JPH07153133A - Recording and reproducing method for magneto-optical recording medium - Google Patents

Recording and reproducing method for magneto-optical recording medium

Info

Publication number
JPH07153133A
JPH07153133A JP29818593A JP29818593A JPH07153133A JP H07153133 A JPH07153133 A JP H07153133A JP 29818593 A JP29818593 A JP 29818593A JP 29818593 A JP29818593 A JP 29818593A JP H07153133 A JPH07153133 A JP H07153133A
Authority
JP
Japan
Prior art keywords
reproducing
light
reproduction
recording
auxiliary light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29818593A
Other languages
Japanese (ja)
Inventor
Toshifumi Kawano
敏史 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP29818593A priority Critical patent/JPH07153133A/en
Publication of JPH07153133A publication Critical patent/JPH07153133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain good reproducing waveforms by disposing >=1 auxiliary light beams around reproducing light and having a mask part expanded as compared with the case of irradiation with the reproducing light alone by the thermal interference effect of these auxiliary light beams. CONSTITUTION:The Curie temps. of respective layers; a reproducing layer, cut layer and recording layer are respectively >=300 deg.C, 140 deg.C and 240 deg.C and the coercive forces of the respective layers are respectively 300Oe, 12kOe and 20kOe. While the width of the mask (temp. region exceeding the Curie temp. of the cut layer) within the beam spot (a range where the light intensity is >=1/e<2> the max. value) of the reproducing light is 0.8mum, this width evidently increases up to 1.2mum in the case of the presence of the auxiliary light beams if the reproducing light 1 is set at 2.4mW and a calculation of the heat distribution in the state that there are no auxiliary light beams and the state where the auxiliary light beams 6 of 2.0mW are arranged apart 1mum on both sides of the reproducing is executed. The distortion of the reproducing waveforms are not generated if there are the auxiliary light beams.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光磁気記録媒体の記録再
生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recording / reproducing method for a magneto-optical recording medium.

【0002】[0002]

【従来の技術】光磁気記録媒体は、高密度、低コストの
書換え可能な情報記録媒体として実用化されている。特
に希土類元素と遷移金属のアモルファス合金の記録層を
用いた媒体は非常に優れた特性を示している。光磁気デ
ィスクは非常に大容量の記録媒体であるが、社会の情報
量の増大に伴い更なる大容量化が望まれている。この光
ディスクの記録密度は通常の場合、その再生光のスポッ
ト径の大きさで決ってしまう。
2. Description of the Related Art Magneto-optical recording media have been put to practical use as high-density, low-cost rewritable information recording media. In particular, a medium using a recording layer of an amorphous alloy of a rare earth element and a transition metal shows very excellent characteristics. The magneto-optical disk is a recording medium having a very large capacity, but further increasing the capacity is desired as the amount of information in society increases. The recording density of this optical disk is usually determined by the size of the spot diameter of the reproduction light.

【0003】スポット径の大きさはレーザーの波長が短
いほど小さくすることができるため、レーザーの短波長
化の検討が進められてはいるが、非常に困難を伴ってい
る。一方、レーザーの波長によって決定される以上の分
解能を色々な工夫によって得ようとする、いわゆる超解
像技術の試みが近年行われている。その一つに、光磁気
ディスクを用い、多層膜間の交換結合力を用いた超解像
(Magnetically induced super resolution、MSR)が
報告されている。
Since the size of the spot diameter can be made smaller as the wavelength of the laser becomes shorter, studies are being made to shorten the wavelength of the laser, but it is extremely difficult. On the other hand, in recent years, so-called super-resolution technology has been attempted to obtain a resolution higher than that determined by the laser wavelength by various means. One of them is a super-resolution using the magneto-optical disk and the exchange coupling force between the multilayer films.
(Magnetically induced super resolution, MSR) has been reported.

【0004】この方式の一つの形態は、保磁力の小さな
再生層、キュリー温度の低いスイッチング層、キュリー
温度、保磁力が高い記録層の互いに交換結合した3層か
らなる媒体を用いる。図3はこの媒体を用いた記録再生
方式を示すための媒体を上から見た図であり、再生磁界
を印加しながら再生光により加熱したとき、媒体の高温
部(マスク部分)2で、交換結合が切れる。
One form of this system uses a medium composed of three layers, which are exchange-coupled with each other, a reproducing layer having a small coercive force, a switching layer having a low Curie temperature, and a recording layer having a high Curie temperature and a high coercive force. FIG. 3 is a view from above of a medium for showing a recording / reproducing system using this medium. When the medium is heated by reproducing light while applying a reproducing magnetic field, the medium is exchanged at a high temperature portion (mask portion) 2. The bond is broken.

【0005】再生層は単独での保磁力が小さいので高温
部2では磁化が一様に再生磁界の方向を向き記録ビット
が消去される。この結果、低温部(アパーチャー部分)
3のみが再生され、結果的に再生範囲が狭くなるため、
再生光を絞った場合と同じ効果が得られ、高密度の記録
ビットの再生を行うことができる。消去された記録ビッ
トは、媒体温度が低くなり交換結合が回復したときに、
記録層から転写されることにより復活する。
Since the reproducing layer alone has a small coercive force, in the high temperature portion 2, the magnetization uniformly points in the direction of the reproducing magnetic field and the recorded bits are erased. As a result, the low temperature part (aperture part)
Only 3 is played, and as a result the playback range is narrowed,
The same effect as when the reproduction light is narrowed down can be obtained, and high density recording bits can be reproduced. The erased recorded bits are recorded when the medium temperature becomes low and the exchange coupling is restored.
It is restored by being transferred from the recording layer.

【0006】媒体が回転しているため、温度の最大部分
は光強度の最大の部分より若干後方になり、マスク部分
2は再生ビームスポット1の後方にアパーチャー部分3
は前方にできる。このためこの方式は、信号を再生光ス
ポットの前部で検出するため、Forward aperture detec
tion FADと呼ばれる。一方、光磁気ディスクの容量
を向上する方法としてPWM(pulse width modulatio
n)記録の採用が挙げられる。PWM記録では情報が記
録磁区の長さとして蓄えられる。再生時には磁区の端部
を検出し、その間隔によって情報の再生を行う。
Since the medium is rotating, the maximum temperature portion is slightly behind the maximum light intensity portion, and the mask portion 2 is located behind the reproduction beam spot 1 and the aperture portion 3 is formed.
Can be forward For this reason, this method detects the signal at the front of the reproduction light spot, and
It is called tion FAD. On the other hand, as a method of improving the capacity of the magneto-optical disk, PWM (pulse width modulatio
n) Adopting records. In PWM recording, information is stored as the length of the recording magnetic domain. At the time of reproduction, the end of the magnetic domain is detected and information is reproduced according to the interval.

【0007】この方式によると従来用いられてきたPP
M(pulse position modulation)と比較して約1.5
倍程度の容量増加が期待できる。従来、光変調記録で
は、記録時の熱拡散の問題から正確な長さで磁区を記録
するのが困難とされてきたが、近年、記録方式の改良等
によって実用化が行われている。
According to this method, the PP that has been conventionally used
About 1.5 compared to M (pulse position modulation)
A doubled capacity increase can be expected. Conventionally, in optical modulation recording, it has been difficult to record a magnetic domain with an accurate length due to the problem of thermal diffusion during recording, but in recent years, it has been put to practical use by improving the recording method and the like.

【0008】[0008]

【発明が解決しようとする課題】FADを用いる場合に
も記録方式としてこういったPWM記録を採用した方が
容量が大きくなる。本発明者等はこういったFADとP
WM記録の組み合わせの記録再生を検討した結果、FA
DでPWM記録を行った場合、長ビット(長い磁区)を
再生した際に後方に行くほど信号が大きくなるような波
形の歪を生じ、これがジッター(端部の検出誤差)に大
きな影響を与えることを見いだした。
Even when FAD is used, the capacity becomes larger when such PWM recording is adopted as the recording method. The present inventors have adopted such FAD and P
As a result of studying recording / reproduction of a combination of WM recording, FA
When PWM recording is performed with D, when a long bit (long magnetic domain) is reproduced, waveform distortion occurs such that the signal becomes larger as it goes backward, which has a great influence on jitter (edge detection error). I found a thing.

【0009】PPM記録では長ビットの記録が無いた
め、この歪は問題とならないが、PWM記録では必ず長
ビットの記録が存在するため致命的問題となる。また、
FADでは基本的にクロストークが小さくならずトラッ
クピッチを縮めて容量を大きくする手法をとることがで
きなかった。
Since there is no recording of long bits in PPM recording, this distortion is not a problem, but in PWM recording, there is always a recording of long bits, which is a fatal problem. Also,
In FAD, basically, crosstalk was not reduced and the track pitch could not be reduced to increase the capacity.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、再生光
により媒体温度が特定の温度以上に昇温されたマスク部
分ではその磁化が常に同一の方向を向き、再生信号の変
化は前記特定の温度以下のアパーチャー部分から得るこ
とにより、再生時の信号の符号間干渉が通常の再生より
も低減されるような光磁気記録媒体を用いて信号の記録
再生を行う場合において、再生光の周囲に一つ以上の補
助光を配し、前記補助光の熱干渉効果によって前記マス
ク部分が再生光のみを照射する場合に比べて拡大されて
いることを特徴とする光磁気記録媒体の再生方法に存す
る。
SUMMARY OF THE INVENTION The gist of the present invention is that in the mask portion where the medium temperature is raised to a specific temperature or higher by the reproducing light, the magnetization always points in the same direction, and the change in the reproduced signal is caused by the specified value. When the signal is recorded / reproduced using a magneto-optical recording medium in which the intersymbol interference of the signal at the time of reproduction is reduced as compared with the normal reproduction by obtaining it from the aperture below the temperature of In the reproducing method of the magneto-optical recording medium, one or more auxiliary lights are provided in the above, and the mask portion is enlarged by a thermal interference effect of the auxiliary light as compared with a case where only the reproducing light is irradiated. Exist.

【0011】以下、本発明をさらに詳細に説明する。長
ビットでの波形歪の原因を究明するために、熱分布の状
態の解析を基に長さ1.5μm、幅1.0μmの磁区の
FAD再生波形の分析を行った。図2はその結果を示す
再生波形の図である。図2中、L1はマスク部内の幅、
L2は記録磁区の最大幅である。L1=0はマスク無し
の場合の再生波形である。
The present invention will be described in more detail below. In order to investigate the cause of waveform distortion in a long bit, an FAD reproduction waveform of a magnetic domain having a length of 1.5 μm and a width of 1.0 μm was analyzed based on the analysis of the state of heat distribution. FIG. 2 is a reproduction waveform diagram showing the result. In FIG. 2, L1 is the width in the mask portion,
L2 is the maximum width of the recording magnetic domain. L1 = 0 is a reproduced waveform when there is no mask.

【0012】図3に示すように再生波形の歪の原因は記
録磁区の幅に比べてマスク部分の幅が狭いことにあるこ
とがわかった。ここで言う幅は、再生光の進行方向に対
して垂直な方向の幅を指す。L1<L2即ちマスクの幅
が狭いと、マスクにかかっていない部分の記録磁区から
の信号は再生光の後方で僅かずつ検出されるため次第に
増加し、長ビットの後方で再生信号強度が増加していく
原因となっていたものである。
As shown in FIG. 3, it has been found that the cause of the distortion of the reproduced waveform is that the width of the mask portion is narrower than the width of the recording magnetic domain. The width mentioned here refers to the width in the direction perpendicular to the traveling direction of the reproduction light. When L1 <L2, that is, when the width of the mask is narrow, the signal from the recording magnetic domain in the part not covered by the mask is detected little by little behind the reproduction light and gradually increases, and the reproduction signal strength increases behind the long bit. This was the cause of the loss.

【0013】この現象を防ぐためには、マスク幅L1を
記録磁区の最大幅L2より大きくとればよく、これは再
生光や再生磁界の増加等により達成可能である。しかし
ながら、マスク幅の増加は同時に再生光の進行方向にお
けるマスクの拡大をもたらすため、信号変化の再生にか
かわる低温領域(アパーチャー部分)が再生スポットの
端部に追いやられて、再生信号の著しい低下をもたら
す。
In order to prevent this phenomenon, the mask width L1 may be made larger than the maximum width L2 of the recording magnetic domain, which can be achieved by increasing the reproducing light or reproducing magnetic field. However, since the increase in the mask width causes the mask to expand in the reproduction light traveling direction at the same time, the low temperature region (aperture portion) involved in the reproduction of the signal change is driven to the end of the reproduction spot, and the reproduction signal is significantly reduced. Bring

【0014】さらに、こういった高パワーの再生では、
再生光の中心付近の温度が激しく上昇し、記録された情
報そのものを破壊してしまう恐れもある。このため本発
明では熱的干渉効果を有する補助光を再生光の周囲に配
置することによりマスク幅の増加を得るものである。図
1は本発明による記録再生方式の一例を示す図である。
Further, in such high power reproduction,
There is a risk that the temperature near the center of the reproduction light will rise sharply and destroy the recorded information itself. Therefore, in the present invention, the mask width is increased by arranging the auxiliary light having the thermal interference effect around the reproduction light. FIG. 1 is a diagram showing an example of a recording / reproducing system according to the present invention.

【0015】図1に示すように補助光6は再生光1の進
行方向4に対して垂直方向に、再生光1の両側に配置
(場合によっては片側のみに配置)するか、あるいは再
生光1の進行方向4に対して再生光1の後方に配置する
のが好ましい。再生光1の両側に配置する場合、再生光
1よりも進行方向4に沿って若干前後に位置してもかま
わない。
As shown in FIG. 1, the auxiliary light 6 is arranged on both sides of the reproduction light 1 in a direction perpendicular to the traveling direction 4 of the reproduction light 1 (only on one side in some cases), or the reproduction light 1 is arranged. It is preferable to arrange it behind the reproduction light 1 with respect to the traveling direction 4. When they are arranged on both sides of the reproduction light 1, they may be located slightly back and forth along the traveling direction 4 with respect to the reproduction light 1.

【0016】このような配置をとるのは、再生ビームス
ポットの後方にあるマスク部分2を集中して昇温し、再
生ビームスポット1の前方にあるアパーチャー部分3を
できるだけ昇温しないようにするためである。こういっ
た補助光を設けることにより、再生ビームスポット1内
の熱分布は変化し、アパーチャー部分3を著しく縮小さ
せることなくマスク部分の幅を拡大できる。
This arrangement is used in order to concentrate the temperature of the mask portion 2 behind the reproducing beam spot and to raise the temperature of the aperture portion 3 in front of the reproducing beam spot 1 as little as possible. Is. By providing such auxiliary light, the heat distribution in the reproduction beam spot 1 changes, and the width of the mask portion can be enlarged without significantly reducing the aperture portion 3.

【0017】補助光を再生光の両側に設けることは、ア
パーチャー部分3の幅を小さくするので、クロストーク
の減少効果も得られるため好ましい形態である。この場
合、補助光は隣接トラック上、あるいはトラック間の中
間領域(ランド記録の場合はグルーブ)上に照射されて
いることが好ましい。補助光を再生光の後方に配置した
場合もマスクの拡大の効果が得られる。この場合は、補
助光が一本で済むという長所がある。再生光の両側及び
後方に全て補助光を配置することも当然可能な形態であ
る。
Providing the auxiliary light on both sides of the reproduction light is a preferable mode because the width of the aperture portion 3 is reduced, and the effect of reducing crosstalk can be obtained. In this case, it is preferable that the auxiliary light is applied to an adjacent track or an intermediate area (a groove in the case of land recording) between the tracks. The effect of enlarging the mask is also obtained when the auxiliary light is arranged behind the reproduction light. In this case, there is an advantage that only one auxiliary light is required. It is naturally possible to arrange the auxiliary light on both sides and the rear of the reproduction light.

【0018】補助光は熱分布の改良を目的としたもので
あるから、媒体上に正確にフォーカスされている必要は
無い。また、多少の位置のずれも許容される。従って、
補助光を設けることによるドライブの複雑化はさほど起
こらない。実際に補助光を照射する方法としては再生光
を分割する方法が考えられるが、その他にもレーザーア
レーを用いたり、完全に独立の光学系を用いることもで
きる。また、レーザーではなくて発光ダイオードを用い
ることも可能である。
Since the auxiliary light is intended to improve the heat distribution, it does not need to be accurately focused on the medium. In addition, a slight misalignment is allowed. Therefore,
The complication of the drive caused by providing the auxiliary light does not occur so much. As a method of actually irradiating the auxiliary light, a method of splitting the reproducing light can be considered, but other than that, a laser array or a completely independent optical system can be used. It is also possible to use a light emitting diode instead of a laser.

【0019】こういった記録再生方法に好ましく用いら
れるFAD媒体として以下のようなものが挙げられる。
基板上に再生層、切断層、記録層の3層からなる互いに
交換結合した磁性層を設ける。再生層、切断層、記録層
の各々のキュリー温度をTc1、Tc2、Tc3としたとき
に、全て50℃以上であり、且つ Tc1>Tc2、Tc3>Tc2 の関係を満たすことが好ましい。
The FAD medium preferably used in such a recording / reproducing method includes the following.
A magnetic layer, which is composed of three layers of a reproducing layer, a cutting layer, and a recording layer, exchange-coupled with each other is provided on a substrate. When the Curie temperatures of the reproducing layer, the cutting layer, and the recording layer are Tc1, Tc2, and Tc3, respectively, it is preferable that they are all 50 ° C. or higher and satisfy the relationship of Tc1> Tc2, Tc3> Tc2.

【0020】基板に用いられる材質としてはポリカーボ
ネートあるいはガラス等が挙げられる。再生層にはGd
FeCo、GdTbFeCo等が用いられる。切断層に
はTbFe、TbFeCo、DyFe等が用いられる。
記録層にはTbFeCo、TbDyFeCo等が用いら
れる。
Examples of the material used for the substrate include polycarbonate and glass. Gd in the playback layer
FeCo, GdTbFeCo, or the like is used. TbFe, TbFeCo, DyFe or the like is used for the cutting layer.
TbFeCo, TbDyFeCo, or the like is used for the recording layer.

【0021】磁性層の両側を窒化Si、窒化Al、酸化
Ta等の誘電体からなる保護膜で挟むのは好ましい形態
である。この際、光が照射する側の保護膜は光の干渉効
果により反射率が最低となる膜厚付近であることが好ま
しい。
It is a preferable mode that both sides of the magnetic layer are sandwiched by protective films made of a dielectric material such as Si nitride, Al nitride and Ta oxide. At this time, it is preferable that the protective film on the side irradiated with light has a thickness near the minimum reflectance due to the interference effect of light.

【0022】[0022]

【実施例】【Example】

実施例1 厚さ1.2mmポリカーボネート基板上に、75nmの
酸化Ta誘電体膜、30nmのGdFeCo再生層、1
0nmのTbFe切断層(キュリー温度120℃)、4
0nmのTbFeCo記録層、80nmの窒化Si保護
層を順次設け、その上に5μmの紫外線硬化樹脂を設け
た。再生波長は780nmでNA=0.55、線速度1
0m/sとした。
Example 1 On a 1.2 mm thick polycarbonate substrate, a 75 nm oxide Ta dielectric film, a 30 nm GdFeCo reproducing layer, 1
0 nm TbFe cutting layer (Curie temperature 120 ° C.), 4
A 0 nm TbFeCo recording layer and an 80 nm Si nitride protective layer were sequentially provided, and a 5 μm ultraviolet curable resin was provided thereon. Reproduction wavelength is 780 nm, NA = 0.55, linear velocity 1
It was set to 0 m / s.

【0023】再生層、切断層、記録層の各層のキュリー
温度は各々300℃以上、140℃、240℃であり、
各層の保磁力は各々300Oe、12kOe、20kO
eであった。再生光を2.4mWとし、補助光が無い状
態と、2.0mWの補助光を再生層の両側に1μm離し
て配置した状態との熱分布の計算を行った。
Curie temperatures of the reproducing layer, the cutting layer and the recording layer are 300 ° C. or higher, 140 ° C. and 240 ° C., respectively.
The coercive force of each layer is 300 Oe, 12 kOe, 20 kO, respectively.
It was e. The heat distribution was calculated with the reproducing light of 2.4 mW and no auxiliary light and the condition of 2.0 mW of auxiliary light placed 1 μm apart on both sides of the reproducing layer.

【0024】その結果、再生光のビームスポット(光強
度が最大値の1/e2以上の範囲)内でのマスク(切断
層のキュリー温度を越える温度領域)の幅は0.8μm
であるのに対し、補助光がある場合だと1.2μmまで
増加した。トラックピッチ1.2μm、記録磁区長1.
5μm、記録磁区幅1.0μmとして、再生波形、クロ
ストークの測定を行った所、補助光が無い場合は再生波
形が後方で信号が強くなるように大きく歪んだが、補助
光がある場合はこういった歪は生じなかった。再生信号
の強度は補助光が無い場合を1としたとき0.8であっ
た。クロストークは補助光が無い場合−21dBであっ
たが、補助光がある場合−28dBであった。
As a result, the width of the mask (the temperature region exceeding the Curie temperature of the cutting layer) within the beam spot of reproducing light (the range of the light intensity being 1 / e 2 or more of the maximum value) is 0.8 μm.
On the other hand, in the case of the auxiliary light, it increased to 1.2 μm. Track pitch 1.2 μm, recording domain length 1.
When the reproduced waveform and crosstalk were measured with a recording domain width of 5 μm and a recording domain width of 1.0 μm, the reproduced waveform was greatly distorted so that the signal became stronger at the rear when there was no auxiliary light. Such distortion did not occur. The intensity of the reproduction signal was 0.8 when the case where there was no auxiliary light was 1. The crosstalk was -21 dB when there was no auxiliary light, but was -28 dB when there was auxiliary light.

【0025】実施例2 実施例1と同様のディスクを用いて2.0mWの補助光
を再生光の後方1μmに配置した。この結果マスクの幅
は1.0μmとなった。再生信号の歪は生じず、再生光
強度は0.9であった。クロストークは−23dBであ
った。 比較例 実施例1と同様のディスクを用い、補助光を照射しない
状態で再生光を3.0mWとした。この結果マスクの幅
は1.1μmとなった。
Example 2 Using the same disk as in Example 1, 2.0 mW of auxiliary light was placed 1 μm behind the reproduction light. As a result, the width of the mask was 1.0 μm. The reproduced signal was not distorted, and the reproducing light intensity was 0.9. The crosstalk was -23 dB. Comparative Example The same disk as in Example 1 was used, and the reproducing light was set to 3.0 mW in the state where the auxiliary light was not irradiated. As a result, the width of the mask was 1.1 μm.

【0026】再生信号の歪は生じなかったが、再生光強
度は0.3となった。クロストークは−22dBであっ
た。
Although the reproduced signal was not distorted, the reproduced light intensity was 0.3. The crosstalk was -22 dB.

【0027】[0027]

【発明の効果】本発明の光磁気記録媒体の記録再生方法
を用いることによって、FADによる超解像媒体におい
てPWM記録に利用可能な良好な再生波形を得ることが
できる上、クロストークの低減も可能である。
By using the recording / reproducing method for the magneto-optical recording medium of the present invention, it is possible to obtain a good reproducing waveform that can be used for PWM recording in the super-resolution medium by FAD, and also reduce crosstalk. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による記録再生方式の一例を示す図FIG. 1 is a diagram showing an example of a recording / reproducing system according to the present invention.

【図2】マスク部分の幅の変化による再生波形の変化を
示す図
FIG. 2 is a diagram showing a change in a reproduced waveform due to a change in a width of a mask portion.

【図3】従来のFAD媒体記録再生方式を示す図FIG. 3 is a diagram showing a conventional FAD medium recording / reproducing system.

【符号の説明】[Explanation of symbols]

1 再生光 2 マスク部分 3 アパーチャー部分 4 再生光の移動方向 5 記録磁区 6 補助光 1 reproducing light 2 mask part 3 aperture part 4 moving direction of reproducing light 5 recording magnetic domain 6 auxiliary light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 再生光により媒体温度が特定の温度以上
に昇温されたマスク部分ではその磁化が常に同一の方向
を向き、再生信号の変化は前記特定の温度以下のアパー
チャー部分から得ることにより、再生時の信号の符号間
干渉が通常の再生よりも低減されるような光磁気記録媒
体を用いて信号の記録再生を行う場合において、 再生光の周囲に一つ以上の補助光を配し、前記補助光の
熱干渉効果によって前記マスク部分が再生光のみを照射
する場合に比べて拡大されていることを特徴とする光磁
気記録媒体の再生方法。
1. In a mask portion where the medium temperature is raised to a specific temperature or higher by reproducing light, its magnetization always points in the same direction, and a change in a reproduction signal is obtained from an aperture portion whose temperature is lower than the specific temperature. , When performing signal recording / reproduction using a magneto-optical recording medium in which the intersymbol interference of signals during reproduction is reduced as compared with normal reproduction, one or more auxiliary lights are placed around the reproduction light. A reproducing method of a magneto-optical recording medium, wherein the mask portion is enlarged by a thermal interference effect of the auxiliary light as compared with a case where only the reproducing light is irradiated.
【請求項2】 再生ビームスポットの大きさを光強度が
最大強度の1/e2(eは自然対数)以上である範囲と
定義し、さらに再生ビームスポット内にあるマスク部分
の、再生光の媒体に対する相対的進行方向に垂直な方向
の最大幅をLとしたとき、Lが増加するような熱的干渉
効果を有する補助光を再生光の周囲に配置した請求項1
に記載の光磁気記録媒体の記録再生方法。
2. The size of the reproduction beam spot is defined as a range in which the light intensity is 1 / e 2 (e is a natural logarithm) or more of the maximum intensity, and the reproduction light of a mask portion in the reproduction beam spot is further defined. The auxiliary light having a thermal interference effect such that L is increased is arranged around the reproduction light, where L is a maximum width in a direction perpendicular to the relative traveling direction with respect to the medium.
A recording / reproducing method for the magneto-optical recording medium according to.
【請求項3】 記録された磁区の長さによって情報が蓄
えられる記録方式が用いられている請求項1に記載の光
磁気記録媒体の記録再生方法。
3. The recording / reproducing method for a magneto-optical recording medium according to claim 1, wherein a recording method in which information is stored according to the length of the recorded magnetic domain is used.
JP29818593A 1993-11-29 1993-11-29 Recording and reproducing method for magneto-optical recording medium Pending JPH07153133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29818593A JPH07153133A (en) 1993-11-29 1993-11-29 Recording and reproducing method for magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29818593A JPH07153133A (en) 1993-11-29 1993-11-29 Recording and reproducing method for magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH07153133A true JPH07153133A (en) 1995-06-16

Family

ID=17856322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29818593A Pending JPH07153133A (en) 1993-11-29 1993-11-29 Recording and reproducing method for magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH07153133A (en)

Similar Documents

Publication Publication Date Title
US5168482A (en) Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
US6020079A (en) Magneto-optical recording medium and reproducing method for information recorded on the medium
EP0525192B1 (en) Magnetooptical reproducing method and device
JP3647219B2 (en) Method of reproducing signal from magnetic recording medium
JPH11134732A (en) Information recording/reproducing method
JP3477384B2 (en) Magneto-optical recording medium
JP2002050090A (en) Optical recording medium
US6747919B2 (en) Magneto-optical recording medium, and method and apparatus for producing the same
JP3474464B2 (en) Magneto-optical recording medium
JP2000173117A (en) Magneto-optical recording medium and reproducing device
JPH07153133A (en) Recording and reproducing method for magneto-optical recording medium
US6795379B2 (en) Magneto-optical medium utilizing domain wall displacement and process of reproduction
JP3412879B2 (en) Magneto-optical recording medium
JP3763930B2 (en) Method for reproducing magneto-optical recording medium and magneto-optical recording medium
JPH1125529A (en) Information recording medium and reproducing method therefor
JP2636694B2 (en) Recording / reproducing method and recording / reproducing apparatus for magneto-optical recording medium
JPH0729238A (en) Reproducing method for optical recording
JP2000173116A (en) Magneto-optical recording medium and reproducing device
JP2929918B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH06302033A (en) Reproducing method for magneto-optical recording medium
JPH07153132A (en) Recording and reproducing method for magneto-optical recording medium
JP3516865B2 (en) Magneto-optical recording medium and reproducing apparatus
JP3075048B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH08235657A (en) Magnetooptical recording medium
JPH0536147A (en) Magneto-optical recording method