位置や数は本実
施例に限定されるものでない。また本実施例では88パ
ルスによって中間調記録を実現したが、パルス数はこの
例に限定されるものでなく、パルス数は、画素密度・抵
抗体寸法・印字周期・階調数などで変更することが可能
であり、その場合にはさらにパルス幅・電力等も調整す
る必要がある。
Further, although the number of pulses is reduced in order to correct the effect of heat storage, the position and number of pulses to be reduced are not limited to those in this embodiment. Further, in the present embodiment, the halftone recording is realized by 88 pulses, but the number of pulses is not limited to this example, and the number of pulses is changed according to the pixel density, the resistor size, the printing cycle, the number of gradations, etc. However, in that case, it is necessary to further adjust the pulse width, the power, and the like.

【0032】この実施例のように、前のラインによる蓄
熱は初期の複数個のパルスの数を変化させて補正し、記
録時に発熱している隣接画素による蓄熱は最小濃度画素
を記録した以降に、順次印加されるパルスの数を変化し
て補正しているので、前ラインの履歴、隣接画素による
蓄熱に影響されず、各抵抗体で記録される印字ドットの
寸法はほぼ一定となる。
As in this embodiment, the heat accumulation by the previous line is corrected by changing the number of the initial plurality of pulses, and the heat accumulation by the adjacent pixel which is generating heat during recording is performed after the minimum density pixel is recorded. Since the number of pulses that are sequentially applied is changed and corrected, the size of the print dot recorded by each resistor is substantially constant without being affected by the history of the previous line and the heat accumulation by the adjacent pixels.

【0033】[0033]

【発明の効果】この第1の発明による副走査方向分割方
式の感熱中間調記録方法は、発熱抵抗体を同一幅の多数
のパルスにより発熱させているので、記録開始タイミン
グを自由にとることができ、各発熱抵抗体で記録される
印字ドットは副走査方向に1画素の幅以内で任意の位置
に記録され、各ラインの印字ドットが直線状に連続して
つながることがなく主走査方向のライン形成を起こさな
い。従って、従来の問題点であった主走査方向のライン
形成に起因していた印字画像でのすじ状ノイズが解消で
きる。またカラー記録において正確なレジストレーショ
ンがなくても、各印字ドットにおいて各色の重なりは任
意となり、画像全体での色ずれは発生しない。このよう
に本発明では主走査方向のずじ状ノイズや色ずれという
画質の低下の問題が解消され、良好な中間調記録が実現
できる。
In the thermal halftone recording method of the sub-scanning direction division method according to the first aspect of the invention, since the heating resistor is heated by a large number of pulses of the same width, the recording start timing can be set freely. The print dots recorded by each heating resistor can be recorded at any position within the width of one pixel in the sub-scanning direction, and the print dots of each line are not continuously connected linearly but in the main scanning direction. Does not cause line formation. Therefore, the streak-like noise in the printed image due to the line formation in the main scanning direction, which is a conventional problem, can be eliminated. Further, even if there is no accurate registration in color recording, the overlap of each color in each print dot is arbitrary, and color misregistration does not occur in the entire image. As described above, according to the present invention, the problem of deterioration of image quality such as streak noise and color misregistration in the main scanning direction is solved, and good halftone recording can be realized.

【0034】さらに、細線や文字の検出アルゴリズムを
付加しておくことにより、細線や文字を検出したときに
は細線や文字を示すドットの記録開始タイミングを同じ
にして、細線、文字の再現性をよくすることができる。
このように、中間調画像のみでなく、文字や細線を含む
画像においても、細線が凹凸したりすることなく良好な
画質が得られる。また、印加される印字条件により過度
の発熱抵抗体の加熱がないために画質的には尾引き等を
防ぐことができると共に、サーマルヘッドの信頼性の向
上が図れる。さらに、インクドナーフィルムの低コスト
化や解像力向上を実現できる。また、この方法を用いた
サーマルヘッドは、従来のどの感熱記録方式にも適用可
能だが、従来多階調表現できなかった溶融転写記録、特
にカラー中間調記録において著しい効果がある。
Further, by adding a thin line or character detection algorithm, when thin lines or characters are detected, the recording start timing of dots indicating the thin lines or characters is made the same to improve the reproducibility of the thin lines or characters. be able to.
As described above, not only the halftone image but also the image including characters and fine lines can obtain good image quality without unevenness of fine lines. Further, since the heating resistor is not excessively heated depending on the applied printing conditions, it is possible to prevent tailing and the like in terms of image quality, and improve the reliability of the thermal head. Further, it is possible to reduce the cost of the ink donor film and improve the resolution. Further, the thermal head using this method can be applied to any conventional thermal recording system, but has a remarkable effect in the melt transfer recording, which has not been able to express multi-gradation in the past, especially in the color halftone recording.

【0035】この第2の発明では、さらに、前ラインの
履歴による蓄熱は初期の複数個のパルスの数を変化させ
て補正し、記録時に発熱している隣接画素による蓄熱は
最小濃度画素を記録した以降に順次印加されるパルスの
数を変化させて補正している。このため前ラインの履歴
や隣接画素による蓄熱はほぼ補正され、各発熱抵抗体で
記録される印字ドットの寸法は前ラインの履歴や隣接画
素による蓄熱に影響されずほぼ一定になる。このため、
蓄熱による階調再現性や色再現性画質の低下の問題が解
消され、良好な中間調記録が実現できる。
In the second aspect of the invention, the heat accumulation due to the history of the preceding line is further corrected by changing the number of the initial plurality of pulses, and the heat accumulation due to the adjacent pixels which generate heat at the time of recording is the minimum density pixel. After that, the number of pulses sequentially applied is changed to correct. Therefore, the history of the previous line and the heat accumulation by the adjacent pixels are almost corrected, and the size of the print dot recorded by each heating resistor is substantially constant without being affected by the history of the previous line and the heat accumulation by the adjacent pixels. For this reason,
It is possible to solve the problem of gradation reproducibility and color reproducibility image quality deterioration due to heat storage and realize good halftone recording.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の感熱中間調記録方法による中間調の
記録例とパルス印加の説明図。
FIG. 1 is an explanatory diagram of a halftone recording example and pulse application by a heat-sensitive halftone recording method of the present invention.

【図2】 パルス印加と抵抗体の温度との関係を示すグ
ラフ。
FIG. 2 is a graph showing the relationship between pulse application and the temperature of a resistor.

【図3】 パルス印加状態の説明図。FIG. 3 is an explanatory diagram of a pulse application state.

【図4】 発熱抵抗体表面温度計測方法の説明図。FIG. 4 is an explanatory diagram of a method for measuring a surface temperature of a heating resistor.

【図5】 本発明の感熱中間調記録方法による中間調表
現を説明するための図。
FIG. 5 is a diagram for explaining halftone expression by the heat-sensitive halftone recording method of the present invention.

【図5】 本発明の階調特性を説明するための図。FIG. 5 is a diagram for explaining gradation characteristics of the present invention.

【図6】 本発明の感熱中間調記録方法による中間調の
記録例とパルス印加の説明図。
FIG. 6 is an explanatory diagram of a halftone recording example and pulse application by the heat-sensitive halftone recording method of the present invention.

【図7】 本発明のサーマルヘッドの記録例の説明図。FIG. 7 is an explanatory diagram of a recording example of the thermal head of the present invention.

【図8】 本発明の中間調記録方法における制御フロ
−。
FIG. 8 is a control flow chart in the halftone recording method of the present invention.

【図9】 本発明の絵文字判定処理を加えた制御フロ
−。
FIG. 9 is a control flow to which the pictogram determination processing of the present invention is added.

【図10】 パルス数と印字ドットの面積率との関係を
示すグラフ。
FIG. 10 is a graph showing the relationship between the number of pulses and the area ratio of print dots.

【図11】 隣接画素を発熱させず連続したラインで同
一階調を記録したときのパルス数と印字ドットの面積率
との関係を示すグラフ。
FIG. 11 is a graph showing the relationship between the number of pulses and the area ratio of print dots when the same gradation is recorded in continuous lines without causing adjacent pixels to generate heat.

【図12】 前ラインを発熱させず隣接画素を発熱させ
て同一階調を記録したときのパルス数と印字ドットの面
積率との関係を示すグラフ。
FIG. 12 is a graph showing the relationship between the number of pulses and the area ratio of print dots when the same gradation is recorded by heating adjacent pixels without heating the preceding line.

【図13】 本発明の補正後のパルス数と印字ドットの
面積率との関係を示すグラフ。
FIG. 13 is a graph showing the relationship between the number of corrected pulses and the area ratio of print dots according to the present invention.

【図14】 従来のサーマルヘッドの平面図。FIG. 14 is a plan view of a conventional thermal head.

【図15】 従来のサーマルヘッドの印字例を示す図。FIG. 15 is a diagram showing a printing example of a conventional thermal head.

【図16】 従来のサーマルヘッドの印字例を示す図。FIG. 16 is a diagram showing a printing example of a conventional thermal head.

【図17】 従来のサーマルヘッドの印字例を示す図。FIG. 17 is a diagram showing a printing example of a conventional thermal head.

【符号の説明】[Explanation of symbols]

10 共通電極、 20 発熱抵抗体、 31 選択電
極、 50 測定スポット、51〜57、91〜97
画素、100 印字ドット、110〜130画素。
10 common electrodes, 20 heating resistors, 31 selection electrodes, 50 measurement spots, 51-57, 91-97
Pixels, 100 print dots, 110-130 pixels.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04N 1/52 4226−5C H04N 1/40 B 4226−5C 1/46 B Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H04N 1/52 4226-5C H04N 1/40 B 4226-5C 1/46 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 副走査方向の幅寸法が1画素の副走査方
向の幅寸法より短い複数の発熱抵抗体を主走査方向に並
設したサーマルヘッドを用いた感熱中間調記録方法にお
いて、 1画素を記録する発熱抵抗体を同一幅の多数のパルス列
で発熱させて1画素の副走査方向の記録幅を変調すると
共に、最小濃度の記録画素は多数のパルスの中の初期の
複数個のパルスを用いて記録し、最小濃度の画素記録後
は順次パルス数を増加させて、1画素の副走査方向の記
録幅を変調させて中間調を記録する感熱中間調記録方
法。
1. A thermal halftone recording method using a thermal head in which a plurality of heating resistors whose width dimension in the sub-scanning direction is shorter than the width dimension of one pixel in the sub-scanning direction are arranged in parallel in the main scanning direction. The heating resistor for recording is heated by a large number of pulse trains of the same width to modulate the recording width of one pixel in the sub-scanning direction, and the recording pixel with the minimum density has a plurality of initial pulses among a large number of pulses. A thermal halftone recording method in which halftone recording is performed by recording by using a pixel of the minimum density and sequentially increasing the number of pulses to modulate the recording width of one pixel in the sub-scanning direction.
【請求項2】 1画素の副走査方向の記録開始位置を1
画素の幅以内で隣接画素と異ならせた請求項1記載の感
熱中間調記録方法。
2. The recording start position of one pixel in the sub-scanning direction is set to 1
2. The heat-sensitive halftone recording method according to claim 1, wherein the pixel is different from the adjacent pixel within the width of the pixel.
【請求項3】 細線や文字の検出機能を設け、細線や文
字を検出したとき、細線や文字を示すドットの記録開始
位置を同時とする請求項2記載の感熱中間調記録方法。
3. The thermal halftone recording method according to claim 2, wherein a fine line or character detection function is provided, and when a thin line or a character is detected, the recording start positions of the dots indicating the fine line or the character are set at the same time.
【請求項4】 発熱抵抗体の副走査方向幅が1画素の幅
より短い複数の発熱抵抗体に、同一幅の多数のパルス列
を印加し1画素の副走査方向の記録幅を変調させて中間
調濃度を表現する中間調記録方法において、 最小濃度の記録画素は多数のパルスの中の初期の複数個
のパルスを用いて記録し、最小濃度の画素記録後は順次
パルス数を増加させて記録すると共に、 記録以前の履歴による発熱抵抗体の蓄熱を初期の複数個
のパルスの数を変化させて補正し、記録時に発熱してい
る隣接画素による発熱抵抗体の蓄熱を、最小濃度の画素
記録後に順次印加されるパルスの数を変化させて補正す
ることを特徴とする感熱中間調記録方法。
4. A plurality of heating resistors each having a width in the sub-scanning direction shorter than that of one pixel are applied with a plurality of pulse trains of the same width to modulate the recording width of one pixel in the sub-scanning direction, and the intermediate width is obtained. In the halftone recording method that expresses the tonal density, the recording pixel with the minimum density is recorded by using the initial multiple pulses of a large number of pulses, and after the pixel with the minimum density is recorded, the number of pulses is sequentially increased and recorded. At the same time, the heat accumulation of the heating resistor due to the history before recording is corrected by changing the number of multiple initial pulses, and the heat accumulation of the heating resistor due to the adjacent pixels that generate heat during recording is recorded with the minimum density pixel recording. A thermal halftone recording method, characterized in that the number of pulses applied subsequently is changed and corrected.
JP30269193A 1993-12-02 1993-12-02 Thermal medium contrast recording method Pending JPH07156432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30269193A JPH07156432A (en) 1993-12-02 1993-12-02 Thermal medium contrast recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30269193A JPH07156432A (en) 1993-12-02 1993-12-02 Thermal medium contrast recording method

Publications (1)

Publication Number Publication Date
JPH07156432A true JPH07156432A (en) 1995-06-20

Family

ID=17912037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30269193A Pending JPH07156432A (en) 1993-12-02 1993-12-02 Thermal medium contrast recording method

Country Status (1)

Country Link
JP (1) JPH07156432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961227A (en) * 1997-09-01 1999-10-05 Brother Kogyo Kabushiki Kaisha Thermal recording apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961227A (en) * 1997-09-01 1999-10-05 Brother Kogyo Kabushiki Kaisha Thermal recording apparatus

Similar Documents

Publication Publication Date Title
JPH02286341A (en) Picture image recorder
JPS62256576A (en) Thermosensitive recorder
US5075698A (en) Method of driving a recording head and a recording apparatus utilizing this method
JPH0418357A (en) Image recording device
EP0947334B1 (en) Image forming method of thermal transfer printer
JP3040407B2 (en) Image recording device
JPH07156432A (en) Thermal medium contrast recording method
JP3141609B2 (en) Thermal halftone recording method
JP3083826B2 (en) Image recording device
JPS6321617B2 (en)
JP3202285B2 (en) Thermal recording apparatus and thermal recording method
JPH08174881A (en) Thermal transfer recorder and halftone recording method
JP2750344B2 (en) Halftone reproduction method
JP2994855B2 (en) Multi-tone thermal recording method
JPH0661954B2 (en) Halftone recording method and device
JPH0664206A (en) Halftone recording thermal head, method and apparatus for halftone recording
JPH0542706A (en) Multigradation thermal recording method
JPH03158256A (en) Image recording device
JP3151317B2 (en) Image recording device
JPH0550639A (en) Thermal head driving method in thermal transfer recording device
JPH0516414A (en) Thermal transfer recording apparatus
JPH11192693A (en) Apparatus and method for recording
US20010021033A1 (en) Image forming apparatus which discriminates tone and gives appropriate output
JPH02283462A (en) Recording head and thermal recorder using the same recording head
JPH02299864A (en) Printing device