JPH07156329A - Composite pipe - Google Patents

Composite pipe

Info

Publication number
JPH07156329A
JPH07156329A JP30667093A JP30667093A JPH07156329A JP H07156329 A JPH07156329 A JP H07156329A JP 30667093 A JP30667093 A JP 30667093A JP 30667093 A JP30667093 A JP 30667093A JP H07156329 A JPH07156329 A JP H07156329A
Authority
JP
Japan
Prior art keywords
pipe
stainless steel
inner pipe
temperature
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30667093A
Other languages
Japanese (ja)
Inventor
Mitsuo Miyahara
光雄 宮原
Mitsusachi Yamamoto
三幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30667093A priority Critical patent/JPH07156329A/en
Publication of JPH07156329A publication Critical patent/JPH07156329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain an excellent thermal fatigue resistance characteristics by making an inner pipe of a double pipe of a ferrite stainless steel pipe and by making an outer pipe thereof of an austenite stainless steel pipe in regard to an heat-insulating composite pipe which has an intermediate layer constituted of an inorganic material in a gap between the inner and outer pipes. CONSTITUTION:An intermediate layer constituted of an inorganic material in a gap part between an inner pipe 3 and an outer pipe 2 of a double pipe is provided, a heat-insulating composite pipe 1 to be used for a piping of an exhaust manifold of an automobile, for instance, is obtained. In order to reduce a thermal stress caused by the terminal expansion of the inner pipe 3 and the outer pip 2 of a composite pipe 1, the inner pipe 3 exposed to high temperature is constructed of a material having small thermal expansion coefficient and the outer pipe 2 exposed to low temperature of a material having a large thermal expansion coefficient. Besides, the inner pipe 3 is made of a material being excellent in an oxidation resistance and a high-temperature strength, while the outer pipe 2 is made of a material being excellent in a corrosion resistance, in view of its direct contact with the air and so as to prevent the damage from salt at a high temperature in a cold district. Therefor a ferrite stainless steel pipe is used for the inner pipe 3 and an austenite stainless steel pipe for the outer pipe 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、二重管の内管と外管
の空隙部に、無機質からなる中間層を有する複合管に関
し、特に自動車のエキゾーストマニホールドの配管に使
用される複合管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite pipe having an intermediate layer made of an inorganic material in a gap between an inner pipe and an outer pipe of a double pipe, and more particularly to a composite pipe used for an exhaust manifold of an automobile. .

【0002】[0002]

【従来の技術】図2は、自動車の排気系統の構造を説明
する図であるが、同図に示す如くエンジン11からの排気
ガスはエキゾーストマニホールド12で集められ、排ガス
浄化装置13により浄化された後、消音装置14で消音さ
れ、エンドパイプ15を通して大気中に放出される構造と
なっている。
2. Description of the Related Art FIG. 2 is a diagram for explaining the structure of an automobile exhaust system. As shown in FIG. 2, exhaust gas from an engine 11 is collected by an exhaust manifold 12 and purified by an exhaust gas purification device 13. After that, the structure is such that the sound is silenced by the muffler 14 and released into the atmosphere through the end pipe 15.

【0003】この排気系統における排気ガスの温度は、
エンジン11に近いほど高温であり、エキゾーストマニホ
ールド12内では通常 800〜900 ℃に達するため、従来の
エキゾーストマニホールド材料には耐熱性、耐酸化性に
優れたステンレス鋳鋼が用いられていた。
The temperature of the exhaust gas in this exhaust system is
The closer the temperature to the engine 11 is, the higher the temperature is, and the temperature inside the exhaust manifold 12 usually reaches 800 to 900 ° C. Therefore, the conventional exhaust manifold material is made of stainless cast steel having excellent heat resistance and oxidation resistance.

【0004】近年、地球環境保護の観点から、自動車の
燃費向上に対する要求が高まるに伴い、薄肉ステンレス
鋼管をエキゾーストマニホールドに適用することが提案
され、薄肉軽量化による燃費向上を達成しようとする試
みがなされつつある。
In recent years, from the viewpoint of protecting the global environment, as the demand for improving fuel efficiency of automobiles has increased, it has been proposed to apply a thin-walled stainless steel pipe to an exhaust manifold, and an attempt has been made to achieve fuel efficiency improvement by reducing the thickness and weight. It is being done.

【0005】エキゾーストマニホールドを薄肉軽量化す
ると、エキゾーストマニホールドの熱容量が減少するの
で排ガス浄化装置での排気ガス温度の低下が抑制され、
触媒内蔵のフィルター式排ガス浄化装置では、触媒量を
減らしても十分なガスの清浄化が可能となるという付加
的な効果を生じる。しかし、単なる薄肉鋼管では外部へ
の熱流出も多くなり、最近自動車に多用されるようにな
った電子部品の熱的な損傷を招くという恐れもある。
When the exhaust manifold is made thin and lightweight, the heat capacity of the exhaust manifold is reduced, so that the exhaust gas temperature in the exhaust gas purifying device is suppressed from decreasing.
The filter-type exhaust gas purification device with a built-in catalyst has an additional effect that sufficient gas can be purified even if the amount of the catalyst is reduced. However, a simple thin-walled steel pipe also causes a large amount of heat to be leaked to the outside, which may lead to thermal damage to electronic components that have been widely used in automobiles recently.

【0006】この対策として、エキゾーストマニホール
ドと他部品との間に遮熱板を設けることも考えられる
が、重量増加となるため好ましくない。そこで、鋼管自
体に断熱性を付与するものとして、二重管の内管と外管
との間に断熱性を有するスラグウール等の非金属材料を
介在させた構造として、断熱、遮音、制振効果を狙った
多層管(特公昭60−54803 号公報参照)や、中間層を無
機質繊維で織った織物で構成し、曲げ加工による中間層
の損傷や破断を防止した断熱複合金属管(特開平4−30
9410号公報参照)が提案されている。
As a countermeasure against this, it is conceivable to provide a heat shield plate between the exhaust manifold and other parts, but this is not preferable because it increases the weight. Therefore, in order to impart heat insulating property to the steel pipe itself, as a structure in which a non-metallic material such as slag wool having heat insulating property is interposed between the inner pipe and the outer pipe of the double pipe, heat insulation, sound insulation, and vibration control are provided. A multi-layer tube aimed at the effect (see Japanese Patent Publication No. 60-54803) and a heat insulating composite metal tube which is composed of a woven fabric in which the intermediate layer is woven with inorganic fibers to prevent damage or breakage of the intermediate layer due to bending work 4-30
9410) is proposed.

【0007】後述する図1に示すような複合管をエキゾ
ーストマニホールドとして用いた場合、その内管3内の
温度は、自動車の走行状態により排気ガス温度が変化す
るので最高温度は 900℃以上に達する場合がある。一
方、内管3と外管2との間には、断熱材である中間層4
が介在するため、内管3が 900℃以上となっても、外管
2の温度は高々 300〜450 ℃までしか上昇しない。複合
管の内管及び外管の材質として熱膨張係数が同程度の材
質を用いた場合、内管と外管との温度差による熱膨張量
の差は大きくなる。
When a composite pipe as shown in FIG. 1 described later is used as an exhaust manifold, the maximum temperature of the inner pipe 3 reaches 900 ° C. or higher because the exhaust gas temperature changes depending on the running state of the automobile. There are cases. On the other hand, between the inner pipe 3 and the outer pipe 2, the intermediate layer 4 which is a heat insulating material is provided.
Therefore, even if the temperature of the inner pipe 3 rises above 900 ° C, the temperature of the outer pipe 2 rises only to 300 to 450 ° C at the highest. When materials having the same coefficient of thermal expansion are used as the materials of the inner tube and the outer tube of the composite tube, the difference in the amount of thermal expansion due to the temperature difference between the inner tube and the outer tube becomes large.

【0008】図3は、これらの複合管をエキゾーストマ
ニホールドに適用する場合の管端加工の状況を示す図で
ある。同図に示すように外管2に絞り加工6を施し断熱
材を封じ込めた後、外管2の端部を内管3の表面に接合
しない状態で、内管3をフランジ5に貫通させフランジ
に固着する。このフランジ5を介してエンジンや排ガス
浄化装置に結合される。
FIG. 3 is a view showing a situation of pipe end processing when these composite pipes are applied to an exhaust manifold. As shown in the figure, after the outer tube 2 is subjected to the drawing process 6 and the heat insulating material is enclosed, the inner tube 3 is penetrated through the flange 5 in a state where the end of the outer tube 2 is not joined to the surface of the inner tube 3. Stick to. It is connected to the engine and the exhaust gas purifying device via the flange 5.

【0009】このように外管2の端部を内管に接合しな
い状態でエキゾーストマニホールドとして使用した場合
には、前述のように内管と外管との間に温度差がある
と、両者の熱膨張の差によって管端絞り加工部6の内管
表面と外管内面との接触部7に隙間が発生し、中間層4
の断熱材が飛散して、断熱性や制振性を劣化させるとい
う問題があった。
When the end portion of the outer pipe 2 is used as an exhaust manifold without being joined to the inner pipe as described above, if there is a temperature difference between the inner pipe and the outer pipe as described above, both of them are Due to the difference in thermal expansion, a gap is generated in the contact portion 7 between the inner pipe surface of the pipe end drawing portion 6 and the outer pipe inner surface, and the intermediate layer 4
However, there is a problem that the heat insulating material is scattered and deteriorates the heat insulating property and the vibration damping property.

【0010】図4、図5は、これを防ぐ方法であり、内
管と外管を溶接などで接合した状況を示す図である。図
4は絞り加工した外管2の端部を内管3の表面に接合し
た場合であり、図5は同外管2の端部をフランジ5の側
面に接合した場合を示し、いずれも上記の内管と外管と
の接触部7の隙間の発生は抑制されるが、内管3の熱膨
張が外管2によって拘束され、内管3には圧縮の熱応力
が、外管には引張の熱応力が発生する。
FIG. 4 and FIG. 5 show a method of preventing this, which is a view showing a state in which the inner pipe and the outer pipe are joined by welding or the like. FIG. 4 shows a case where the end portion of the drawn outer pipe 2 is joined to the surface of the inner pipe 3, and FIG. 5 shows a case where the end portion of the outer pipe 2 is joined to the side surface of the flange 5. Although the generation of a gap in the contact portion 7 between the inner tube and the outer tube is suppressed, the thermal expansion of the inner tube 3 is restrained by the outer tube 2, and the inner tube 3 receives the compressive thermal stress and the outer tube does not. Tensile thermal stress is generated.

【0011】この熱応力は、自動車の走行状態の変動に
よる排気ガス温度の変動に伴って繰り返し負荷され、内
管及び外管での熱疲労亀裂の発生や内管と外管との接合
部8での接合外れを起こす原因となる。これもエキゾー
ストマニホールドの断熱性や制振性などの機能を低下さ
せ、破損させるという危険性がある。
This thermal stress is repeatedly applied as the temperature of the exhaust gas fluctuates due to fluctuations in the running condition of the automobile, causing thermal fatigue cracks in the inner and outer tubes and the joint 8 between the inner and outer tubes. It may cause disbonding at. This also reduces the functions of the exhaust manifold, such as heat insulation and vibration damping, and there is a risk of damage.

【0012】[0012]

【発明が解決しようとする課題】従来の複合管の内管及
び外管の材質は、炭素鋼同士、炭素鋼とアルミめっき炭
素鋼、炭素鋼とステンレス鋼、ステンレス鋼同士など種
々の組合せについて提案されている。これらは基本的に
は同種の材料あるいは熱膨張係数のほぼ等しい材料の組
合せで構成されており、エキゾーストマニホールドに適
用するには、未だ解決すべき問題がある。
As the material of the inner pipe and the outer pipe of the conventional composite pipe, various combinations such as carbon steels, carbon steels and aluminized carbon steels, carbon steels and stainless steels, stainless steels are proposed. Has been done. These are basically composed of the same kind of material or a combination of materials having substantially the same thermal expansion coefficient, and there are still problems to be solved before being applied to the exhaust manifold.

【0013】本発明の目的は、内管と外管との接合部を
有する複合管であっても耐熱疲労特性に優れ、エキゾー
ストマニホールドに適した複合管を提供するにある。
An object of the present invention is to provide a composite pipe having excellent heat resistance and fatigue resistance even for a composite pipe having a joint portion between an inner pipe and an outer pipe and suitable for an exhaust manifold.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記問題
を解決するため、破損したエキゾーストマニホールドの
金属組織的特性、熱応力の分布状態を種々研究し、エキ
ゾーストマニホールドに適する複合管に関して下記の知
見を得た。
In order to solve the above problems, the inventors of the present invention have variously studied the metallographical characteristics of a damaged exhaust manifold and the distribution state of thermal stress, and have made the following description on a composite pipe suitable for an exhaust manifold. I got the knowledge of.

【0015】複合管の内管と外管の熱膨張の差に起因
する熱応力を低減するためには、高温となる内管側を熱
膨張係数の小さな材料で構成し、低温となる外管側を熱
膨張係数の大きな材料で構成するのがよい。
In order to reduce the thermal stress due to the difference in thermal expansion between the inner tube and the outer tube of the composite tube, the inner tube side that is at a high temperature is made of a material having a small thermal expansion coefficient, and the outer tube that is at a low temperature is formed. It is preferable that the side is made of a material having a large coefficient of thermal expansion.

【0016】内管は直接排ガスと接触し、最高 900℃
以上の高温にさらされるため、耐酸化性と高温強度に優
れた材料とするべきである。
The inner pipe is in direct contact with the exhaust gas, and the maximum temperature is 900 ° C.
Since it is exposed to the above high temperatures, it should be a material having excellent oxidation resistance and high-temperature strength.

【0017】外管は直接大気と接触し、寒冷地では凍
結防止のための塩化ナトリウムによる高温塩害防止のた
め、耐食性に優れた材料とする必要がある。
The outer pipe is in direct contact with the atmosphere, and in cold regions, it is necessary to use a material having excellent corrosion resistance in order to prevent high temperature salt damage due to sodium chloride to prevent freezing.

【0018】上記の知見を基にした本発明の要旨は、
『図1に示すような複合管であり、二重管の内管(3) と
外管(2) との空隙部に無機質からなる中間層(4) を有す
る複合管であって、内管(3) がフェライト系ステンレス
鋼であり、外管(2) がオーステナイト系ステンレス鋼で
ある複合管』にある。
The gist of the present invention based on the above findings is as follows.
“A composite pipe as shown in FIG. 1, which has an intermediate layer (4) made of an inorganic material in the space between the inner pipe (3) and the outer pipe (2) of the double pipe. (3) is a ferritic stainless steel, and the outer pipe (2) is an austenitic stainless steel composite pipe ”.

【0019】[0019]

【作用】以下、本発の複合管を構成する材料を上記のよ
うに特定した理由を説明する。
The reason why the material forming the composite tube of the present invention is specified as described above will be described below.

【0020】内管材料をフェライト系ステンレス鋼で
構成する:内管は直接排ガスと接触し、最高 900℃以上
の高温にさらされるため、耐酸化性と高温強度に優れた
フェライト系ステンレス鋼が用いられる。フェライト系
ステンレス鋼としては、JIS表示でSUH 409 、SUS 43
0J1L、SUS 410L、SUS 444、SUS 436Lおよびこれらの改
良鋼などが用いられる。これらの材料は、熱膨張係数が
12.8×10-6〜13.4×10-6と小さく、耐酸化性に優れ、最
高温度 900℃程度までの温度範囲で優れた熱疲労特性を
有しているからである。
The inner pipe material is composed of ferritic stainless steel: Since the inner pipe is directly contacted with exhaust gas and exposed to high temperature of 900 ° C or higher, ferritic stainless steel excellent in oxidation resistance and high temperature strength is used. To be As ferritic stainless steel, JIS-indicated SUH 409, SUS 43
0J1L, SUS 410L, SUS 444, SUS 436L and their modified steels are used. These materials have a coefficient of thermal expansion
This is because it is as small as 12.8 × 10 -6 to 13.4 × 10 -6 , has excellent oxidation resistance, and has excellent thermal fatigue properties in the temperature range up to a maximum temperature of 900 ° C.

【0021】外管材料をオーステナイト系ステンレス
鋼で構成する:外管は直接大気と接触し、寒冷地では凍
結防止のための塩化ナトリウムによる高温塩害防止のた
め、耐食性に優れたオーステナイト系ステンレス鋼が用
いられる。オーステナイト系ステンレス鋼としては、J
IS表示でSUS 304 、SUS XM15J1、SUS 310Sおよびこれ
らの改良鋼などが用いられる。これらの材料は、熱膨張
係数が19.0×10-6〜19.2×10-6と大きく、耐食性に優れ
ているからである。
The outer pipe material is composed of austenitic stainless steel: the outer pipe is in direct contact with the atmosphere, and in cold regions, austenitic stainless steel excellent in corrosion resistance is used to prevent high temperature salt damage due to sodium chloride for freezing prevention. Used. As austenitic stainless steel, J
In terms of IS, SUS 304, SUS XM15J1, SUS 310S and their improved steels are used. This is because these materials have a large coefficient of thermal expansion of 19.0 × 10 −6 to 19.2 × 10 −6 and are excellent in corrosion resistance.

【0022】以上の組合せで熱膨張係数の比(オース
テナイト系ステンレス鋼の熱膨張係数/フェライト系ス
テンレス鋼の熱膨張係数)を求めると1.42〜1.5 とな
り、内管と外管の温度差が 300〜500 ℃のとき熱応力の
低減率は25〜83%となる。熱応力の発生を低減し、熱応
力による疲労亀裂の発生を防止するには、内管と外管と
に用いる材料の熱膨張係数の差は1.4 倍以上とするのが
好ましい。
The ratio of thermal expansion coefficients (thermal expansion coefficient of austenitic stainless steel / thermal expansion coefficient of ferritic stainless steel) obtained by the above combination is 1.42 to 1.5, and the temperature difference between the inner pipe and the outer pipe is 300 to At 500 ℃, the reduction rate of thermal stress is 25-83%. In order to reduce the occurrence of thermal stress and prevent the occurrence of fatigue cracks due to thermal stress, it is preferable that the difference in the coefficient of thermal expansion between the materials used for the inner tube and the outer tube is 1.4 times or more.

【0023】具体的な材料の選定は、内管の場合、耐酸
化性および高温強度の観点から排気ガスの最高温度によ
って決めればよい。例えば排気ガス温度が 700℃までの
低温域であればSUH 409 鋼を用いればよく、 700℃を超
え 900℃程度までの場合はSUS430J1L 鋼を用いればよ
い。また、 900℃を超える場合は高CrでMoを含有したフ
ェライト系ステンレス鋼が提案されている。外管は、使
用環境によって要求される耐食性のレベルから決定さ
れ、SUS304鋼、SUSXM15J1B鋼などが特に好適である。
In the case of the inner pipe, the specific material may be selected according to the maximum temperature of the exhaust gas from the viewpoint of oxidation resistance and high temperature strength. For example, SUH 409 steel may be used in the low temperature range of the exhaust gas temperature up to 700 ° C, and SUS430J1L steel may be used in the case of over 700 ° C up to about 900 ° C. Further, when the temperature exceeds 900 ° C, ferritic stainless steel containing high Cr and Mo is proposed. The outer tube is determined from the level of corrosion resistance required by the use environment, and SUS304 steel, SUSXM15J1B steel, etc. are particularly suitable.

【0024】[0024]

【実施例】以下、実施例によって本発明の効果をさらに
具体的に説明する。
EXAMPLES The effects of the present invention will be described more specifically below with reference to examples.

【0025】図1は、本発明の複合管の構成を示す図で
あるが、同図に示すように試験材とした複合管は、外径
42.7mm、肉厚1.2mm の外管と、外径32.3mm、肉厚1.2mm
の内管との間に、厚さ4.0mm のセラミックス繊維(Al2O
3-SiO2)平織クロス材を中間層(断熱材)4として挿入
した外径42.7mm、内径29.9mmの複合管である。
FIG. 1 is a diagram showing the structure of the composite pipe of the present invention. As shown in FIG. 1, the composite pipe used as a test material has an outer diameter.
42.7 mm, 1.2 mm thick outer tube and 32.3 mm outer diameter, 1.2 mm thick wall
4.0 mm thick ceramic fiber (Al 2 O
It is a composite pipe with an outer diameter of 42.7 mm and an inner diameter of 29.9 mm in which a 3 -SiO 2 ) plain weave cloth material is inserted as an intermediate layer (heat insulating material) 4.

【0026】外管及び内管の材料として表1に示す材料
を、表2に示すような組合せで複合管を製作した。お
お、表1の材料3はフェライト系ステンレス鋼の改良材
である。
The materials shown in Table 1 were used as the materials for the outer tube and the inner tube, and a composite tube was produced by combining the materials shown in Table 2. Oh, material 3 in Table 1 is an improved material of ferritic stainless steel.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】熱疲労試験には図5に示す試験体を用い
た。これは長さ200mm に切断した複合管1に、外管2の
両端を内管3の外径まで絞る管端加工6を施した後、内
管3の端部及び絞り加工した外管2の端部(外管・フラ
ンジ接合部10)をフランジ5に溶接して製作したもので
ある。
For the thermal fatigue test, the test body shown in FIG. 5 was used. This is because the composite pipe 1 cut into a length of 200 mm is subjected to pipe end processing 6 for narrowing both ends of the outer pipe 2 to the outer diameter of the inner pipe 3, and then the end portion of the inner pipe 3 and the drawn outer pipe 2 It is manufactured by welding the end portion (outer pipe / flange joint portion 10) to the flange 5.

【0030】熱疲労試験は、試験体の管内に高温ガスを
間欠的(高温ガス15分、冷風10分)に吹き込む熱サイク
ル試験を行い、 500サイクル後に内管、外管部の亀裂発
生の調査と、試験中の内管、外管の最高温度を測定し
た。それらの結果を表2に示した。
The thermal fatigue test is a thermal cycle test in which a high temperature gas is intermittently blown into the pipe of the test body (high temperature gas: 15 minutes, cold air: 10 minutes), and after 500 cycles, a crack is generated in the inner and outer pipes. And the maximum temperature of the inner and outer tubes during the test was measured. The results are shown in Table 2.

【0031】これらの結果から、本発明例の試験体A〜
Cは、外管を熱膨張係数の大きい材料( 外管と内管の熱
膨張係数の比(外管/内管)が1.42以上のもの) で構成
されているので、試験中の外管、内管の最高温度の差が
350〜500 ℃あったが、亀裂の発生が認められなかっ
た。
From these results, the test specimens A to A of the present invention are shown.
In C, the outer tube is made of a material having a large coefficient of thermal expansion (the ratio of the coefficient of thermal expansion of the outer tube and the inner tube (outer tube / inner tube) is 1.42 or more). The difference in the maximum temperature of the inner pipe
Although the temperature was 350 to 500 ° C, no crack was observed.

【0032】これに対して、比較例の試験体Dは、外
管、内管共にオーステナイト系ステンレス鋼(SUS 304
、熱膨張係数の外管と内管の比が1)で構成したた
め、 400サイクルでフランジ接合部から破断した。
On the other hand, the test sample D of the comparative example has an austenitic stainless steel (SUS 304
Since the ratio of the coefficient of thermal expansion of the outer tube to the inner tube was 1), the flange joint was broken at 400 cycles.

【0033】試験体E及びFは、いずれも外管、内管共
にフェライト系ステンレス鋼(SUH409 、SUS 430J1L)
で構成したため、いずれも内管に亀裂の発生が認められ
た。
Both the outer and inner pipes of the test bodies E and F were made of ferritic stainless steel (SUH409, SUS 430J1L).
As a result, the cracks were found in the inner pipe.

【0034】試験体Gは、外管をオーステナイト系ステ
ンレス鋼(SUS 304) で、内管を炭素鋼(SPCC)で構成し、
熱膨張係数の外管と内管の比(外管/内管)を1.41とし
たが、内管(炭素鋼)に異常酸化が発生し、他の比較例
よりも著しい亀裂が認められた。
In the test body G, the outer tube was made of austenitic stainless steel (SUS 304) and the inner tube was made of carbon steel (SPCC).
The ratio of the coefficient of thermal expansion of the outer tube to the inner tube (outer tube / inner tube) was 1.41, but abnormal oxidation occurred in the inner tube (carbon steel), and more remarkable cracking was observed than in other comparative examples.

【0035】試験体Hは、外管をフェライト系ステンレ
ス鋼(SUH 409) で、内管をオーステナイト系ステンレス
鋼(SUS 304) で構成し、熱膨張係数の外管と内管の比
(外管/内管)を0.71としたため、 300サイクルでフラ
ンジ接合部から破断した。
In the test piece H, the outer tube was made of ferritic stainless steel (SUH 409) and the inner tube was made of austenitic stainless steel (SUS 304). The ratio of the coefficient of thermal expansion of the outer tube to the inner tube (outer tube (/ Inner pipe) was 0.71, so the flange joint fractured after 300 cycles.

【0036】[0036]

【発明の効果】本発明の複合管は、内管をフェライト系
ステンレス鋼で構成するので耐高温酸化性に優れ、外管
をオーステナイト系ステンレス鋼で構成するので耐食性
に優れている。しかも、内・外管材料の熱膨張係数を考
慮した構造であるから、内管、外管の接合部に熱亀裂な
どの発生がなく、自動車のエキゾーストマニホールドの
配管に使用することができる。エキゾーストマニホール
ドに使用された場合、断熱性に優れているため排気ガス
の通過温度を高め、排ガス浄化性能を向上させるという
効果もある。
In the composite pipe of the present invention, the inner pipe is made of ferritic stainless steel, so it is excellent in high-temperature oxidation resistance, and the outer pipe is made of austenitic stainless steel, so that it is excellent in corrosion resistance. Moreover, since the structure takes into account the thermal expansion coefficient of the inner and outer pipe materials, there is no occurrence of thermal cracks at the joint between the inner pipe and the outer pipe, and it can be used for piping of an exhaust manifold of an automobile. When used in an exhaust manifold, it also has the effect of increasing the exhaust gas passage temperature and improving exhaust gas purification performance due to its excellent heat insulation.

【0037】この複合管は、上記の優れた特性を生かせ
る様な分野に用いることができる。
This composite pipe can be used in fields where the above excellent characteristics can be utilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合管の構造を示す一部破断の斜視図
である。
FIG. 1 is a partially cutaway perspective view showing a structure of a composite pipe of the present invention.

【図2】自動車の排気系の概要を示す図である。FIG. 2 is a diagram showing an outline of an exhaust system of an automobile.

【図3】複合管をエキゾーストマニホールドに適用する
場合の管端加工の態様を示す断面図であり、外管を内管
に接合しない場合を示す図である。
FIG. 3 is a cross-sectional view showing a manner of pipe end processing when a composite pipe is applied to an exhaust manifold, and is a diagram showing a case where an outer pipe is not joined to an inner pipe.

【図4】複合管をエキゾーストマニホールドに適用する
場合の管端加工の態様を示す断面図であり、外管を内管
に接合する場合を示す図である。
FIG. 4 is a cross-sectional view showing a manner of pipe end processing when a composite pipe is applied to an exhaust manifold, and is a diagram showing a case where an outer pipe is joined to an inner pipe.

【図5】複合管をエキゾーストマニホールドに適用する
場合の管端加工の態様を示す断面図であり、外管をフラ
ンジに接合する場合を示す図である。
FIG. 5 is a cross-sectional view showing a manner of pipe end processing when a composite pipe is applied to an exhaust manifold, and is a diagram showing a case where an outer pipe is joined to a flange.

【符号の説明】[Explanation of symbols]

1:複合管 2:外管 3:内管 4:中間層 5:フランジ 6:管端
絞り加工部 7:接触部 8:内管・外管接合部 9:内管
とフランジとの接合部 10:外管とフランジとの接合部 11:エン
ジン 12:エキゾーストマニホールド 13:排ガ
ス浄化装置 14:消音装置 15:エンドパイプ
1: Composite pipe 2: Outer pipe 3: Inner pipe 4: Middle layer 5: Flange 6: Pipe end drawing part 7: Contact part 8: Inner pipe / outer pipe joint 9: Inner pipe and flange joint 10 : Joint between outer pipe and flange 11: Engine 12: Exhaust manifold 13: Exhaust gas purifier 14: Muffler 15: End pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】二重管の内管と外管の空隙部に無機質から
なる中間層を有する断熱複合管であって、内管がフェラ
イト系ステンレス鋼管であり、外管がオーステナイト系
ステンレス鋼管であることを特徴とする複合管。
1. A heat-insulating composite pipe having an intermediate layer made of an inorganic material in a space between a double pipe inner pipe and an outer pipe, wherein the inner pipe is a ferritic stainless steel pipe and the outer pipe is an austenitic stainless steel pipe. A composite pipe characterized by being present.
JP30667093A 1993-12-07 1993-12-07 Composite pipe Pending JPH07156329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30667093A JPH07156329A (en) 1993-12-07 1993-12-07 Composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30667093A JPH07156329A (en) 1993-12-07 1993-12-07 Composite pipe

Publications (1)

Publication Number Publication Date
JPH07156329A true JPH07156329A (en) 1995-06-20

Family

ID=17959910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30667093A Pending JPH07156329A (en) 1993-12-07 1993-12-07 Composite pipe

Country Status (1)

Country Link
JP (1) JPH07156329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988578A (en) * 1995-09-25 1997-03-31 Calsonic Corp Double pipe type exhaust manifold
JP2017053354A (en) * 2015-09-10 2017-03-16 イソライト ゲーエムベーハー Reflective insulation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988578A (en) * 1995-09-25 1997-03-31 Calsonic Corp Double pipe type exhaust manifold
JP2017053354A (en) * 2015-09-10 2017-03-16 イソライト ゲーエムベーハー Reflective insulation system
CN107060977A (en) * 2015-09-10 2017-08-18 艾索莱特股份有限公司 Reflective shielding system

Similar Documents

Publication Publication Date Title
US5163289A (en) Automotive exhaust system
US20110088805A1 (en) Heat insulator suitable for a vehicle exhaust pipe
WO1991014796A1 (en) Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
JPH08184391A (en) Bellows pipe
JP2007327138A (en) Corrosion-resistant alloy and component made therefrom
JPH07156329A (en) Composite pipe
JPH0483773A (en) Heat expansion-resistant member
US5160389A (en) Flexible tube for automotive exhaust systems
JPH04309410A (en) Heat insulating composite metallic pipe having excellent bendability
JP4196755B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
JPH0777036A (en) Ceramic honeycomb catalytic converter
JP3242573B2 (en) Stainless steel wire and fiber excellent in high temperature oxidation resistance and heat deformation resistance
JP4026554B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
McDougal et al. Stress-corrosion cracking in copper refrigerant tubing
JPH10280102A (en) Seamless pipe made of ferritic stainless steel for bellows and bellows using the same
JPH02203092A (en) Double layer steel pipe having corrosion resistance in environment burning fuel containing v, na, s, cl
JPH039015A (en) Expansion joint for exhaust pipe
US20090139219A1 (en) Exhaust conduit
CN212106024U (en) Exhaust bellows assembly and car
JPH09273696A (en) Flexible tube excellent in anti-salt corrosion
CN219221671U (en) Corrosion-resistant stainless steel pipe
JPH1162575A (en) Exhaust pipe for internal combustion engine
JPH0770699A (en) Steel excellent in noiseproofing and vibrationproofing capacity
JPH1082501A (en) Double tube for fast breeder reactor and manufacture thereof
KR910006031B1 (en) Highly corrosion resistant aluminized steel sheet for the manufacture of parts of exhaust gas system