JPH07151531A - Metallic foil thickness measuring device and method - Google Patents

Metallic foil thickness measuring device and method

Info

Publication number
JPH07151531A
JPH07151531A JP32087693A JP32087693A JPH07151531A JP H07151531 A JPH07151531 A JP H07151531A JP 32087693 A JP32087693 A JP 32087693A JP 32087693 A JP32087693 A JP 32087693A JP H07151531 A JPH07151531 A JP H07151531A
Authority
JP
Japan
Prior art keywords
metal foil
thickness
ray
current
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32087693A
Other languages
Japanese (ja)
Inventor
Yoshitomo Iwase
義倫 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP32087693A priority Critical patent/JPH07151531A/en
Publication of JPH07151531A publication Critical patent/JPH07151531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To provide a metallic foil thickness measuring method and device, by which the metallic foil thickness can be measured stably with high accuracy in a short time. CONSTITUTION:An X-ray 1 is generated by an X-ray generating tube 2 and radiated to a metallic foil 3 which is an object for measurement. The X-ray light 1' transmitted through the metallic foil 3 enters a semiconductor detecting element 5. A constant-voltage bias voltage is applied between a cathode electrode and an anode electrode of the semiconductor detecting element 5 through a current detecting circuit 8 in a digital ampere meter 7 from a bias power supply 6. An electric current flowing through the semiconductor detecting element 5 is detected by the current detecting circuit 7. The output of the current detecting circuit 7 is input to an A/D converting circuit 9 in the digital ampere meter 7. The A/D converting circuit 9 is a double integral type converting circuit, and operated as an arithmetic means for integrating a current signal in the integration time and converting it into the time average current value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属箔の厚さを非破
壊、非接触で測定する測定装置およびその方法に関し、
特には、電解法または圧延法による金属箔の製造工程に
おける厚さのモニターに適したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive, non-contact measuring apparatus and method for measuring the thickness of a metal foil,
In particular, it is suitable for monitoring the thickness of the metal foil manufacturing process by the electrolytic method or rolling method.

【0002】[0002]

【従来の技術】電解法または圧延法による金属箔の製造
工程においては、箔厚の制御などの工程管理のために、
その厚さを連続的に、短時間に、高い精度で、非破壊・
非接触で測定する必要がある。このような金属箔厚の測
定方法としては、特開平4−331308に開示されて
いるように、X線、β線などの電離放射線を金属箔厚に
照射し、透過する線量から厚さを測定することが知られ
ている。
2. Description of the Related Art In the process of manufacturing a metal foil by an electrolytic method or a rolling method, in order to control the process such as controlling the foil thickness,
Its thickness is continuous, high-precision, non-destructive in a short time.
It is necessary to measure without contact. As a method for measuring the thickness of such a metal foil, as disclosed in JP-A-4-331308, the thickness of the metal foil is measured by irradiating the metal foil with ionizing radiation such as X-rays and β rays. Is known to do.

【0003】X線、β線などの電離放射線の検出素子と
して、電離放射線に起因して半導体内に生じる電流パル
スをその表面に設けた電極により測定する半導体検出器
が知られ、電離放射線強度(線量)に比例する電流パル
スの単位時間における個数を計数することで測定してい
る。なお、このような半導体検出器は、CdTe、HgI2、Ga
Asなどの化合物半導体を用いた場合、バンドギャップが
広いため室温での動作が可能であり、また構成元素の原
子番号が大きいため小型で高い感度(検出効率)を得る
ことができる。
As a detection element for ionizing radiation such as X-rays and β-rays, a semiconductor detector is known which measures a current pulse generated in a semiconductor due to ionizing radiation by an electrode provided on the surface thereof. It is measured by counting the number of current pulses proportional to (dose) per unit time. It should be noted that such semiconductor detectors include CdTe, HgI 2 , Ga
When a compound semiconductor such as As is used, it can operate at room temperature because of its wide bandgap, and it is small in size and high in sensitivity (detection efficiency) because of its large atomic number.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
電離放射線の検出方法では、金属箔の製造工程において
必要とされる箔厚測定精度を得ることが困難であった。
However, with the conventional ionizing radiation detection method, it was difficult to obtain the foil thickness measurement accuracy required in the manufacturing process of the metal foil.

【0005】すなわち、単位時間に計数される電流パル
スの個数Nとしたとき、放射線線量の統計精度は、Nの
平方根の逆数となる。しかし、この電流パルスの個数N
は、比較的放射線線量の低い領域でのみ比例する。これ
は、電流パルスの幅が有限である(通常、10μsec程
度の)ため、これ以上の頻度の電流パルスを計数できな
いためである。(なお、電流パルスの幅は、半導体内を
ホールが移動する速度、増幅器の周波数帯域などにより
決まる。)したがって、所定の測定時間内に検出できる
パルス個数の上限が限定されるので、放射線線量の測定
精度も限定されるため、箔厚測定精度も充分でない。例
えば、測定時間を1秒とすると、統計精度は0.1%程
度となり、金属箔厚の精度として、0.1%以上を得る
ことができない。
That is, assuming that the number N of current pulses counted in a unit time is N, the statistical accuracy of radiation dose is the reciprocal of the square root of N. However, the number N of this current pulse
Is proportional only in regions of relatively low radiation dose. This is because the width of the current pulse is finite (usually about 10 μsec), so that the frequency of the current pulse cannot be counted. (Note that the width of the current pulse is determined by the speed at which holes move in the semiconductor, the frequency band of the amplifier, etc.) Therefore, the upper limit of the number of pulses that can be detected within a given measurement time is limited, so the radiation dose Since the measurement accuracy is also limited, the foil thickness measurement accuracy is not sufficient. For example, if the measurement time is 1 second, the statistical accuracy is about 0.1%, and the accuracy of the metal foil thickness cannot be 0.1% or more.

【0006】本発明は上記の課題を解決したもので、本
発明の目的は、短時間に高い精度で、安定に測定できる
金属箔の厚さの測定方法および装置を提供するものであ
る。
The present invention has solved the above-mentioned problems, and an object of the present invention is to provide a method and apparatus for measuring the thickness of a metal foil which can be stably measured with high accuracy in a short time.

【0007】[0007]

【課題を解決するための手段】本発明による金属箔厚の
測定装置は、(a)X線を発生するX線発生手段と、(b)
測定対象の金属箔を透過した該X線が入射する高抵抗半
導体と、(c)該高抵抗半導体の対向する一対の面にそれ
ぞれ設けられた一対の電極と、(d)該電極間にバイアス
電圧を印加するバイアス手段と、(e)該電極から前記高
抵抗半導体を流れる電流信号を検出する電流検出回路
と、(f)該電流信号の時間平均値を演算する演算手段と
を含むものである。
MEANS FOR SOLVING THE PROBLEMS A metal foil thickness measuring apparatus according to the present invention comprises (a) X-ray generating means for generating X-rays, and (b)
A high-resistance semiconductor on which the X-rays transmitted through the metal foil to be measured are incident, (c) a pair of electrodes respectively provided on a pair of opposing surfaces of the high-resistance semiconductor, and (d) a bias between the electrodes. Bias means for applying a voltage, (e) a current detection circuit for detecting a current signal flowing through the high resistance semiconductor from the electrode, and (f) a calculation means for calculating a time average value of the current signal.

【0008】また、本発明による金属箔厚の測定方法
は、(a)測定対象の金属箔にX線を入射し、(b)バイア
ス電圧が印加された高抵抗半導体に前記金属箔を透過し
たX線を入射し、(c)該透過したX線の入射により前記
高抵抗半導体を流れる電流信号を検出し、(d)該電流信
号の時間平均値に基づき前記金属箔の厚さを演算するも
のである。
Further, in the method for measuring the metal foil thickness according to the present invention, (a) X-rays are incident on the metal foil to be measured, and (b) the metal foil is transmitted through the high resistance semiconductor to which a bias voltage is applied. An X-ray is incident, (c) a current signal flowing through the high resistance semiconductor is detected by the incident X-ray, and (d) a thickness of the metal foil is calculated based on a time average value of the current signal. It is a thing.

【0009】さらに、測定対象である厚さtの前記金属
箔に入射するX線のエネルギーEがd2(exp(−μ
(E)t))/dt2の値を零とする値の近傍に定めら
れている(ただし、μ(E)はX線のエネルギーEにお
ける測定対象の金属の吸収係数である)こと、また、前
記高抵抗半導体がCdTe、CdZnTeなどのCdT
e結晶からなることが望ましい。なお、X線のエネルギ
ーEは、そのエネルギーにピークを持つ白色X線を用い
てもよい。
Further, the energy E of X-rays incident on the metal foil having a thickness t to be measured is d 2 (exp (-μ
(E) t)) / dt 2 is set to a value near zero (where μ (E) is the absorption coefficient of the metal to be measured at X-ray energy E), and , The high resistance semiconductor is CdT such as CdTe or CdZnTe
It is desirable to be composed of e crystals. As the energy E of the X-ray, white X-ray having a peak at the energy may be used.

【0010】[0010]

【作用および効果】本発明によれば、X線の検出部分に
高抵抗半導体を用いているので機械的な振動などに影響
されることなく、同時にその出力信号をアナログ電流信
号として取り出し、時間平均値として測定している。し
たがって、高い精度で、高い密度のX線量を測定できる
ので、金属箔の厚さを短時間で高い精度で測定すること
が可能となる。
According to the present invention, since the high resistance semiconductor is used for the X-ray detecting portion, its output signal is simultaneously extracted as an analog current signal without being affected by mechanical vibration and the like, and time averaged. It is measured as a value. Therefore, since the X-ray dose of high density can be measured with high accuracy, the thickness of the metal foil can be measured with high accuracy in a short time.

【0011】さらに、測定対象である厚さtの前記金属
箔に入射するX線のエネルギーEを、d2(exp(−
μ(E)t))/dt2の値を零とする値の近傍に定め
られているので、厚さの変化に対する検出線量の変化量
を高くすることができるので、さらに高い精度での測定
が可能となる。特に、検出部分の高抵抗半導体にCdT
e結晶を用いた場合、吸収係数が高いため、装置を小型
にできる。
Further, the energy E of X-rays incident on the metal foil having a thickness t to be measured is d 2 (exp (-
Since the value of μ (E) t)) / dt 2 is set near the value that makes it zero, it is possible to increase the amount of change in the detected dose with respect to the change in thickness. Is possible. Especially, CdT is added to the high resistance semiconductor of the detection part.
When the e crystal is used, the absorption coefficient is high, so that the device can be downsized.

【0012】[0012]

【実施例】本発明の一実施例である金属箔厚の測定装置
について、図1を用いて以下詳細に説明する。
EXAMPLE A metal foil thickness measuring apparatus according to an example of the present invention will be described in detail below with reference to FIG.

【0013】X線1をX線発生管2により発生し、測定
対象である金属箔3(35μm、Fe箔)に対して照射
する。X線発生管2には、X線電源4から40KeVの
管電圧を供給しており、20mAの管電流でX線を発生
する。このX線のエネルギー分布は、ほぼ0KeVから
40KeVまで分布しており、19KeVにピークをも
つ。なお、X線発生管2の管電圧を変えることでX線の
エネルギー分布を連続的に変えることができる。
An X-ray 1 is generated by an X-ray generation tube 2 and is applied to a metal foil 3 (35 μm, Fe foil) which is an object of measurement. A tube voltage of 40 KeV is supplied from the X-ray power source 4 to the X-ray generation tube 2, and an X-ray is generated with a tube current of 20 mA. The energy distribution of this X-ray is distributed from approximately 0 KeV to 40 KeV, and has a peak at 19 KeV. The energy distribution of the X-rays can be continuously changed by changing the tube voltage of the X-ray generating tube 2.

【0014】金属箔3を透過したX線1’は、半導体検
出素子5に入射する。半導体検出素子5は、塩素ドープ
高抵抗CdTe半導体単結晶基板(30×30mm、厚
さ2mm)の対向する主面に電極を形成したものであ
る。そのカソード電極Kは、無電解めっきにより形成し
たPt(白金)電極であり、電子に対する障壁の高さ
(0.9eV)がホールに対する障壁の高さ(0.6e
V)よりも高い。また、そのアノード電極Aは、真空蒸
着により形成されたIn(インジウム)電極であり、電
子に対する障壁の高さ(0.1eV)がホールに対する
障壁の高さ(1.4eV)よりも低い。なお、両電極を
同一の材質で構成することもできるが、このような電極
を用いることで暗電流を低減でき、検出精度が向上す
る。
The X-ray 1'transmitted through the metal foil 3 enters the semiconductor detection element 5. The semiconductor detection element 5 is one in which electrodes are formed on opposing main surfaces of a chlorine-doped high resistance CdTe semiconductor single crystal substrate (30 × 30 mm, thickness 2 mm). The cathode electrode K is a Pt (platinum) electrode formed by electroless plating, and the height of the barrier for electrons (0.9 eV) is the height of the barrier for holes (0.6 eV).
Higher than V). Further, the anode electrode A is an In (indium) electrode formed by vacuum evaporation, and the height of the barrier against electrons (0.1 eV) is lower than the height of the barrier against holes (1.4 eV). Although both electrodes can be made of the same material, dark current can be reduced and detection accuracy can be improved by using such electrodes.

【0015】半導体検出素子5のカソード電極K・アノ
ード電極A間にデジタル電流計7内の電流検出回路8を
介してバイアス電源6から定電圧のバイアス電圧(50
V)が印加されている。電流検出回路7により、半導体
検出素子5を流れる電流を検出している。電流検出回路
7の出力は、デジタル電流計7内のA/D変換回路9に
入力される。このA/D変換回路9は、二重積分型変換
回路であり、積分時間内の電流信号を積分し、その時間
平均電流値に変換する演算手段として動作する。
A constant bias voltage (50) is applied between the cathode electrode K and the anode electrode A of the semiconductor detection element 5 from the bias power source 6 via the current detection circuit 8 in the digital ammeter 7.
V) is being applied. The current detection circuit 7 detects the current flowing through the semiconductor detection element 5. The output of the current detection circuit 7 is input to the A / D conversion circuit 9 in the digital ammeter 7. The A / D conversion circuit 9 is a double integration type conversion circuit, and operates as a calculation unit that integrates a current signal within an integration time and converts it into a time average current value.

【0016】この時間平均電流値により、金属箔3を透
過したX線1’の強度を高精度に測定することができ
る。すなわち、X線1’の強度を108/secと充分高く
することで、統計精度を0.01%を得ることができ
る。また、デジタル電流計7の測定精度は、積分時間を
1秒程度とすることにより、0.01%以下とすること
ができる。したがって、金属箔3を透過したX線1’の
強度を0.01%の精度で計測できるため、金属箔3の
膜厚を0.01%の精度で測定できる。X線1’の強度
を充分強く(106/sec以上と)し、電流を平均化する
時間(積分時間時間)を統計精度と電流測定精度が同程
度になるように設定することで、測定時間および測定精
度を最適とすることができる。なお、電流信号の時間平
均値を演算する演算手段としてアナログ積分回路を用い
ることもできるが、積分型のA/D変換回路9を用いて
いることで電流測定精度を容易に向上させることができ
る。
With this time average current value, the intensity of the X-ray 1'transmitted through the metal foil 3 can be measured with high accuracy. That is, statistical accuracy of 0.01% can be obtained by sufficiently increasing the intensity of the X-ray 1'to 10 8 / sec. Further, the measurement accuracy of the digital ammeter 7 can be set to 0.01% or less by setting the integration time to about 1 second. Therefore, since the intensity of the X-ray 1 ′ transmitted through the metal foil 3 can be measured with an accuracy of 0.01%, the film thickness of the metal foil 3 can be measured with an accuracy of 0.01%. Measure by setting the intensity of X-ray 1'strong enough (10 6 / sec or more) and setting the time to average the current (integration time) so that the statistical accuracy and the current measurement accuracy are about the same. The time and measurement accuracy can be optimized. Although an analog integrating circuit can be used as the calculating means for calculating the time average value of the current signal, the accuracy of current measurement can be easily improved by using the integrating A / D conversion circuit 9. .

【0017】次に、X線のエネルギーEを変化させた場
合の検出感度の変化を図2に示す。X線発生管2に印加
する管電圧を20〜65KeVとして、ピークのX線エ
ネルギーを10〜30KeVと変化させた場合の検出感
度(Fe箔の厚さが18、25、35および70μmの
場合)を示している。この図から、それぞれの厚さにお
いてX線のエネルギーEが14、17、19および24
KeVの場合に検出感度が最も高いことがわかる。ま
た、そのX線のエネルギーEが、20%程度ずれていて
も検出感度に大きな違いのないことがわかる。
Next, FIG. 2 shows changes in detection sensitivity when the energy E of X-rays is changed. Detection sensitivity when the tube voltage applied to the X-ray generation tube 2 is 20 to 65 KeV and the peak X-ray energy is changed to 10 to 30 KeV (when the thickness of the Fe foil is 18, 25, 35 and 70 μm) Is shown. From this figure, the X-ray energy E is 14, 17, 19 and 24 at each thickness.
It can be seen that the detection sensitivity is highest in the case of KeV. Further, it can be seen that even if the energy E of the X-rays deviates by about 20%, there is no great difference in detection sensitivity.

【0018】箔厚tの場合の検出感度kは、μ(E)を
X線のエネルギーEにおける測定対象の金属の吸収係数
として、exp(−μ(E)t)のtの微分値である、
The detection sensitivity k in the case of the foil thickness t is the differential value of t of exp (-μ (E) t), where μ (E) is the absorption coefficient of the metal to be measured at the energy E of the X-ray. ,

【式1】k=d(exp(−μ(E)t))/dt で与えられる。さらに、この検出感度kが最も高くなる
のは、さらに、この検出感度kの微分値が0となる近傍
である。したがって、
Formula 1 is given by k = d (exp (-μ (E) t)) / dt. Furthermore, the detection sensitivity k becomes highest in the vicinity where the differential value of the detection sensitivity k becomes 0. Therefore,

【式2】dk/dt=d2(exp(−μ(E)t))
/dt2 が0となる近傍とすることで検出感度kを最も高くでき
る。
[Formula 2] dk / dt = d 2 (exp (-μ (E) t))
The detection sensitivity k can be maximized by setting / dt 2 to be near 0.

【0019】したがって、測定対象の金属箔の材質、お
よびその厚さに応じてX線発生管2に印加する管電圧を
上記式2の条件を満足するように設定することで高い測
定精度を得ることが可能である。なお、X線発生管以外
のX線発生手段を用いた場合にも上記の条件を満足する
ようにX線のエネルギーEを定めればよい。
Therefore, a high measurement accuracy is obtained by setting the tube voltage applied to the X-ray generation tube 2 so as to satisfy the condition of the above expression 2 in accordance with the material of the metal foil to be measured and its thickness. It is possible. The energy E of the X-ray may be set so as to satisfy the above condition even when an X-ray generating means other than the X-ray generating tube is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のよる金属箔厚の測定装置を説明するた
めの概念図である。
FIG. 1 is a conceptual diagram for explaining a metal foil thickness measuring device according to the present invention.

【図2】本発明におけるX線のエネルギーEを変化させ
た場合の検出感度の変化を示す図である。
FIG. 2 is a diagram showing a change in detection sensitivity when the energy E of X-rays is changed in the present invention.

【符号の説明】[Explanation of symbols]

1 X線 2 X線発生管 3 金属箔 4 X線電源 5 半導体検出素子 6 バイアス電源 7 デジタル電流計 8 電流検出回路 9 A/D変換回路 1 X-ray 2 X-ray generation tube 3 Metal foil 4 X-ray power supply 5 Semiconductor detection element 6 Bias power supply 7 Digital ammeter 8 Current detection circuit 9 A / D conversion circuit

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年1月12日[Submission date] January 12, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】X線、β線などの電離放射線の検出素子と
して、電離放射線に起因して電離箱内に生じる電流パル
スをその表面に設けた電極により測定する検出方法が知
られ、電離放射線強度(線量)に比例する電流パルスの
単位時間における個数を計数することで測定している。
As a detection element for ionizing radiation such as X-rays and β-rays, there is known a detection method in which a current pulse generated in the ionization chamber due to ionizing radiation is measured by an electrode provided on the surface of the ionizing radiation. It is measured by counting the number of current pulses proportional to (dose) per unit time.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】すなわち、単位時間に計数される電流パル
スの個数Nとしたとき、放射線線量の統計精度は、Nの
平方根の逆数となる。しかし、この電流パルスの個数N
は、比較的放射線線量の低い領域でのみ比例する。これ
は、電流パルスの幅が有限である(通常、10μsec
程度の)ため、これ以上の頻度の電流パルスを計数でき
ないためである。(なお、電流パルスの幅は、電離され
た電子が移動する速度、増幅器の周波数帯域などにより
決まる。)したがって、所定の測定時間内に検出できる
パルス個数の上限が限定されるので、放射線線量の測定
精度も限定されるため、箔厚測定精度も充分でない。例
えば、測定時間を1秒とすると、統計精度は0.1%程
度となり、金属箔厚の精度として、0.1%以上を得る
ことができない。
That is, assuming that the number N of current pulses counted in a unit time is N, the statistical accuracy of radiation dose is the reciprocal of the square root of N. However, the number N of this current pulse
Is proportional only in regions of relatively low radiation dose. This is because the width of the current pulse is finite (typically 10 μsec).
Therefore, it is not possible to count current pulses with a frequency higher than this. (Note that the width of the current pulse is determined by the speed at which the ionized electrons move, the frequency band of the amplifier, etc.) Therefore, the upper limit of the number of pulses that can be detected within a given measurement time is limited, so that the radiation dose Since the measurement accuracy is also limited, the foil thickness measurement accuracy is not sufficient. For example, if the measurement time is 1 second, the statistical accuracy is about 0.1%, and the accuracy of the metal foil thickness cannot be 0.1% or more.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (a)X線を発生するX線発生手段と、
(b)測定対象の金属箔を透過した該X線が入射する高抵
抗半導体と、(c)該高抵抗半導体の対向する一対の面に
それぞれ設けられた一対の電極と、(d)該電極間にバイ
アス電圧を印加するバイアス手段と、(e)該電極から前
記高抵抗半導体を流れる電流信号を検出する電流検出回
路と、(f)該電流信号の時間平均値を演算する演算手段
とを含むことを特徴とする金属箔厚の測定装置。
1. (a) X-ray generating means for generating X-rays,
(b) a high resistance semiconductor on which the X-rays transmitted through the metal foil to be measured are incident, (c) a pair of electrodes respectively provided on a pair of opposing surfaces of the high resistance semiconductor, (d) the electrode Bias means for applying a bias voltage therebetween, (e) a current detection circuit for detecting a current signal flowing through the high-resistance semiconductor from the electrode, and (f) operation means for calculating a time average value of the current signal. An apparatus for measuring the thickness of a metal foil, which includes:
【請求項2】 (a)測定対象の金属箔にX線を入射し、
(b)バイアス電圧が印加された高抵抗半導体に前記金属
箔を透過したX線を入射し、(c)該透過したX線の入射
により前記高抵抗半導体を流れる電流信号を検出し、
(d)該電流信号の時間平均値に基づき前記金属箔の厚さ
を演算することを特徴とする金属箔厚の測定方法。
2. (a) Injecting X-rays into a metal foil to be measured,
(b) irradiating a high resistance semiconductor to which a bias voltage is applied with X-rays transmitted through the metal foil, and (c) detecting a current signal flowing through the high resistance semiconductor by incidence of the transmitted X-rays,
(d) A method for measuring a metal foil thickness, which comprises calculating the thickness of the metal foil based on a time average value of the current signal.
【請求項3】 測定対象である厚さtの前記金属箔に入
射するX線のエネルギーEがd2(exp(−μ(E)
t))/dt2の値を零とする値の近傍に定められてい
る(ただし、μ(E)はX線のエネルギーEにおける測
定対象の金属の吸収係数である)ことを特徴とする請求
項2記載の金属箔厚の測定方法。
3. The energy E of X-rays incident on the metal foil having a thickness t to be measured is d 2 (exp (−μ (E)
t)) / dt 2 is set to a value near zero (where μ (E) is the absorption coefficient of the metal to be measured at X-ray energy E). Item 2. A method for measuring a metal foil thickness according to item 2.
【請求項4】 前記高抵抗半導体がCdTe結晶からな
る請求項1記載の金属箔厚の測定装置。
4. The metal foil thickness measuring device according to claim 1, wherein the high resistance semiconductor is made of a CdTe crystal.
【請求項5】 前記高抵抗半導体がCdTe結晶からな
る請求項2乃至3記載の金属箔厚の測定方法。
5. The method for measuring the metal foil thickness according to claim 2, wherein the high-resistance semiconductor is made of CdTe crystal.
JP32087693A 1993-11-29 1993-11-29 Metallic foil thickness measuring device and method Pending JPH07151531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32087693A JPH07151531A (en) 1993-11-29 1993-11-29 Metallic foil thickness measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32087693A JPH07151531A (en) 1993-11-29 1993-11-29 Metallic foil thickness measuring device and method

Publications (1)

Publication Number Publication Date
JPH07151531A true JPH07151531A (en) 1995-06-16

Family

ID=18126254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32087693A Pending JPH07151531A (en) 1993-11-29 1993-11-29 Metallic foil thickness measuring device and method

Country Status (1)

Country Link
JP (1) JPH07151531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404911B (en) * 2010-02-23 2013-08-11 Test Research Inc Method for thickness calibraiton and measuring thickness of material
KR101320312B1 (en) * 2011-12-09 2013-10-22 주식회사 포스코 System for measuring thickness of steel plate using plc with digital signal process functionality
CN108027235A (en) * 2015-12-10 2018-05-11 株式会社东芝 Apparatus for measuring thickness

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404911B (en) * 2010-02-23 2013-08-11 Test Research Inc Method for thickness calibraiton and measuring thickness of material
KR101320312B1 (en) * 2011-12-09 2013-10-22 주식회사 포스코 System for measuring thickness of steel plate using plc with digital signal process functionality
CN108027235A (en) * 2015-12-10 2018-05-11 株式会社东芝 Apparatus for measuring thickness
CN108027235B (en) * 2015-12-10 2020-07-07 株式会社东芝 Thickness measuring device

Similar Documents

Publication Publication Date Title
Andriamonje et al. Development and performance of Microbulk Micromegas detectors
Street et al. Amorphous silicon sensor arrays for radiation imaging
Séguinot et al. Reflective UV photocathodes with gas-phase electron extraction: solid, liquid, and adsorbed thin films
EP0736780B1 (en) X-ray beam position monitor and its position measurement method
US5512756A (en) X-ray detector with direct conversion
US20030215052A1 (en) Calibration source for X-ray detectors
US20090114832A1 (en) Semiconductive materials and associated uses thereof
Shah et al. Lead iodide optical detectors for gamma ray spectroscopy
Reinhardt et al. A pixel detector system for laser-accelerated ion detection
Bennett et al. Characterization of polycrystalline TlBr films for radiographic detectors
US6278117B1 (en) Solid state radiation detector with tissue equivalent response
EP1546761B1 (en) Diamond radiation detector
JPH07151531A (en) Metallic foil thickness measuring device and method
Schulte et al. The use of large area silicon sensors for thermal neutron detection
Scharf Exposure rate measurements of x-and gamma-rays with silicon radiation detectors
Stern et al. Ion chambers for fluorescence and laboratory EXAFS detection
Giakos et al. Electric field dependence on charge collection of CdZnTe X-ray detectors
Spielman et al. Photoconducting x‐ray detectors for Z‐pinch experiments
Patt et al. Mercuric iodide X-ray camera
Ahmed et al. The qualification of GEM detector and its application to imaging
JPH0546709B2 (en)
JPH0550857B2 (en)
Lennard et al. Anomalous pulse heights in silicon detectors
Viehl et al. Pyroelectric detector for particle beams
JPH07325157A (en) Semiconductor radiation detector