JPH07153045A - Magnetic disc apparatus - Google Patents
Magnetic disc apparatusInfo
- Publication number
- JPH07153045A JPH07153045A JP30194793A JP30194793A JPH07153045A JP H07153045 A JPH07153045 A JP H07153045A JP 30194793 A JP30194793 A JP 30194793A JP 30194793 A JP30194793 A JP 30194793A JP H07153045 A JPH07153045 A JP H07153045A
- Authority
- JP
- Japan
- Prior art keywords
- reproducing head
- sensitivity distribution
- magnetic disk
- head
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/58—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B5/596—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
- G11B5/59683—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks for magnetoresistive heads
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B2005/0002—Special dispositions or recording techniques
- G11B2005/0005—Arrangements, methods or circuits
- G11B2005/001—Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
- G11B2005/0013—Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation
- G11B2005/0016—Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation of magnetoresistive transducers
- G11B2005/0018—Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation of magnetoresistive transducers by current biasing control or regulation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/49—Fixed mounting or arrangements, e.g. one head per track
- G11B5/4969—Details for track selection or addressing
Landscapes
- Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気記録媒体に情報信
号を記録再生する磁気ディスク装置に関するものであ
り、特に、磁気抵抗効果膜(MR膜)の抵抗変化により
磁場を検出する磁気抵抗効果再生ヘッドを用いた磁気デ
ィスク装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic disk device for recording and reproducing information signals on a magnetic recording medium, and more particularly to a magnetoresistive effect for detecting a magnetic field by a resistance change of a magnetoresistive effect film (MR film). The present invention relates to a magnetic disk device using a reproducing head.
【0002】[0002]
【従来の技術】図17は、磁気ディスク装置ヘッド位置
決め系の構成部分を簡略的に示した図である。磁気ディ
スク171はスピンドルモータに直結するディスクスピ
ンドル170により所定の回転数で回転し、一方磁気ヘ
ッド172はボイスコイルモータ(VCM)173によ
り矢印方向に回動することによって、磁気ディスク17
1上に記録された磁気情報に、磁気ヘッド172がアク
セスする。2. Description of the Related Art FIG. 17 is a schematic diagram showing the components of a magnetic disk drive head positioning system. The magnetic disk 171 is rotated at a predetermined rotation speed by a disk spindle 170 directly connected to a spindle motor, while the magnetic head 172 is rotated in a direction of an arrow by a voice coil motor (VCM) 173, whereby the magnetic disk 17 is rotated.
The magnetic head 172 accesses the magnetic information recorded on the recording medium 1.
【0003】再生ヘッドにおいて、再生感度分布の中心
が記録されたトラックの中心に一致しないと、再生信号
出力の減少や隣接トラックからのクロストークの増加を
招く。従来の磁気抵抗効果再生ヘッドにおいては、トラ
ッキングは、もっぱら、ヘッド全体の位置をスピンドル
モータもしくはアクチュエータ等により物理的に移動す
ることにより行っていた。In the reproducing head, if the center of the reproducing sensitivity distribution does not coincide with the center of the recorded track, the reproduction signal output decreases and the crosstalk from the adjacent track increases. In a conventional magnetoresistive reproducing head, tracking is performed exclusively by physically moving the position of the entire head by a spindle motor or an actuator.
【0004】[0004]
【発明が解決しようとする課題】従来のヘッド全体の位
置を物理的に移動するトラッキング法では、高周波数帯
域での応答特性はヘッドの慣性力や支持系の剛性により
制限されていた。すなわち、フィードバック制御系を構
成した場合に制御特性を左右する機械的外乱と電気的雑
音のうち、機械的外乱は磁気ディスク装置の場合高々数
kHz程度である。しかるに、トラックピッチを2μm
以下とした高記録密度を実現しようとした場合には、よ
り高速で精度の良いトラック追随特性が要求される。し
かしながら、この帯域の振動は磁気ディスク装置構造の
固有振動数に起因するところが大きく、単に高速で従来
型のアクチュエータを駆動するだけでは振動を加速させ
るだけである。In the conventional tracking method in which the position of the entire head is physically moved, the response characteristic in the high frequency band is limited by the inertial force of the head and the rigidity of the support system. That is, of the mechanical disturbance and electrical noise that influence the control characteristics when the feedback control system is configured, the mechanical disturbance is about several kHz at most in the case of the magnetic disk device. However, the track pitch is 2 μm
In order to realize the following high recording densities, higher speed and more accurate track following characteristics are required. However, the vibration in this band is largely due to the natural frequency of the magnetic disk device structure, and simply driving the conventional actuator at high speed only accelerates the vibration.
【0005】本発明の第1の課題は、磁気ディスク装置
の固有振動の影響を受けずに高速で応答可能なトラッキ
ング手段を提供することにある。また、記録再生分離型
ヘッドにおいては、記録ヘッドの中心軸と再生ヘッドの
感度中心が完全には一致せず、製造プロセスのバラツキ
のためにずれが起こる。この位置ずれは、記録トラック
と再生トラックとのずれとして現われ、再生出力減少お
よびノイズ増加の原因となる。特に、トラック幅が小さ
い場合には、何らかの方法で、各ヘッドごとにこのずれ
を補正する手段が必要となってくる。本発明の第2の課
題は、磁気抵抗効果再生ヘッドの感度中心の位置ずれを
補正する新規な手段を提供することにある。A first object of the present invention is to provide a tracking means which can respond at high speed without being affected by the natural vibration of the magnetic disk device. Further, in the recording / reproducing separated type head, the central axis of the recording head and the sensitivity center of the reproducing head do not completely coincide with each other, and a deviation occurs due to variations in the manufacturing process. This misalignment appears as a misalignment between the recording track and the reproducing track, and causes a decrease in reproduction output and an increase in noise. In particular, when the track width is small, it is necessary to provide some means for correcting this deviation for each head. A second object of the present invention is to provide a novel means for correcting the position shift of the sensitivity center of the magnetoresistive effect reproducing head.
【0006】[0006]
【課題を解決するための手段】本発明においては、磁気
抵抗効果再生ヘッドの感度分布を、外部からの調整信号
によりトラック幅方向にシフトさせることにより前記第
2の課題を解決する。すなわち、本発明の磁気ディスク
装置は、磁気記録ヘッドと、磁気抵抗効果再生ヘッド
と、磁気抵抗効果再生ヘッドのトラック幅方向の感度分
布を変化させる再生ヘッド感度分布調整手段とを備え、
再生ヘッド感度分布調整手段によって磁気記録ヘッドと
磁気抵抗効果再生ヘッドの位置ずれの補正を行うことを
特徴とする。In the present invention, the second problem is solved by shifting the sensitivity distribution of the magnetoresistive effect reproducing head in the track width direction by an adjustment signal from the outside. That is, the magnetic disk device of the present invention comprises a magnetic recording head, a magnetoresistive effect reproducing head, and reproducing head sensitivity distribution adjusting means for changing the sensitivity distribution in the track width direction of the magnetoresistive effect reproducing head,
The reproducing head sensitivity distribution adjusting means corrects the positional deviation between the magnetic recording head and the magnetoresistive effect reproducing head.
【0007】また、本発明においては、磁気抵抗効果再
生ヘッドの感度分布を、外部からの調整信号によりトラ
ック幅方向にシフトさせてトラッキングサーボを行うこ
とにより、前記第1の課題を解決する。すなわち、本発
明の磁気ディスク装置は、磁気抵抗効果再生ヘッドと、
トラッキング制御信号発生手段と、トラッキングサーボ
手段とを備え、トラッキングサーボ手段はトラッキング
制御信号発生手段からのトラッキング制御信号に基づい
て磁気抵抗効果再生ヘッドのトラック幅方向の感度分布
を変化させる再生ヘッド感度分布調整手段を含むことを
特徴とする。In the present invention, the first problem is solved by shifting the sensitivity distribution of the magnetoresistive effect reproducing head in the track width direction by an adjustment signal from the outside to perform tracking servo. That is, the magnetic disk device of the present invention comprises a magnetoresistive effect reproducing head,
A reproducing head sensitivity distribution for changing the sensitivity distribution in the track width direction of the magnetoresistive effect reproducing head based on the tracking control signal from the tracking control signal generating means. It is characterized by including adjusting means.
【0008】再生ヘッド感度分布調整手段は、MRヘッ
ドに流す感磁電流を調整する手段、MR膜に近接して電
気的に絶縁して配置した調整用導体に流す電流を調整す
る手段、3個以上の電極端子を有するMR膜上の電流分
布を調整する手段、感度分布の異なる複数のMR膜から
の信号を合成する割合を調整する手段等からなる。The reproducing head sensitivity distribution adjusting means is a means for adjusting a magneto-sensitive current flowing through the MR head, a means for adjusting a current flowing through an adjusting conductor which is disposed near the MR film and electrically insulated from the MR film. It comprises means for adjusting the current distribution on the MR film having the above electrode terminals, means for adjusting the ratio of combining signals from a plurality of MR films having different sensitivity distributions, and the like.
【0009】感度分布のシフトによるトラッキングサー
ボは、従来のボイスコイル等を用いたサーボ系と組み合
わせて多段サーボ系を構成することにより、磁気記録装
置への適用ができる。図18にそのような多段サーボ系
の一例として、2段サーボ系を示す。トラッキングのず
れ信号(r−y)は、fine(微動)系181とco
arse(粗動)系182に入力され、それぞれがヘッ
ド位置に対する補正を行う。fine系は高い周波数帯
域を有するが可動範囲は狭い。一方、coarse系は
周波数帯域は低いが可動範囲は広い。ここで、fine
系がその可動範囲の端に寄ってしまわないように、fi
ne系出力はcoarse系入力に加算されている。そ
こで、fine系として本発明のMRヘッドの感度分布
移動機構を、coarse系として従来のボイスコイル
モータ(VCM)を用いたヘッド位置の移動を利用する
ことにより、広い帯域を持ったヘッドの位置決めサーボ
システムが構築される。The tracking servo by shifting the sensitivity distribution can be applied to a magnetic recording device by forming a multi-stage servo system in combination with a conventional servo system using a voice coil or the like. FIG. 18 shows a two-stage servo system as an example of such a multi-stage servo system. The tracking shift signal (ry) is obtained from the fine system 181 and co.
It is input to the arse (coarse movement) system 182, and each corrects the head position. The fine system has a high frequency band but has a narrow movable range. On the other hand, the coarse system has a low frequency band but a wide movable range. Where fine
To prevent the system from moving toward the end of its range of motion, fi
The ne system output is added to the coarse system input. Therefore, by utilizing the sensitivity distribution moving mechanism of the MR head of the present invention as a fine system and moving the head position using a conventional voice coil motor (VCM) as a coarse system, a head positioning servo having a wide band is used. The system is built.
【0010】[0010]
【作用】図1に、磁気抵抗効果再生ヘッドの構造と、ト
ラック幅方向の感度分布を示す。図1(a)に示すよう
に、磁気抵抗効果再生ヘッドでは、磁性体材料からなる
磁気抵抗効果膜(MR膜)に電極13を介して感磁電流
Isを流し、磁気記録媒体からの漏洩磁界による感磁部
の抵抗変化をもって、磁気情報を検出する。FIG. 1 shows the structure of the magnetoresistive reproducing head and the sensitivity distribution in the track width direction. As shown in FIG. 1A, in the magnetoresistive effect reproducing head, a magnetosensitive current Is is caused to flow through a magnetoresistive effect film (MR film) made of a magnetic material via an electrode 13 to leak a magnetic field from a magnetic recording medium. Magnetic information is detected by the change in resistance of the magnetically sensitive portion due to.
【0011】一般に、MR膜の感磁部11には、線形の
応答特性を得るために、電流による磁界もしくは近接し
て置いた磁性体からの漏れ磁界により、横方向バイアス
磁界をかけて使用する。その時、再生感度分布14は、
図1(b)に示すように、感磁部の幾何学的な中心16
よりもトラック幅方向にずれた位置にピークを持つこと
が知られている(例えば、IEEE Transaction on Magnet
ics 、27巻、4701頁)。これは、図中に記したように、
感磁部の磁化12の向きが斜めに傾いていることに起因
する。即ち、MR膜上の磁化回転は、磁化ベクトルを横
から見る方向からの磁界に対しては感度が大きいが、磁
化ベクトルと平行な方向からの磁界に関しては感度が低
い。従って、図中で、トラック幅方向右側の部分の方が
左側よりも感度が大きくなり、感度分布が全体として右
へシフトする。横バイアス磁界を大きくして磁化の傾き
角(バイアス角)を大きくすると、この感度中心のシフ
ト17の量も増加する。シャントバイアス方式のヘッド
の場合には、この感磁電流の値を増加させるとバイアス
角はより大きくなり、それにつれて感度ピーク位置の幾
何学的中心16からのずれ17も大きくなる。逆に、感
磁電流を減じるとピーク位置シフトは小さくなり、結果
としてシフトした感度分布15を得ることができる。In general, in order to obtain a linear response characteristic, the magnetic sensitive section 11 of the MR film is used by applying a lateral bias magnetic field by a magnetic field due to a current or a leakage magnetic field from a magnetic material placed in proximity. . At that time, the reproduction sensitivity distribution 14 is
As shown in FIG. 1B, the geometric center 16 of the magnetic sensing part
It is known to have a peak at a position deviated in the track width direction from the above (for example, IEEE Transaction on Magnet
ics, 27, p. 4701). This is, as noted in the figure,
This is because the direction of the magnetization 12 of the magnetically sensitive portion is inclined. That is, the magnetization rotation on the MR film is highly sensitive to the magnetic field from the direction in which the magnetization vector is viewed from the side, but is insensitive to the magnetic field from the direction parallel to the magnetization vector. Therefore, in the figure, the right side portion in the track width direction has a higher sensitivity than the left side portion, and the sensitivity distribution shifts to the right as a whole. When the lateral bias magnetic field is increased to increase the magnetization inclination angle (bias angle), the shift amount 17 of the sensitivity center also increases. In the case of the shunt bias type head, the bias angle becomes larger as the value of the magnetosensitive current is increased, and the deviation 17 of the sensitivity peak position from the geometrical center 16 becomes larger accordingly. On the contrary, when the magnetosensitive current is reduced, the peak position shift becomes smaller, and as a result, the shifted sensitivity distribution 15 can be obtained.
【0012】本発明では、この感度分布のピーク位置シ
フト17を、記録再生トラックの間の位置合わせや、細
かなトラッキングに活用する。磁気ヘッドのトラッキン
グサーボは、トラックずれを検出し、これに応じてトラ
ッキング制御信号をヘッド系に送り、ヘッド位置の補正
をすることにより実現される。In the present invention, the peak position shift 17 of the sensitivity distribution is utilized for alignment between recording / reproducing tracks and fine tracking. Tracking servo of the magnetic head is realized by detecting a track deviation, and sending a tracking control signal to the head system in accordance with the deviation to correct the head position.
【0013】本発明の最も単純な構成は、MRヘッドに
流す感磁電流Is自体を、トラッキング制御信号に合わ
せて増減させる方法である。図2に示すように、電流値
を大きくすると、感度中心位置のヘッドの幾何学的な中
心16からのずれは、より大きくなる。これにより、感
度中心の位置をトラック幅方向に振ることが可能であ
る。ただし、感磁電流を変えると出力の大きさ自体が変
化することを考慮すると、この方法での使用できる電流
値の範囲24は、出力が十分確保できる範囲に限られ、
電流値ゼロにまたがって正負に振ることも不可能であ
り、結果として感度中心を振れる幅25も限られてい
る。The simplest configuration of the present invention is a method of increasing or decreasing the magnetosensitive current Is itself flowing through the MR head in accordance with the tracking control signal. As shown in FIG. 2, when the current value is increased, the deviation of the sensitivity center position from the geometrical center 16 of the head becomes larger. As a result, the position of the sensitivity center can be swung in the track width direction. However, considering that the magnitude itself of the output changes when the magnetically sensitive current is changed, the range 24 of the current value that can be used in this method is limited to the range in which the output can be sufficiently secured.
It is also impossible to swing positively and negatively over the current value of zero, and as a result, the width 25 of swinging the sensitivity center is limited.
【0014】感磁電流自体を変えるかわりに、図4に示
すように、MR膜21に近接して、ただし電気的には絶
縁して、導体(調整用導体)22を設け、これに流す電
流の変化によりMR膜21の磁化の向きを調節して、感
度中心の位置をシフトさせ、これをもってトラッキング
することも可能である。この場合には、感磁電流Isは
変えなくてよいので、任意の値の電流Icを調整用導体
に流すことが可能である。この際、図4(b)のよう
に、調整用導体22の形状を変えることにより、MR膜
21上の印加磁界の分布を様々に変化させることができ
る。Instead of changing the magnetically sensitive current itself, as shown in FIG. 4, a conductor (adjustment conductor) 22 is provided in the vicinity of the MR film 21, but electrically insulated, and a current is passed through the conductor 22. It is also possible to adjust the direction of the magnetization of the MR film 21 by changing the value of, and shift the position of the sensitivity center and perform tracking with this. In this case, since the magnetosensitive current Is does not need to be changed, the current Ic having an arbitrary value can be passed through the adjusting conductor. At this time, the distribution of the applied magnetic field on the MR film 21 can be variously changed by changing the shape of the adjusting conductor 22 as shown in FIG. 4B.
【0015】感度分布を変える他の方法は、図8のよう
に、MR膜81に3個以上の電極82を設け、MR膜上
の電流分布を変化させるものである。感磁電流の成分と
して、図8の左上から右下に流れる成分aと、左下から
右上へ流れる成分bとの間に連続して分流比を変化させ
る。この際、a成分電流のみの場合には、図8(i)の
右の部分で媒体対向面の電流密度が高いので、感度分布
は右に大きくなる。逆に、b成分電流のみの場合には、
図の左側にて感度分布が高くなる。結果として、図8
(ii)に示すような感度分布が得られる。電流成分aと
bとの間の分流比を連続的に変化させることによって、
感度中心をシフトさせ、トラッキング調整が可能であ
る。As another method for changing the sensitivity distribution, as shown in FIG. 8, three or more electrodes 82 are provided on the MR film 81 to change the current distribution on the MR film. As a component of the magnetosensitive current, the shunt ratio is continuously changed between the component a flowing from the upper left to the lower right in FIG. 8 and the component b flowing from the lower left to the upper right. At this time, in the case of only the a-component current, the current distribution on the medium facing surface has a high current density in the right part of FIG. On the contrary, in the case of only the b component current,
The sensitivity distribution increases on the left side of the figure. As a result, FIG.
The sensitivity distribution as shown in (ii) is obtained. By continuously changing the diversion ratio between the current components a and b,
Tracking adjustment is possible by shifting the sensitivity center.
【0016】MRヘッドの感度分布を調節するさらに他
の方法は、感度分布の異なる複数のMR膜を用いる方法
である。このような形式のヘッドとしては、図10に示
すように2層のMR膜101A,101Bを積層し、そ
こに流す電流によって相互にバイアスを掛け合うように
したものがある(IEEE Transaction on Magnetics 、27
巻、第4693頁)。このような構造では、両方のMR膜の
感度分布は、ヘッドの幾何学中心に対して互いに対称位
置になり、感度中心の位置は互いに数μm異なる。従来
方式では、図11に示すように、この2層のMR膜の出
力の単純な差分をもって再生信号を得ているために、感
度中心の位置はヘッドの幾何中心の位置で固定されてい
た。これに対して、この再生信号を図12のように加重
平均したものを再生信号121とすると、感度分布は連
続的に可変となる。この加重の割合wをトラッキング制
御信号によって制御することにより、図13に示すよう
に微細トラッキングが可能となる。この方法は、移動可
能な範囲を容易に数ミクロンと大きくできることに特徴
がある。また、同様の手法を IEEE Trans.Magn.24,p261
2(1988) に開示されているヘッド深さ方向に電流を流す
縦型磁気抵抗効果ヘッド(図14)に適用することも可
能である。Yet another method of adjusting the sensitivity distribution of the MR head is to use a plurality of MR films having different sensitivity distributions. As a head of this type, there is a head in which two layers of MR films 101A and 101B are laminated as shown in FIG. 10 and biases are applied to each other by an electric current flowing therethrough (IEEE Transaction on Magnetics, 27).
Vol. 4693). In such a structure, the sensitivity distributions of both MR films are symmetrical with respect to the geometric center of the head, and the positions of the sensitivity centers differ from each other by several μm. In the conventional method, as shown in FIG. 11, since the reproduction signal is obtained by a simple difference between the outputs of the two layers of MR films, the position of the sensitivity center is fixed at the position of the geometric center of the head. On the other hand, when the reproduction signal 121 is a weighted average of this reproduction signal as shown in FIG. 12, the sensitivity distribution is continuously variable. By controlling the weighting ratio w by the tracking control signal, fine tracking becomes possible as shown in FIG. This method is characterized in that the movable range can be easily increased to several microns. In addition, a similar method is applied to IEEE Trans.Magn.24, p261.
It is also possible to apply it to the vertical magnetoresistive head (FIG. 14) in which an electric current is passed in the head depth direction disclosed in 2 (1988).
【0017】[0017]
〔実施例1〕図1(a)に、実施例1に用いる磁気抵抗
効果ヘッドの構造を示す。本実施例では、MRヘッドに
流す感磁電流Is自体を、トラッキング制御信号に合わ
せて増減させる。図2に示すように、電流値Isを大き
くすると、感度中心位置18の、パターンの幾何学的な
中心16からのずれは、より大きくなる。これにより、
感度中心の位置をトラック幅方向に振ることが可能であ
る。[Embodiment 1] FIG. 1A shows the structure of a magnetoresistive head used in Embodiment 1. In this embodiment, the magnetosensitive current Is itself flowing through the MR head is increased or decreased according to the tracking control signal. As shown in FIG. 2, when the current value Is is increased, the deviation of the sensitivity center position 18 from the geometrical center 16 of the pattern becomes larger. This allows
It is possible to swing the position of the sensitivity center in the track width direction.
【0018】この際、図3のようなトラッキング制御回
路27を従来のMRヘッド駆動回路に加えて設け、トラ
ッキング制御信号28に基づく調整用電流Is’を定電
流電源26からの感磁電流Isoに加算してMR感磁部
11に流す。ただし、感磁電流を変えると出力の大きさ
自体が変化することを考慮すると、この方法で使用でき
る電流値の範囲24は、出力が十分とれる範囲に限ら
れ、電流値ゼロにまたがって正負に振ることは不可能で
ある。すなわち、図2の破線部分の電流は使用できな
い。感度中心位置のシフト可能幅25は、MR膜の深さ
hMRの10〜20%程度と見積もられるから、hMR=3
μmの場合、0.3〜0.6μm程度である。At this time, the tracking control circuit 27 as shown in FIG. 3 is provided in addition to the conventional MR head drive circuit, and the adjusting current Is' based on the tracking control signal 28 is used as the magnetic sensitive current Iso from the constant current power supply 26. The added value is added to the MR magnetic sensing section 11. However, considering that the magnitude of the output itself changes when the magnetically sensitive current is changed, the range 24 of the current value that can be used by this method is limited to the range in which the output can be sufficiently obtained, and the positive and negative values are spread across the zero current value. It is impossible to shake. That is, the current in the broken line portion in FIG. 2 cannot be used. The shiftable width 25 of the sensitivity center position is estimated to be about 10 to 20% of the depth h MR of the MR film, so h MR = 3
In the case of μm, it is about 0.3 to 0.6 μm.
【0019】〔実施例2〕図4に、実施例2に用いる磁
気抵抗効果ヘッドの構造を示す。本実施例では、MR膜
21に近接して、ただし電気的には絶縁して、導体(調
整用導体)22を設け、これに流す電流Icの変化によ
りMR膜21の磁化の向きを調節し、感度中心の位置を
ずらし、これをもってトラッキングを行う。本実施例で
は、感磁電流Isは変えなくてよいので、ヘッド出力を
あまり変化させることなく任意の値の電流を調整用導体
22に流すことが可能である。調整用導体の電流Icに
対する感度中心位置18の関係は、図5のようになる。[Embodiment 2] FIG. 4 shows the structure of a magnetoresistive head used in Embodiment 2. In this embodiment, a conductor (adjustment conductor) 22 is provided close to the MR film 21, but electrically insulated from the MR film 21, and the direction of magnetization of the MR film 21 is adjusted by changing the current Ic flowing through the conductor 22. , The position of the sensitivity center is shifted, and tracking is performed using this. In the present embodiment, since the magnetosensitive current Is does not have to be changed, it is possible to pass a current having an arbitrary value through the adjusting conductor 22 without changing the head output so much. The relationship between the sensitivity center position 18 and the current Ic of the adjusting conductor is as shown in FIG.
【0020】この場合の駆動回路は、図6のようにな
る。すなわち、MR膜21へ感磁電流Isを流す通常の
定電流電源61に加えて、トラッキング制御信号63に
応じて調整用電流Icを発生する増幅器62を設け、こ
のIcを調整用導体22に流す。本実施例の場合、調整
用導体22の形状を、図4(a)のように、MR膜21
と重なる部分において一定の幅を有するようにした場合
には、前実施例と同様に、MR膜の磁化の向きを一様に
回転させて、感度中心位置を変えることになる。The drive circuit in this case is as shown in FIG. That is, in addition to the normal constant-current power supply 61 that supplies the magnetosensitive current Is to the MR film 21, an amplifier 62 that generates an adjustment current Ic according to the tracking control signal 63 is provided, and this Ic is supplied to the adjustment conductor 22. . In the case of the present embodiment, the shape of the adjusting conductor 22 is changed to the MR film 21 as shown in FIG.
In the case where the overlapping portion has a constant width, the magnetization center position is changed by uniformly rotating the magnetization direction of the MR film, as in the previous embodiment.
【0021】これに対して、図4(b)のように調整用
導体22の幅をトラック幅方向に関して変えるようにす
ると、より積極的に感度中心18の移動を行うことがで
きる。すなわち、調整用導体22の幅が狭いところでは
バイアス磁界が大きく、逆に調整用導体22の幅が太い
ところでは小さくなる。これに従って、図7のように感
度分布もシフトできる。すなわち、MR膜の感度は、最
適バイアス磁界にてピークを持つ。調整用導体へ流す電
流値をI1 ,I2 ,I3 (I1 <I2 <I3 )と変化さ
せるとそれに伴って、MR膜21の中で最適バイアスに
なるトラック幅方向の位置が図の左から右へシフトし、
感度分布の中心18も左から右へとシフトする。また、
必要ならば、調整用導体22に流す電流Icに連動させ
て、MR膜21に流す感磁電流Isを若干変化させるこ
とにより、再生特性(例えば感度や非対称特性)に大き
な影響を与えずに、感度中心をシフトさせることも可能
である。On the other hand, if the width of the adjusting conductor 22 is changed in the track width direction as shown in FIG. 4B, the sensitivity center 18 can be moved more positively. That is, the bias magnetic field is large when the width of the adjusting conductor 22 is narrow, and is small when the width of the adjusting conductor 22 is large. Accordingly, the sensitivity distribution can be shifted as shown in FIG. That is, the sensitivity of the MR film has a peak at the optimum bias magnetic field. When the value of the current flowing to the adjusting conductor is changed to I 1 , I 2 , and I 3 (I 1 <I 2 <I 3 ), the position in the MR film 21 in the track width direction at which the optimum bias is obtained is correspondingly changed. Shift from left to right in the figure,
The center 18 of the sensitivity distribution also shifts from left to right. Also,
If necessary, by interlocking with the current Ic flowing through the adjusting conductor 22 and slightly changing the magnetically sensitive current Is flowing through the MR film 21, the reproducing characteristics (for example, sensitivity and asymmetric characteristics) are not significantly affected, It is also possible to shift the sensitivity center.
【0022】〔実施例3〕図8に実施例3に用いる磁気
抵抗効果ヘッドの構成図を示す。本実施例では、MR膜
81の電極82を両端に媒体対向面に近い位置と遠い位
置の各2個ずつ設ける。感磁電流の成分として、図の左
上から右下に流れる成分aと、左下から右上へ流れる成
分bとを考え、両者の間の分流比を外部からの調整信号
によって制御できるようにする。a成分電流の割合が大
きい場合には、MR膜81の中で図8の右の部分で媒体
対向面87に近い部分での電流密度が高い。このときM
Rヘッド感度は媒体対応面87に近い部分の方が大きい
ため、感度分布の中心は右にシフトする。逆にb成分電
流の割合が大きい場合には、図の左側に感度分布の中心
がシフトする。この間の分流比を連続的に変化させるこ
とによって、トラッキング調整が可能である。[Third Embodiment] FIG. 8 is a block diagram of a magnetoresistive head used in the third embodiment. In the present embodiment, two electrodes 82 of the MR film 81 are provided on each end, two at a position near the medium facing surface and two at a position far from the medium facing surface. A component a flowing from the upper left to the lower right of the figure and a component b flowing from the lower left to the upper right of the figure are considered as components of the magnetosensitive current, and a diversion ratio between the two can be controlled by an adjustment signal from the outside. When the ratio of the a-component current is large, the current density in the portion of the MR film 81 on the right side of FIG. 8 near the medium facing surface 87 is high. At this time M
Since the R head sensitivity is larger in the portion closer to the medium corresponding surface 87, the center of the sensitivity distribution shifts to the right. On the contrary, when the ratio of the b component current is large, the center of the sensitivity distribution shifts to the left side of the figure. Tracking adjustment is possible by continuously changing the diversion ratio during this period.
【0023】このタイプの一つの変形として、図8(ii
i )に示すように、電極数を3つにすることも可能であ
る。この場合は、電極83と84の間の電流成分と、電
極83と85の間の電流成分の間の分流比を調節するこ
とによって、トラッキング調整を行う。本実施例におい
て、磁気抵抗効果ヘッドの駆動回路には、従来の機能に
加えて図9に示すような機能を持たせる必要がある。定
電流電源からの電流Isは、分流比制御器91により、
二つの電流出力Ia,Ibに分割される。ここに、分流
比制御器91は、トラッキング制御信号92に従って、
aとbの回路に電流を配分して出力する機能を有する電
気回路とする。このような駆動回路を用いることによ
り、図8の磁気抵抗効果ヘッドの感度分布をシフトし
て、トラッキングを行うことが可能となる。As one variation of this type, FIG.
As shown in i), the number of electrodes can be three. In this case, tracking adjustment is performed by adjusting the diversion ratio between the current component between the electrodes 83 and 84 and the current component between the electrodes 83 and 85. In this embodiment, the drive circuit of the magnetoresistive effect head needs to have the function shown in FIG. 9 in addition to the conventional function. The current Is from the constant current power supply is controlled by the shunt ratio controller 91.
It is divided into two current outputs Ia and Ib. Here, the diversion ratio controller 91, according to the tracking control signal 92,
The electric circuit has a function of distributing and outputting current to the circuits a and b. By using such a drive circuit, it becomes possible to shift the sensitivity distribution of the magnetoresistive head shown in FIG. 8 and perform tracking.
【0024】〔実施例4〕図10に、実施例4に用いる
磁気抵抗効果ヘッドの構成図を示す。本実施例において
は、2層のMR膜101A,101Bを積層し、その間
を電気的に絶縁する。2つのMR膜に同方向の電流10
2を流すことにより、相互に横バイアスを掛け合うよう
にする。[Embodiment 4] FIG. 10 is a block diagram of a magnetoresistive head used in Embodiment 4. In this embodiment, two layers of MR films 101A and 101B are laminated and electrically insulated from each other. Current 10 in the same direction on the two MR films
By causing 2 to flow, a lateral bias is applied to each other.
【0025】このような構造では、図11に示すよう
に、両方のMR膜101A,101Bの感度分布Va,
Vbはヘッドの幾何学中心に対して互いに対称位置にな
り、感度中心の位置は互いに数μm程度離れる。この再
生信号を図12のような回路を用いて加重平均したもの
を再生信号とする。MR膜101Aからの出力電圧Va
とMR膜101Bからの出力電圧Vbは加重平均演算器
122を経て再生出力121を発生する。この加重の割
合をトラッキング制御信号123によって制御する。再
生信号121は、次のように記述できる。 V=wVa−(1−w)VbIn such a structure, as shown in FIG. 11, the sensitivity distributions Va of both MR films 101A and 101B are
Vb is symmetrical with respect to the geometric center of the head, and the positions of the sensitivity centers are separated from each other by about several μm. A reproduction signal is obtained by weighted averaging the reproduction signal using a circuit as shown in FIG. Output voltage Va from MR film 101A
The output voltage Vb from the MR film 101B passes through a weighted average calculator 122 to generate a reproduction output 121. The weighting ratio is controlled by the tracking control signal 123. The reproduction signal 121 can be described as follows. V = wVa- (1-w) Vb
【0026】ここにVa,VbはMR膜101A,10
1Bの出力、wは加重率を決定するパラメータである。
w=1の場合には、再生感度分布は、MR膜101Aの
ものと一致し、w=0の場合には、MR膜101Bのも
のと一致する。wを変えることにより、感度中心18を
この間の任意の位置にもってくることができる。図13
に種々のw値の場合の感度分布を示す。このようにし
て、微細トラッキングが可能となる。Va and Vb are MR films 101A and 10A, respectively.
The output of 1B, w is a parameter that determines the weighting factor.
When w = 1, the reproduction sensitivity distribution matches that of the MR film 101A, and when w = 0, it matches that of the MR film 101B. By changing w, the sensitivity center 18 can be brought to any position between them. FIG.
Shows the sensitivity distributions for various w values. In this way, fine tracking becomes possible.
【0027】〔実施例5〕図14に実施例5の、縦型配
置磁気抵抗効果ヘッドを示す。本実施例においては、2
層のMR膜141A及び141Bは相互にバイアスをか
けあい、それぞれの感度分布Va,Vbは、図15のよ
うに左右対称の方向にピークを持つ。従来の縦型方式で
は、2層のMR膜は全面で電気的に短絡されており、感
度分布中心は幾何学的中心に固定されている。[Fifth Embodiment] FIG. 14 shows a vertically arranged magnetoresistive head according to a fifth embodiment. In this embodiment, 2
The MR films 141A and 141B of the layers are biased with each other, and the respective sensitivity distributions Va and Vb have peaks in symmetrical directions as shown in FIG. In the conventional vertical system, the two layers of the MR film are electrically short-circuited over the entire surface, and the sensitivity distribution center is fixed at the geometric center.
【0028】本実施例では、この2層のMR膜の間に絶
縁膜142を設け、両膜の抵抗変化出力を別々に取り出
し、これを図16のような回路で加重して加えたものを
再生信号とする。MR膜141Aからの出力電圧Vaと
MR膜141Bからの出力電圧Vbは、加重平均演算器
122を経て再生出力121を発生する。この加重の割
合をトラッキング制御信号123によって制御する。再
生信号121は、次のように記述できる。 V=wVa+(1−w)VbIn this embodiment, an insulating film 142 is provided between the two layers of MR films, the resistance change outputs of both films are taken out separately, and these are weighted and added by a circuit as shown in FIG. Playback signal. The output voltage Va from the MR film 141A and the output voltage Vb from the MR film 141B generate a reproduction output 121 via a weighted average calculator 122. The weighting ratio is controlled by the tracking control signal 123. The reproduction signal 121 can be described as follows. V = wVa + (1-w) Vb
【0029】ここにwは加重率を決定するパラメータで
ある。w=1の場合には、再生感度分布はMR膜141
Aのものと一致し、w=0の場合には、MR膜141B
のものと一致する。この加重の割合wを調整することに
より、微細トラッキングが可能となる。Here, w is a parameter that determines the weighting factor. When w = 1, the reproduction sensitivity distribution is the MR film 141.
In the case of w = 0, which corresponds to that of A, the MR film 141B
Match that of. Fine tracking is possible by adjusting the weighting ratio w.
【0030】〔実施例6〕図17は、再生ヘッド172
に上記ピーク位置調整ヘッドを組み込んだ実施例6の磁
気ディスク装置の構成図であり、図17(a)は平面
図、図17(b)はA−A’断面図を示す。磁気ディス
ク装置は、スピンドルモータに直結するディスクスピン
ドル170に磁気ディスク171が複数枚組み込まれ、
磁気ディスクの各面に磁気ヘッド172が対向する形で
配置されており、各磁気ヘッドは一つの磁気ヘッドアク
チュエータ173によって、該磁気ディスク171面上
に記録されている全ての位置にアクセスすることができ
る。[Sixth Embodiment] FIG. 17 shows a reproducing head 172.
17A and 17B are configuration diagrams of a magnetic disk device of Example 6 in which the above-described peak position adjusting head is incorporated, FIG. 17A is a plan view, and FIG. 17B is a sectional view taken along line AA ′. In the magnetic disk device, a plurality of magnetic disks 171 are incorporated in a disk spindle 170 directly connected to a spindle motor,
Magnetic heads 172 are arranged so as to face each surface of the magnetic disk, and each magnetic head can access all the positions recorded on the surface of the magnetic disk 171 by one magnetic head actuator 173. it can.
【0031】磁気ヘッドの追従制御系は、図18に示す
2ステージサーボ系とする。2ステージサーボ系の詳細
については、例えば電子情報通信学会論文誌、Vol.J75-
C-II,No.11,p.653(1992)に記載されている。ここで本発
明のピーク位置調整ヘッドを使用した、ピーク位置調整
ヘッド系(fine系と呼ぶことにする。補償要素含
む)181とボイスコイルモータ(VCM)により磁気
ヘッドアクチュエータ173が回転駆動されるボイスコ
イルモータ系182(coarse系と呼ぶことにす
る。補償要素含む)とは、協調して動作する関係になっ
ている。補償要素は、各系の動作を安定させるに必要な
比例、積分、微分の各動作を行う要素で、各々ゲイン調
節器、積分器、微分器により構成される。The follow-up control system of the magnetic head is a two-stage servo system shown in FIG. For details of the two-stage servo system, see, for example, IEICE Transactions, Vol.J75-
C-II, No. 11, p.653 (1992). A voice in which the magnetic head actuator 173 is rotationally driven by a peak position adjusting head system (which will be referred to as a "fine system" (including a compensating element) 181) and a voice coil motor (VCM) using the peak position adjusting head of the present invention. The coil motor system 182 (which will be referred to as a coarse system, including a compensating element) has a relationship of operating in cooperation with each other. The compensating element is an element that performs proportional, integral, and derivative operations required to stabilize the operation of each system, and is composed of a gain adjuster, an integrator, and a differentiator, respectively.
【0032】以下、図18に従い、動作を説明する。目
標値r(通常は追従偏差0)がcoarse系182に
与えられる。目標値との偏差が0となるようにVCMが
動作し、追従残り分はフィードバックされる。次に、f
ine系181には上記追従残り分が与えられ、coa
rse系182で追従しきれなかった偏差分を追従す
る。ここで各系(ステージ)の動作に伴う力の干渉の影
響が小さく、無視できる程度のものと仮定している。The operation will be described below with reference to FIG. A target value r (usually a tracking deviation of 0) is given to the coarse system 182. The VCM operates so that the deviation from the target value becomes zero, and the remaining tracking amount is fed back. Then f
The ine system 181 is given the follow-up remaining amount,
The deviation amount that cannot be tracked by the rse system 182 is tracked. Here, it is assumed that the influence of force interference caused by the operation of each system (stage) is small and can be ignored.
【0033】〔実施例7〕上記実施例の場合、fine
系181の動作帯域は十分広いがcoarse系182
との動作帯域の差が大きく、動作範囲のダイナミックレ
ンジが、fine系は数百nm、coarse系は数m
mと大きく違うため、coarse系の追従残り分がf
ine系の動作範囲を超えた場合、実際の動作は外乱に
追従するに至らない場合もある。[Embodiment 7] In the above embodiment, fine
The operating band of the system 181 is sufficiently wide, but the coarse system 182 is used.
There is a large difference in the operating band from the operating range, and the dynamic range of the operating range is several hundred nm for fine systems and several meters for coarse systems.
Since it is significantly different from m, the follow-up remaining amount of the coarse system is f
If the in-system operation range is exceeded, the actual operation may not follow the disturbance.
【0034】図19は、このような問題を解決するため
に、ダイナミックレンジが連続する構成とした実施例7
の磁気ディスク装置である。ガイドアーム191の一部
に192のような切り欠きを設け、例えばピエゾ素子1
93を組み込む。これにより、VCMの動作194に加
え、ピエゾ素子によるアクチュエータ〔mid(中微
動)系と呼ぶことにする〕の動作195が可能になる。
ここで動作範囲は、mid系が5μm〜、fine系が
0.3μm〜であり、各々coarse系の追従残り分
に対してはmid系が、mid系の追従残り分に対して
はfine系が追従補正をするに足る動作範囲が確保さ
れている。このときの追従制御系の構成は、例えば図2
0に示すものとする。それぞれの動作については、図1
8で説明した追従動作に準ずる。これにより、coar
se系201、mid系202、fine系203の3
種の系は協調して動作することが可能となる。FIG. 19 shows a seventh embodiment in which the dynamic range is continuous in order to solve such a problem.
Magnetic disk device. A notch such as 192 is provided in a part of the guide arm 191, and for example, the piezo element 1
Incorporate 93. As a result, in addition to the operation 194 of the VCM, the operation 195 of the actuator [which will be referred to as a mid (fine movement) system] by the piezo element becomes possible.
Here, the operating range is 5 μm for the mid system and 0.3 μm for the fine system, and the mid system is for the remaining follow-up of the coarse system, and the fine system is for the remaining follow-up of the mid system. An operating range sufficient for tracking correction is secured. The configuration of the tracking control system at this time is, for example, as shown in FIG.
Shall be 0. Figure 1 shows each operation.
This is based on the follow-up operation described in 8. This allows the core
se system 201, mid system 202, fine system 203 3
It is possible for the seed systems to work in concert.
【0035】〔実施例8〕図21は、本発明のサーボパ
ターンの配置を示した実施例8を説明する図である。本
発明ではサーボ帯域を従来に比べ格段に広くとることが
できるので、サーボ信号のサンプル数を多くとることに
より、位置決め精度を高くすることが可能となる。この
実現手段として、従来の磁気ディスクで用いられてきた
データ面上のセクタサーボ方式に加えて、追従サーボ情
報のみサンプリングするサンプルサーボ方式が有効であ
る。[Embodiment 8] FIG. 21 is a view for explaining an embodiment 8 showing the arrangement of servo patterns of the present invention. In the present invention, since the servo band can be made much wider than the conventional one, it is possible to increase the positioning accuracy by increasing the number of servo signal samples. As a means for realizing this, in addition to the sector servo system on the data surface which has been used in the conventional magnetic disk, a sample servo system in which only the following servo information is sampled is effective.
【0036】磁気ディスクのデータ面211には放射状
にセクタ領域212が配され、各セクタ領域の先頭21
3のパターンは、図21(a)のようにsync.、I
Dグレイコード等、servo、dataの各情報が書
き込まれている。ここでservoはサーボ情報を示
し、例えばトラック中心線に対して千鳥配置された一般
的なダイビットパターンである。一方各セクタ領域内に
は、sync.とservo情報のみで構成されたサン
プルサーボ情報214が離散的に配置されている。各サ
ンプルサーボ情報は、図21(b)に示したように、サ
ーボ情報の位置を示すsync.(同期)情報と、サー
ボ情報、記録データの構成となっている。ここでサンプ
ルサーボ情報214は、図21(c)に示すように、た
だ一対のダイピットパターンであるような簡単な構成と
し、sync.とservoを合わせて数バイト分の領
域のみ占めるだけである。Sector areas 212 are radially arranged on the data surface 211 of the magnetic disk, and the head 21 of each sector area is arranged.
The pattern of No. 3 is sync.3 as shown in FIG. , I
Each information of servo and data such as D gray code is written. Here, servo indicates servo information, and is, for example, a general dibit pattern staggered with respect to the track center line. On the other hand, in each sector area, sync. And sample servo information 214 composed only of the servo information is discretely arranged. As shown in FIG. 21B, each sample servo information is sync. It is composed of (synchronous) information, servo information, and recording data. Here, the sample servo information 214 has a simple structure such as a pair of die pit patterns as shown in FIG. And servo only occupy an area for several bytes.
【0037】アクチュエータ等の動作に必要な位置情報
のサンプリング数は、アクチュエータの動作帯域に見合
う充分な数であることが必要であり、一般に動作周波数
帯域の5〜10倍あれば充分であることが知られてい
る。すなわち、上記サンプルサーボ情報のサンプル周波
数は、本発明のピーク位置調整手段の動作周波数帯域の
5倍〜10倍程度必要であり、該ピーク位置調整手段の
動作周波数帯域を20kHzと設定した場合、100〜
200kHzである。ディスク回転数との関係から、ト
ラック1周におけるサンプルサーボ情報の個数は500
〜3000個程度である。The number of samplings of the position information necessary for the operation of the actuator or the like needs to be a sufficient number corresponding to the operating band of the actuator, and generally 5 to 10 times the operating frequency band is sufficient. Are known. That is, the sample frequency of the sample servo information needs to be about 5 to 10 times the operating frequency band of the peak position adjusting means of the present invention, and when the operating frequency band of the peak position adjusting means is set to 20 kHz, it is 100. ~
It is 200 kHz. From the relationship with the disk rotation speed, the number of sample servo information per track is 500.
It is about 3000 pieces.
【0038】[0038]
【発明の効果】本発明によれば、磁気抵抗効果ヘッドの
高速のトラッキングが可能となる。According to the present invention, the high-speed tracking of the magnetoresistive effect head becomes possible.
【図1】磁気抵抗効果再生ヘッドの構造と、トラック幅
方向の感度分布を示す図。FIG. 1 is a diagram showing a structure of a magnetoresistive effect reproducing head and a sensitivity distribution in a track width direction.
【図2】感磁電流と感度中心位置の関係を示す図。FIG. 2 is a diagram showing a relationship between a magnetosensitive current and a sensitivity center position.
【図3】実施例1のヘッド駆動回路の概略図。FIG. 3 is a schematic diagram of a head drive circuit according to the first embodiment.
【図4】実施例2の磁気抵抗効果再生ヘッドの構造を示
す図。FIG. 4 is a diagram showing a structure of a magnetoresistive effect reproducing head according to a second embodiment.
【図5】調整用電流Icと感度中心位置の関係を示す
図。FIG. 5 is a diagram showing a relationship between an adjustment current Ic and a sensitivity center position.
【図6】実施例2のMRヘッドの駆動回路の概略図。FIG. 6 is a schematic diagram of a drive circuit for an MR head according to a second embodiment.
【図7】実施例2における、トラック幅方向のバイアス
磁界および再生感度の分布を示す図。FIG. 7 is a diagram showing a bias magnetic field distribution and a reproduction sensitivity distribution in the track width direction according to the second embodiment.
【図8】3個以上の電極を設けた磁気抵抗効果再生ヘッ
ドの構造を示す図。FIG. 8 is a view showing the structure of a magnetoresistive effect reproducing head provided with three or more electrodes.
【図9】実施例3のMRヘッドの駆動回路の概略図。FIG. 9 is a schematic diagram of a drive circuit for an MR head according to a third embodiment.
【図10】実施例4の相互バイアス型磁気抵抗効果ヘッ
ドの構造を示す図。FIG. 10 is a diagram showing the structure of a mutual bias type magnetoresistive head according to a fourth embodiment.
【図11】実施例4のMRヘッドのトラック幅方向感度
分布を示す図。FIG. 11 is a diagram showing the sensitivity distribution in the track width direction of the MR head of Example 4.
【図12】実施例4のMRヘッドの駆動回路。FIG. 12 is a drive circuit of the MR head of the fourth embodiment.
【図13】実施例4のMRヘッドのトラック幅方向感度
分布を示す図。FIG. 13 is a diagram showing sensitivity distribution in the track width direction of the MR head of Example 4;
【図14】実施例5の縦型積層型磁気抵抗効果ヘッドの
構造を示す図。FIG. 14 is a diagram showing the structure of a vertical type magnetoresistive head of Example 5;
【図15】実施例5のMRヘッドの感度分布を示す図。FIG. 15 is a diagram showing a sensitivity distribution of the MR head of Example 5.
【図16】実施例5のMRヘッドの駆動回路。FIG. 16 is a drive circuit of the MR head of the fifth embodiment.
【図17】実施例6の磁気ディスク装置の概略図。FIG. 17 is a schematic diagram of a magnetic disk device according to a sixth embodiment.
【図18】実施例6のサーボ系の構成図。FIG. 18 is a configuration diagram of a servo system according to a sixth embodiment.
【図19】実施例7の磁気ディスク装置の概略図。FIG. 19 is a schematic diagram of a magnetic disk device according to a seventh embodiment.
【図20】実施例7のサーボ系の構成図。FIG. 20 is a configuration diagram of a servo system according to a seventh embodiment.
【図21】実施例8のサーボパターンの配置図。FIG. 21 is a layout diagram of servo patterns according to an eighth embodiment.
11,21,81…MR感磁部、12…磁化、13,2
3,82,83,84,85,143a,143b,1
43c…電極、14…感度分布、16…感磁部の幾何学
的中心、17…シフト量、18…感度中心、22…調整
用導体、26…定電流電源、27…増幅器、28…トラ
ッキング制御信号、61…定電流電源、62…増幅器、
63…トラッキング制御信号、91…分流制御器、92
…トラッキング制御信号、101A,101B,141
A,141B…MR膜、102…感磁電流、121…再
生出力、122…加重平均演算器、123…トラッキン
グ制御信号、142…絶縁膜、170…ディスクスピン
ドル、171,201…磁気ディスク、172…磁気ヘ
ッド、173…ボイスコイルモータ、181…fine
系、182…coarse系、191…ガイドアーム、
192…切り欠き、93…ピエゾ素子、201…coa
rse系、202…mid系、203…fine系、2
11…磁気ディスクデ−タ面、212…セクタ領域、2
13…セクタサーボ情報、214…サンプルサーボ情報11, 21, 81 ... MR magnetic sensing part, 12 ... Magnetization, 13, 2
3,82,83,84,85,143a, 143b, 1
43c ... Electrode, 14 ... Sensitivity distribution, 16 ... Geometric center of magnetic sensitive part, 17 ... Shift amount, 18 ... Sensitivity center, 22 ... Adjustment conductor, 26 ... Constant current power supply, 27 ... Amplifier, 28 ... Tracking control Signal, 61 ... Constant current power source, 62 ... Amplifier,
63 ... Tracking control signal, 91 ... Diversion controller, 92
... Tracking control signal, 101A, 101B, 141
A, 141B ... MR film, 102 ... Magnetosensitive current, 121 ... Reproduction output, 122 ... Weighted average calculator, 123 ... Tracking control signal, 142 ... Insulating film, 170 ... Disk spindle, 171, 201 ... Magnetic disk, 172 ... Magnetic head, 173 ... Voice coil motor, 181, ... fine
System, 182 ... coarse system, 191 ... guide arm,
192 ... Notch, 93 ... Piezo element, 201 ... Coa
rse system, 202 ... mid system, 203 ... fine system, 2
11 ... Magnetic disk data surface, 212 ... Sector area, 2
13 ... sector servo information, 214 ... sample servo information
Claims (12)
グ制御信号発生手段と、トラッキングサーボ手段とを備
え、前記トラッキングサーボ手段はトラッキング制御信
号発生手段からのトラッキング制御信号に基づいて磁気
抵抗効果再生ヘッドのトラック幅方向の感度分布を変化
させる再生ヘッド感度分布調整手段を含むことを特徴と
する磁気ディスク装置。1. A magnetoresistive effect reproducing head, a tracking control signal generating means, and a tracking servo means, the tracking servo means of the magnetoresistive effect reproducing head based on the tracking control signal from the tracking control signal generating means. A magnetic disk device comprising a reproducing head sensitivity distribution adjusting means for changing the sensitivity distribution in the track width direction.
トラック追従手段として使用することを特徴とする請求
項1記載の磁気ディスク装置。2. The magnetic disk drive according to claim 1, wherein the reproducing head sensitivity distribution adjusting means is used as a fine movement track following means.
トラック追従手段として使用し、粗動トラック追従手段
と併せて2段のサーボ系とすることを特徴とする請求項
2記載の磁気ディスク装置。3. The magnetic disk drive according to claim 2, wherein the reproducing head sensitivity distribution adjusting means is used as a fine movement track following means, and a two-step servo system is provided together with the coarse movement track following means.
トラック追従手段として使用し、中微動トラック追従手
段と粗動トラック追従手段と併せて3段のサーボ系とす
ることを特徴とする請求項2記載の磁気ディスク装置。4. The reproducing head sensitivity distribution adjusting means is used as a fine movement track following means, and a medium fine movement track following means and a coarse movement track following means are combined into a three-stage servo system. The magnetic disk device described.
ルモータを使用し、中微動トラック追従手段としてピエ
ゾ素子を使用することを特徴とする請求項4記載の磁気
ディスク装置。5. The magnetic disk device according to claim 4, wherein a voice coil motor is used as the coarse movement track following means, and a piezo element is used as the medium fine movement track following means.
信号は、前記再生ヘッド感度分布調整手段の動作周波数
帯域の5倍〜10倍のサンプリング周波数となるような
ディスク回転数とサーボマーク数の組み合わせを持つサ
ンプルサーボ信号であることを特徴とする請求項2〜5
のいずれか1項記載の磁気ディスク装置。6. The position signal used for the track following means is a combination of the number of disk revolutions and the number of servo marks such that the sampling frequency is 5 to 10 times the operating frequency band of the reproducing head sensitivity distribution adjusting means. 6. A sample servo signal that the user has.
The magnetic disk drive according to any one of 1.
ッドと、該磁気抵抗効果再生ヘッドのトラック幅方向の
感度分布を変化させる再生ヘッド感度分布調整手段とを
備え、前記再生ヘッド感度分布調整手段によって磁気記
録ヘッドと磁気抵抗効果再生ヘッドの位置ずれの補正を
行うことを特徴とする磁気ディスク装置。7. A reproducing head sensitivity distribution adjusting means, comprising a magnetic recording head, a magnetoresistive reproducing head, and reproducing head sensitivity distribution adjusting means for changing the sensitivity distribution in the track width direction of the magnetoresistive reproducing head. A magnetic disk device characterized in that a positional deviation between a magnetic recording head and a magnetoresistive effect reproducing head is corrected by.
気抵抗効果再生ヘッドの磁気抵抗効果膜へ流される感磁
電流を調整するものであることを特徴とする請求項1〜
7のいずれか1項記載の磁気ディスク装置。8. The read head sensitivity distribution adjusting means adjusts a magneto-sensitive current flowing to a magnetoresistive film of a magnetoresistive reproducing head.
7. The magnetic disk device according to claim 7.
膜に近接して配置された調整用導体を備え、前記再生ヘ
ッド感度分布調整手段は該調整用導体に流す電流を調整
するものであることを特徴とする請求項1〜7のいずれ
か1項記載の磁気ディスク装置。9. The magnetoresistive effect reproducing head comprises an adjusting conductor arranged in the vicinity of the magnetoresistive effect film, and the reproducing head sensitivity distribution adjusting means adjusts a current flowing through the adjusting conductor. The magnetic disk device according to claim 1, wherein the magnetic disk device is a magnetic disk device.
沿って幅が変化していることを特徴とする請求項9記載
の磁気ディスク装置。10. The magnetic disk drive according to claim 9, wherein the adjusting conductor has a width that varies along the track width direction.
果膜感磁部は3個以上の電極端子を有し、前記再生ヘッ
ド感度分布調整手段は前記電極端子間に流す電流の分流
比を調整するものであることを特徴とする請求項1〜7
のいずれか1項記載の磁気ディスク装置。11. A magnetoresistive effect film magnetic sensing part of a magnetoresistive effect reproducing head has three or more electrode terminals, and the reproducing head sensitivity distribution adjusting means adjusts a shunt ratio of a current flowing between the electrode terminals. It is a thing, It is characterized by the above-mentioned.
The magnetic disk drive according to any one of 1.
る感度分布を有する2層の磁気抵抗効果膜からの信号を
合成することにより再生出力信号を得るものであり、前
記再生ヘッド感度分布調整手段は2層の磁気抵抗効果膜
からの信号を合成する割合を調整するものであることを
特徴する請求項1〜7のいずれか1項記載の磁気ディス
ク装置。12. A magnetoresistive effect reproducing head obtains a reproduction output signal by synthesizing signals from two layers of magnetoresistive effect films having different sensitivity distributions, and said reproducing head sensitivity distribution adjusting means comprises 2. 8. The magnetic disk device according to claim 1, wherein a ratio of combining signals from the magnetoresistive film of the layer is adjusted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30194793A JPH07153045A (en) | 1993-12-01 | 1993-12-01 | Magnetic disc apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30194793A JPH07153045A (en) | 1993-12-01 | 1993-12-01 | Magnetic disc apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07153045A true JPH07153045A (en) | 1995-06-16 |
Family
ID=17903032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30194793A Pending JPH07153045A (en) | 1993-12-01 | 1993-12-01 | Magnetic disc apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07153045A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0803862A2 (en) * | 1996-04-23 | 1997-10-29 | Read-Rite Corporation | Magnetoresistive head using sense currents of opposite polarities |
US6088181A (en) * | 1996-05-30 | 2000-07-11 | Kabushiki Kaisha Toshiba | Magnetic recording/reproducing device using composite head |
-
1993
- 1993-12-01 JP JP30194793A patent/JPH07153045A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0803862A2 (en) * | 1996-04-23 | 1997-10-29 | Read-Rite Corporation | Magnetoresistive head using sense currents of opposite polarities |
EP0803862A3 (en) * | 1996-04-23 | 1998-08-05 | Read-Rite Corporation | Magnetoresistive head using sense currents of opposite polarities |
US6088181A (en) * | 1996-05-30 | 2000-07-11 | Kabushiki Kaisha Toshiba | Magnetic recording/reproducing device using composite head |
US6496321B1 (en) | 1996-05-30 | 2002-12-17 | Kabushiki Kaisha Toshiba | Magnetic recording/reproducing device using composite head |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6157510A (en) | Magnetic storage device with multiple read elements which are offset laterally and longitudinally | |
US7106549B2 (en) | Magnetic recording and reproducing apparatus and magnetic recording medium | |
JPH07153043A (en) | Method and apparatus for detection of position of magnetic head | |
KR100881190B1 (en) | Hard Disk Drive and the Method of Calibrating the Servo of Hard Disk Drive | |
JPH03160675A (en) | Method and device for correcting erroneous positioning of write head for separate reading | |
US5523898A (en) | Partial MR sensor bias current during write | |
US5555142A (en) | Magnetic disk system | |
US7324295B2 (en) | Method of detecting position of head in recording medium drive | |
JPH07153045A (en) | Magnetic disc apparatus | |
US6496321B1 (en) | Magnetic recording/reproducing device using composite head | |
KR20010080744A (en) | Magnetic recording device, method of adjusting magnetic head and magnetic recording medium | |
CN1084508C (en) | Magnetic data reading apparatus and method using inductive and magnetoresistive heads | |
JP3313615B2 (en) | Magnetic recording / reproducing apparatus and reproducing head using magnetoresistive element | |
JPH10177772A (en) | Magnetic head device and magnetic disk device | |
US20240371400A1 (en) | Magnetic head and magnetic recording device | |
JPH05314686A (en) | Magnetic disk device | |
EP0917134A2 (en) | Magnetic recording apparatus | |
JPH01251413A (en) | Magnetic disk device | |
JPS6134577Y2 (en) | ||
JPH10149524A (en) | Magnetic disk device | |
JPS61258326A (en) | Magnetic storage device | |
JPH0973620A (en) | Magnetic recording and reproducing device | |
JP3973663B2 (en) | Head suspension assembly and magnetic recording / reproducing apparatus | |
JPH05182113A (en) | Magnetic recording/reproducing device | |
KR100688577B1 (en) | Magnetic head, disk drive system employing the same and method for correcting asymmetry of magnetic head |