JPH07154268A - Band division encoder - Google Patents

Band division encoder

Info

Publication number
JPH07154268A
JPH07154268A JP5298229A JP29822993A JPH07154268A JP H07154268 A JPH07154268 A JP H07154268A JP 5298229 A JP5298229 A JP 5298229A JP 29822993 A JP29822993 A JP 29822993A JP H07154268 A JPH07154268 A JP H07154268A
Authority
JP
Japan
Prior art keywords
power
quantization
band
signal
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5298229A
Other languages
Japanese (ja)
Other versions
JP3108259B2 (en
Inventor
Tatsuo Inoue
健生 井上
Shozo Sugishita
正蔵 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05298229A priority Critical patent/JP3108259B2/en
Publication of JPH07154268A publication Critical patent/JPH07154268A/en
Application granted granted Critical
Publication of JP3108259B2 publication Critical patent/JP3108259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress quantization distortion caused when the power of a voice signal is normalized by the use of the value of sigma when the power is quantized to the 2sigma-th power of 2. CONSTITUTION:The coder is made up of a band division filter 1 dividing a digital signal such as a voice signal into plural bands, a power calculation means 2 obtaining a power of each block of an output of the filter 1, a power quantization means 3 applying quantization in a form of 2sigma-th power of 2 to the power obtained by the power calculation means 2, a normalizing means 4 normalizing an output of the filter 1 by using the sigma obtained by the power quantization means 3, and a signal encoding means 6 using a quantization table with a corrected error to be estimated when the output of the filter 1 is normalized by using the sigma to quantize an output of the normalizing means 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は音声ICレコーダ等に用
いられるデジタルの音声信号を符号化する帯域分割符号
化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a band division coding apparatus for coding a digital voice signal used in a voice IC recorder or the like.

【0002】[0002]

【従来の技術】従来よりデジタルの音声信号を圧縮符号
化する際、いくつかのサブバンドに分割して符号化する
方法が一般的である。
2. Description of the Related Art Conventionally, when a digital audio signal is compression-encoded, a method of dividing the audio signal into several sub-bands and encoding them has been general.

【0003】例えば本発明者が先に提案した特願平5−
134561号の明細書及び図面には、符号化部におい
て入力されたデジタルの音声信号をまず帯域分割フィル
タ群(BPF:Band Path Filter)によって分割し、分
割したデジタルの音声信号の各々をフィルタの通過帯域
の中心周波数だけ下に周波数シフトし、そこで低域通過
フィルタを通して低周波信号に変換し、それを帯域通過
フィルタの帯域幅から決まる標本化周波数でダウンサン
プリングしてその結果をブロック毎の前向き適応PCM
(Pulse Code Modulation )で量子化するものが開示さ
れている。
For example, Japanese Patent Application No.
In the specification and drawings of No. 134561, the digital audio signal input in the encoding unit is first divided by a band division filter group (BPF: Band Path Filter), and each of the divided digital audio signals is passed through the filter. The frequency is shifted down by the center frequency of the band, converted there into a low-frequency signal through a low-pass filter, down-sampled at the sampling frequency determined by the bandwidth of the band-pass filter, and the result is forward adaptive for each block. PCM
(Pulse Code Modulation) quantization is disclosed.

【0004】そしてこの提案によると、復号化部では各
帯域毎に上記の操作とは逆の操作をして各帯域毎の帯域
通過信号を作成し、これらを足し合わせて出力音声波形
とする。
According to this proposal, the decoding section performs an operation reverse to the above operation for each band to create a band-pass signal for each band, and adds these to obtain an output speech waveform.

【0005】斯かる方式の利点としては、 (1)帯域毎にビット配分を効率よく行うことが容易に
できる (2)各帯域の量子化誤差はその帯域の信号のみに関係
し、該帯域の電力が小さい場合は例え量子化歪みが多く
ても全体の信号から見ると僅かな誤差でしかない (3)各帯域の量子化誤差は理想的には白色雑音となり
周波数スペクトル的に広く拡がり、その一部しかその帯
域に落ちない 等が上げられる。
The advantages of such a system are as follows: (1) It is easy to efficiently perform bit allocation for each band. (2) Quantization error in each band relates only to the signal in that band. When the power is low, even if there is a large amount of quantization distortion, it is only a slight error when viewed from the overall signal. (3) The quantization error in each band ideally becomes white noise and spreads widely in the frequency spectrum. It is raised that only a part falls in that band.

【0006】また上記(1)(2)の利点より、各帯域
に割り当てられる1サンプル当たりのビット数をその帯
域の信号の電力に応じて適応的に変化させていくことが
望ましいが、この場合は数1に従って分割するのが最も
適当(波形歪が最小になる)とされていた。
From the above advantages (1) and (2), it is desirable to adaptively change the number of bits per sample assigned to each band according to the power of the signal in that band. In this case, It has been said that it is most appropriate to divide according to Equation 1 (the waveform distortion is minimized).

【0007】[0007]

【数1】 [Equation 1]

【0008】ここでブロック毎に求めた電力を2の2σ
乗の形に量子化すれば前記数1は、
Here, the electric power obtained for each block is set to 2σ
If quantized to the power of

【0009】[0009]

【数2】 [Equation 2]

【0010】となる。また例えばWi=1/4 、N=4とす
ると前記数2は、
[0010] Further, for example, if W i = 1/4 and N = 4, then the above equation 2 becomes

【0011】[0011]

【数3】 [Equation 3]

【0012】となる。ところで、音声波形のサンプル
値、またはその差分値の分布はガンマ分布やラプラス分
布によい近似を示す。従って先に述べたブロック毎の音
声信号を前向き適応PCMで量子化する場合はガンマ分
布やラプラス分布に対して最適な量子化表を用いればよ
いが、そのためには音声信号を電力が1になるように正
規化しなければならない。
[0012] By the way, the distribution of the sample value of the voice waveform or the difference value thereof shows a good approximation to the gamma distribution or the Laplace distribution. Therefore, when quantizing the voice signal for each block described above by the forward adaptive PCM, the optimum quantization table for the gamma distribution or the Laplace distribution may be used. For that purpose, the power of the voice signal becomes 1. Must be normalized as follows.

【0013】しかしながら電力を2の2σ乗の形に量子
化し、そのσの値を使うと正確に正規化することができ
ないので、この時に量子化歪が増加するという問題点が
あった。
However, if the power is quantized to the power of 2 2 σ and the value of σ cannot be used for accurate normalization, there is a problem that the quantization distortion increases at this time.

【0014】[0014]

【発明が解決しようとする課題】上記従来技術のように
音声信号を前向き適応PCMで量子化する場合はガンマ
分布やラプラス分布に対して最適な量子化表を用いれば
よいが、そのためには音声信号をその電力が1になるよ
うに正規化しなければならない。
When a voice signal is quantized by the forward adaptive PCM as in the above-mentioned prior art, an optimum quantization table for a gamma distribution or a Laplace distribution may be used. The signal must be normalized so that its power is 1.

【0015】しかしながら音声信号の電力を2の2σ乗
の形に量子化し、そのσを使って正規化すると実際には
1よりも大きくなって正確に正規化できないので、その
時にはそのままガンマ分布やラプラス分布に対して最適
な量子化表を用いれば量子化歪が増加するという問題点
があった。本発明は斯かる従来技術の問題点に鑑みてな
されたものであり、音声信号の電力を2の2σ乗に量子
化した時のσの値を用いて正規化するときの量子化歪を
抑えることを目的とする。
However, if the power of a voice signal is quantized to the power of 2 2 σ and normalized using σ, it actually becomes larger than 1 and cannot be accurately normalized. At that time, the gamma distribution or the Laplace There is a problem that the quantization distortion increases if an optimum quantization table is used for the distribution. The present invention has been made in view of the problems of the prior art, and suppresses quantization distortion when normalizing using the value of σ when the power of a voice signal is quantized to the power of 2σ. The purpose is to

【0016】[0016]

【課題を解決するための手段】本発明は、音声信号等の
デジタル信号を複数の帯域に分割する帯域分割フィルタ
と、該フィルタの出力のブロック毎の電力を求める電力
算出手段と、該電力算出手段で求めた電力を2の2σ乗
の形に量子化する電力量子化手段と、該電力量子化手段
で得られたσを用いて前記フィルタの出力を正規化する
正規化手段と、前記σを用いて前記フィルタの出力を正
規化した際の予想される誤差分の補正を施された量子化
表を用いて前記正規化手段の出力を量子化する信号符号
化手段とよりなる。
DISCLOSURE OF THE INVENTION The present invention provides a band division filter for dividing a digital signal such as a voice signal into a plurality of bands, a power calculation unit for calculating the power of each block of the output of the filter, and the power calculation. A power quantization means for quantizing the power obtained by the means into a power of 2 2 σ, a normalization means for normalizing the output of the filter using σ obtained by the power quantization means; And a signal encoding means for quantizing the output of the normalizing means using a quantization table that has been subjected to correction of an error expected when the output of the filter is normalized using.

【0017】[0017]

【作用】上記構成のように、音声信号の電力を2の2σ
乗に量子化し、そのσの値を使って電力を正規化した際
の誤差分で量子化表を予め補正しておけば、音声信号を
前向き適応PCMで量子化する場合の量子化誤差が減少
する。
As described above, the power of the voice signal is set to 2 2σ
If the quantization table is corrected in advance with the error amount when the power is quantized and the power is normalized using the value of σ, the quantization error when the audio signal is quantized by the forward adaptive PCM is reduced. To do.

【0018】[0018]

【実施例】以下本発明の帯域圧縮符号化装置をその一実
施例について図面に基づいて詳細に説明する。図1は帯
域圧縮符号化装置の機能ブロック図を示し、1はバンド
パスフィルタであり、入力音声を2段のQMF(Quadra
ture Mirror Filter)を用いて4つの帯域に分割すると
共に該バンドパスフィルタ1の出力をベースバンドに落
とすものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the band compression encoding apparatus of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a functional block diagram of a band compression encoding apparatus, in which 1 is a bandpass filter, and an input voice has two stages of QMF (Quadra
(ture mirror filter) and divides it into four bands and drops the output of the band pass filter 1 to the base band.

【0019】2は上記のように各帯域毎に帯域分割され
た音声を数サンプル(例えば128サンプル)毎にブロ
ックにまとめ、そのブロック内の電力を計算する電力算
出手段である。3は前記電力算出手段2で計算された電
力を2の2σ乗に量子化する電力量子化手段であり、実
際には計算された電力を2進数で表し、表された2進数
表現での値の最も左に1の立っているところを探し、そ
れが右端から何ビット目であるかを調べ、そのビット値
から1を引き、さらに2で割ることによって、各帯域毎
のσi を求めるものである。
Reference numeral 2 is a power calculation means for collecting the voices, which have been band-divided for each band as described above, into blocks for every several samples (for example, 128 samples) and calculating the power in the blocks. Reference numeral 3 is a power quantization means for quantizing the power calculated by the power calculation means 2 to the power of 2 to the power of 2 and actually, the calculated power is represented by a binary number, and the value in the represented binary number is represented. Find the place where 1 stands on the leftmost side, find out what bit it is from the right end, subtract 1 from that bit value, and divide by 2 to obtain σ i for each band Is.

【0020】4は前記電力量子化手段3にて量子化され
た1ブロック内の電力が1になるように正規化する正規
化手段である。この正規化手段4によってダイナミック
レンジの広いデジタルの音声信号に対して精度良く量子
化することが可能となる。5は後述する各帯域の信号符
号化手段6で用いる量子化ビット数を割り当てる量子化
ビット数制御部であり、前記各帯域のσの値を用いて前
記数3を用いて割り当てるものである。
Reference numeral 4 is a normalizing means for normalizing the electric power in one block quantized by the electric power quantizing means 3 to be 1. By this normalizing means 4, it becomes possible to accurately quantize a digital audio signal having a wide dynamic range. Reference numeral 5 denotes a quantizing bit number control unit for allocating the number of quantizing bits used in the signal coding means 6 of each band, which will be described later.

【0021】そして信号符号化手段6は、前記量子化ビ
ット数制御部5で割り当てられた量子化ビット数に応じ
て、前記正規化手段4で正規化された信号を、予め予想
される正規化誤差で補正を施した量子化表を用いて、適
応量子化するものである。7は前記信号符号化手段6に
よって符号化された各帯域の符号及び補助情報σ i を多
重化して一つの信号とするマルチプレクサである。
Then, the signal encoding means 6 uses the quantization
According to the number of quantization bits assigned by the bit number control unit 5.
And predict the signal normalized by the normalizing means 4 in advance.
Using a quantization table corrected with the normalized error
It is quantized adaptively. 7 is the signal encoding means 6
Therefore, the code of each band and the auxiliary information σ i Many
It is a multiplexer that is multiplexed into one signal.

【0022】このように前記1〜7までの各手段によっ
て音声信号の符号化部が構成される。一方音声信号の復
号下部は、前記マルチプレクサ7からの信号を各帯域毎
の符号及び補助情報σi に分割するデマルチプレクサ8
と、前記量子化ビット数制御部5と同様にビット割り当
てを計算する逆量子化ビット数制御部9と、各帯域の量
子化された符号を復号化する信号復号化手段10と、符
号化部で求めておいたσの値を用いて正規化されている
音声信号を復元する逆正規化手段11と、帯域分割され
てダウンサンプリングされている信号をアップサンプリ
ングするとともに帯域結合する復号化側のバンドパスフ
ィルタ12とより構成される。
As described above, each of the above-mentioned means 1 to 7 constitutes an audio signal encoding section. On the other hand, the lower part of the decoding of the audio signal is a demultiplexer 8 which divides the signal from the multiplexer 7 into codes and auxiliary information σ i for each band.
An inverse quantized bit number control unit 9 for calculating bit allocation like the quantized bit number control unit 5, a signal decoding means 10 for decoding the quantized code of each band, and an encoding unit. The denormalization means 11 that restores a voice signal that has been normalized using the value of σ obtained in step 1 above, and the decoding side that up-samples the band-divided and down-sampled signal and band-combines them. It is composed of a bandpass filter 12.

【0023】上記の構成を有する帯域分割符号化装置の
動作を説明すると、まず入力されるどんな音声に対して
も前記バンドパスフィルタ1で帯域分割を行い、電力算
出手段2によって各帯域の電力を求め、電力量子化手段
3で求めた電力を2の2σ乗に量子化する。そして得ら
れたσの値に基づいて各帯域に割り当てる量子化ビット
数を量子化ビット数制御部5にて適応的に制御する。と
ころで電力をσの値に基づいて正規化手段4で正規化し
たために正規化手段4の出力は誤差を含んでいるが、予
め予想される正規化誤差分で補正を施した量子化表を用
いて信号量子化手段6により量子化を行うことにより最
適な量子化が行える。
Explaining the operation of the band division encoding device having the above-mentioned structure, first, band division is performed by the band pass filter 1 for any input voice, and the power of each band is calculated by the power calculation means 2. Then, the electric power obtained by the electric power quantizing means 3 is quantized into 2 to the power of 2σ. Then, the quantization bit number control unit 5 adaptively controls the quantization bit number assigned to each band based on the obtained value of σ. By the way, since the power is normalized by the normalizing means 4 based on the value of σ, the output of the normalizing means 4 includes an error. However, a quantization table corrected by an expected normalization error is used. Optimal quantization can be performed by performing quantization by the signal quantization means 6 according to the above.

【0024】さらにこれらの動作と逆の動作により量子
化された信号をもとのデジタル音声信号に復号する。前
記量子化表について以下に具体例を挙げる。表5〜表8
は1bit〜4bitで夫々量子化を行う際の入力音声
信号の分散が1でラプラス分布に対する最適量子化表を
示すものである。各表の左側はステップ幅の絶対値、右
側はそのステップ幅の範囲に入った信号を再生する時の
値を示すものである。そして表1〜表4は表5〜表8と
同様の量子化を行う際の、上述の如く予め予測される正
規化誤差分で補正を施した最適量子化表である。これら
の表から1bit〜4bitのどれで符号化する場合で
も正規化手段4に誤差が含まれており、本発明の補正さ
れた量子化表を用いればこの誤差を最小限に抑える量子
化歪を減少させることが可能となると言える。
Further, the quantized signal is decoded into the original digital audio signal by the reverse operation of these operations. Specific examples of the quantization table will be given below. Table 5 to Table 8
Shows an optimum quantization table for the Laplace distribution when the variance of the input audio signal is 1 when quantizing each of 1 bit to 4 bits. The left side of each table shows the absolute value of the step width, and the right side shows the value when reproducing the signal within the range of the step width. Tables 1 to 4 are optimum quantization tables corrected by the previously estimated normalization error when performing the same quantization as in Tables 5 to 8. An error is included in the normalizing means 4 regardless of which one of these tables is used for encoding with 1 bit to 4 bits, and using the corrected quantization table of the present invention, the quantization distortion that minimizes this error is reduced. It can be said that it can be reduced.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【表7】 [Table 7]

【0032】[0032]

【表8】 [Table 8]

【0033】[0033]

【発明の効果】以上の説明の如く本発明によれば、デジ
タルの音声信号を帯域分割符号化する際に各帯域毎の電
力を求め、その値を2の2σ乗の形に量子化することに
より、各帯域に割り当てる量子化ビット数を適応的に制
御することが可能となる。
As described above, according to the present invention, the power for each band is obtained when the digital voice signal is band-division-encoded, and the value is quantized to the power of 2 2σ. This makes it possible to adaptively control the number of quantization bits assigned to each band.

【0034】またσの値に基づいて正規化したことによ
り誤差を含んだ信号を予め予想される正規化誤差分で補
正を施した量子化表を用いて信号を適応量子化すること
により量子化歪を軽減することができる。従ってどんな
音声に対しても最適に符号化を行うことが可能となる効
果が期待できる。
Quantization is performed by adaptively quantizing a signal using a quantization table in which a signal including an error due to normalization based on the value of σ is corrected by an expected normalization error amount. Distortion can be reduced. Therefore, it is possible to expect an effect that it is possible to optimally encode any voice.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の帯域分割符号化装置の一実施例
の構成を示す機能ブロック図である。
FIG. 1 is a functional block diagram showing the configuration of an embodiment of a band division encoding device of the present invention.

【符号の説明】[Explanation of symbols]

1、12 バンドパスフィルタ 2 電力算出手段 3 電力量子化手段 4 正規化手段 5 量子化ビット数制御手段 6 信号符号化手段 7 マルチプレクサ 8 デマルチプレクサ 9 復号化ビット数制御手段 10 信号復号化手段 11 逆正規化手段 1, 12 band pass filter 2 power calculation means 3 power quantization means 4 normalization means 5 quantization bit number control means 6 signal coding means 7 multiplexer 8 demultiplexer 9 decoding bit number control means 10 signal decoding means 11 reverse Normalization means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 音声信号等のデジタル信号を複数の帯域
に分割する帯域分割フィルタと、該フィルタの出力のブ
ロック毎の電力を求める電力算出手段と、該電力算出手
段で求めた電力を2の2σ乗の形に量子化する電力量子
化手段と、該電力量子化手段で得られたσを用いて前記
フィルタの出力を正規化する正規化手段と、前記σを用
いて前記フィルタの出力を正規化した際の予想される誤
差分の補正を施された量子化表を用いて前記正規化手段
の出力を量子化する信号符号化手段とよりなる帯域分割
符号化装置。
1. A band division filter for dividing a digital signal such as a voice signal into a plurality of bands, a power calculation unit for calculating the power of each block of the output of the filter, and a power calculation unit for calculating the power calculated by the power calculation unit. Power quantizing means for quantizing to the power of 2σ, normalizing means for normalizing the output of the filter by using σ obtained by the power quantizing means, and output of the filter by using σ A band division encoding device comprising signal encoding means for quantizing the output of the normalizing means using a quantization table which has been subjected to correction of an error expected when normalized.
JP05298229A 1993-11-29 1993-11-29 Band division coding device Expired - Fee Related JP3108259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05298229A JP3108259B2 (en) 1993-11-29 1993-11-29 Band division coding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05298229A JP3108259B2 (en) 1993-11-29 1993-11-29 Band division coding device

Publications (2)

Publication Number Publication Date
JPH07154268A true JPH07154268A (en) 1995-06-16
JP3108259B2 JP3108259B2 (en) 2000-11-13

Family

ID=17856908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05298229A Expired - Fee Related JP3108259B2 (en) 1993-11-29 1993-11-29 Band division coding device

Country Status (1)

Country Link
JP (1) JP3108259B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288560A (en) * 2008-05-29 2009-12-10 Sanyo Electric Co Ltd Speech coding device, speech decoding device and program
JP2009288561A (en) * 2008-05-29 2009-12-10 Sanyo Electric Co Ltd Speech coding device, speech decoding device and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288560A (en) * 2008-05-29 2009-12-10 Sanyo Electric Co Ltd Speech coding device, speech decoding device and program
JP2009288561A (en) * 2008-05-29 2009-12-10 Sanyo Electric Co Ltd Speech coding device, speech decoding device and program

Also Published As

Publication number Publication date
JP3108259B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
EP2308045B1 (en) Compression of audio scale-factors by two-dimensional transformation
KR100242864B1 (en) Digital signal coder and the method
US7630902B2 (en) Apparatus and methods for digital audio coding using codebook application ranges
JP3277692B2 (en) Information encoding method, information decoding method, and information recording medium
KR100419546B1 (en) Signal encoding method and apparatus, Signal decoding method and apparatus, and signal transmission method
US7428489B2 (en) Encoding method and apparatus, and decoding method and apparatus
US6415251B1 (en) Subband coder or decoder band-limiting the overlap region between a processed subband and an adjacent non-processed one
WO1995027335A1 (en) Method and device for encoding information, method and device for decoding information, information transmitting method, and information recording medium
JP3900000B2 (en) Encoding method and apparatus, decoding method and apparatus, and program
JP3318931B2 (en) Signal encoding device, signal decoding device, and signal encoding method
JPH0846518A (en) Information coding and decoding method, information coder and decoder and information recording medium
JP4245288B2 (en) Speech coding apparatus and speech decoding apparatus
KR100952065B1 (en) Coding method, apparatus, decoding method, and apparatus
JPH0653911A (en) Method and device for encoding voice data
JP3685823B2 (en) Signal encoding method and apparatus, and signal decoding method and apparatus
JPH07154268A (en) Band division encoder
JPH08307281A (en) Nonlinear quantization method and nonlinear inverse quantization method
JPS6337400A (en) Voice encoding
JP3465697B2 (en) Signal recording medium
JPH0750589A (en) Sub-band coding device
JP3011447B2 (en) Band division coding device
JP3465698B2 (en) Signal decoding method and apparatus
KR0152016B1 (en) Encoding and decoding system using variable bit allocation
JP3010637B2 (en) Quantization device and quantization method
JPH06348294A (en) Band dividing and coding device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees