JPH07149583A - Hard carbon film-coated member - Google Patents

Hard carbon film-coated member

Info

Publication number
JPH07149583A
JPH07149583A JP29936793A JP29936793A JPH07149583A JP H07149583 A JPH07149583 A JP H07149583A JP 29936793 A JP29936793 A JP 29936793A JP 29936793 A JP29936793 A JP 29936793A JP H07149583 A JPH07149583 A JP H07149583A
Authority
JP
Japan
Prior art keywords
carbon film
hard carbon
diamond
present
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29936793A
Other languages
Japanese (ja)
Inventor
Shugo Onizuka
修吾 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29936793A priority Critical patent/JPH07149583A/en
Publication of JPH07149583A publication Critical patent/JPH07149583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Sliding-Contact Bearings (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a hard carbon film-coated member having excellent abrasion resistance and low friction coefficient and suitable for a sliding member. CONSTITUTION:This hard carbon film-coated member obtained by coating a surface of a specified base board with a hard carbon film wherein a pulverized substance obtained by pulverizing a specimen of the hard carbon film peeled out from the base body is subjected to Raman spectroscopy and a peak ratio expressed by I1/I2 (I1 is a diamond peak strength at 1332+ or -cm<-1>; 12 is a maximum peak strength of graphite or amorphous carbon at 1500+ or -50cm<-1>) is 0.6-5.0, is applied to a sliding member, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】本発明は、硬質炭素膜の被覆部材に
関し、特に高密度で耐摩耗性に優れた硬質炭素膜を被覆
した部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member coated with a hard carbon film, and more particularly to a member coated with a hard carbon film having a high density and excellent wear resistance.

【0002】[0002]

【従来技術】ダイヤモンドは、超高圧高温での製造に変
わり、気相法により安価に製造することができることが
提案され、その優れた特性を利用した応用が進められて
いる。特に、ダイヤモンドは高硬度であることから、所
定の基体表面に被覆して切削工具、摺動部材などに適用
することが盛んに研究されている。
2. Description of the Related Art It has been proposed that diamond can be manufactured at low cost by a vapor phase method instead of manufacturing at ultra-high pressure and high temperature, and application utilizing its excellent characteristics is being advanced. In particular, since diamond has a high hardness, it has been actively researched to apply it to a cutting tool, a sliding member, etc. by coating it on a predetermined substrate surface.

【0003】このような気相法によるダイヤモンドは、
一般には特開昭58−91100号や特開昭58−11
0494号に示されるように、炭素を含む原料ガスを反
応室内に導入しマイクロ波プラズマやフィラメントによ
る熱分解後、基体表面に析出させることにより作製され
ている。
Diamond produced by such a vapor phase method is
Generally, JP-A-58-91100 and JP-A-58-11
As shown in No. 0494, it is produced by introducing a raw material gas containing carbon into the reaction chamber, thermally decomposing it by microwave plasma or a filament, and then depositing it on the surface of the substrate.

【0004】上記成膜過程で形成される硬質炭素膜は、
かならずしもダイヤモンドのみからなるものでなく、グ
ラファイトや非晶質炭素などの不純物成分が混入し、特
性が変化することがある。
The hard carbon film formed in the above film forming process is
Not only does it consist of only diamond, but impurities and other impurities such as graphite and amorphous carbon may be mixed in to change the characteristics.

【0005】グラファイトや非晶質炭素を含有する硬質
膜に対しては、一般的に使用されるX線回折測定では、
非晶質炭素やグラファイトの分析ができないため、硬質
炭素膜の評価には、特開平4−354873号で示され
るように基体表面に形成された硬質炭素膜に対してレー
ザー光を照射し分析する、ラマン分光分析法が適用され
る。このようなラマン分光分析によれば、図2のチャー
トに示すように、1332±5cm- 1 にダイヤモンド
が存在し、1500±50cm- 1 付近にグラファイト
のピークが存在し、このグラファイトのピークが小さい
ほど高純度でダイヤモンド特性に近い薄膜となると言わ
れている。
For a hard film containing graphite or amorphous carbon, generally used X-ray diffraction measurement shows that
Since amorphous carbon and graphite cannot be analyzed, a hard carbon film is evaluated by irradiating a laser beam on the hard carbon film formed on the surface of the substrate, as shown in JP-A-4-354873. Raman spectroscopy is applied. According to the Raman spectroscopy, as shown in the chart of FIG. 2, 1332 ± 5 cm - diamond is present in 1, 1500 ± 50 cm - graphite peaks are present in the vicinity of 1, the peak of the graphite is less It is said that a thin film with a high degree of purity and a diamond characteristic is obtained.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、この
ような硬質炭素膜被覆部材では、ラマン分光分析結果と
被覆部材の機械的特性とが必ずしも一致せず、分析結果
において高ダイヤモンド含有品であっても、摺動性が悪
いなどの不具合があった。
However, in such a hard carbon film coated member, the Raman spectroscopic analysis results and the mechanical properties of the coated member do not always match, and the analysis result indicates that the product contains high diamond. However, there were problems such as poor slidability.

【0007】そこで、本発明者は、気相法により形成さ
れた硬質炭素膜の物性と機械的特性が必ずしも一致しな
い理由について検討を重ねた結果、硬質炭素膜が成膜過
程での条件等の影響により、基体側から表面まで均質体
でなく、ラマン分光分析手法においてもレーザー光が膜
の内部まで届かないなどの理由から炭素膜の性質が正確
に評価されていないためであることがわかった。
Therefore, the present inventor has repeatedly studied the reason why the physical properties and the mechanical properties of the hard carbon film formed by the vapor phase method do not always agree with each other, and as a result, the hard carbon film has a problem such as the conditions in the film forming process. Due to the influence, it was found that the properties of the carbon film were not evaluated accurately because the laser beam did not reach the inside of the film even in the Raman spectroscopic analysis method because it was not a homogeneous body from the substrate side to the surface. .

【0008】[0008]

【問題点を解決するための手段】本発明者は、このよう
なラマン分光分析による硬質炭素膜の評価に当たり、膜
の特性を正しく評価するための方法について検討したと
ころ、基体表面に形成された硬質炭素膜を一旦剥離して
粉砕処理した後、この粉砕物に対してラマン分光分析を
行うことにより炭素膜の特性を正しく評価できることが
わかった。
The inventors of the present invention have examined the method for correctly evaluating the characteristics of the hard carbon film by the Raman spectroscopic analysis, and found that it was formed on the surface of the substrate. It has been found that the characteristics of the carbon film can be correctly evaluated by performing a Raman spectroscopic analysis on the crushed product after the hard carbon film is once peeled and crushed.

【0009】さらに、この分析結果に基づき、摺動特性
との相関について検討した結果、前記硬質炭素膜を前記
基体より剥離し、粉砕処理した粉砕物をラマン分光分析
した時の1332±5cm-1に存在するダイヤモンドの
ピーク強度をI1 、1500±50cm-1に存在するピ
ークの最大ピーク強度をI2 とした場合のI1 /I2
表されるピーク強度比が0.6〜5.0である場合に、
優れた摺動特性を示すことを知見したものである。
Further, as a result of investigating the correlation with sliding characteristics based on this analysis result, the hard carbon film was peeled from the substrate and the crushed product was subjected to Raman spectroscopic analysis to obtain 1332 ± 5 cm −1. peak intensity ratio represented by I 1 / I 2 in the case of the maximum peak intensity of a peak to peak intensity of the diamond present present in I 1, 1500 ± 50cm -1 was I 2 in the 0.6 to 5. If it is 0,
The inventors have found that they exhibit excellent sliding characteristics.

【0010】以下、本発明を詳述する。本発明における
硬質炭素膜被覆部材は、基体として熱膨張係数が室温か
ら800℃までの範囲で3〜6×10-6/℃の金属、セ
ラミックスなどが使用され、望ましくは、WC基超硬合
金、窒化珪素質焼結体、炭化珪素質焼結体などより構成
される。
The present invention will be described in detail below. In the hard carbon film-coated member of the present invention, a metal having a coefficient of thermal expansion of 3 to 6 × 10 −6 / ° C., a ceramic, or the like is used as a substrate, and preferably a WC-based cemented carbide. , A silicon nitride based sintered body, a silicon carbide based sintered body and the like.

【0011】この基体の表面に形成される硬質炭素膜は
従来より知られる周知の手法により形成することができ
る。具体的には、特開昭58−110494号に示され
るようなマイクロ波プラズマCVD法、特開昭58−9
1100号のフィラメント熱CVD法、特開昭60−1
03098号のECRプラスマCVD法などが適用で
き、かかる手法により基体表面に1〜100μmの厚み
で形成される。特に摺動性の点からは1〜50μmの厚
みが適当である。
The hard carbon film formed on the surface of this substrate can be formed by a well-known method which has heretofore been known. Specifically, a microwave plasma CVD method as disclosed in JP-A-58-110494, JP-A-58-9 is used.
No. 1100, filament thermal CVD method, JP-A-60-1
For example, the ECR plasma CVD method of No. 03098 can be applied, and by such a method, it is formed on the surface of the substrate to a thickness of 1 to 100 μm. Particularly, from the viewpoint of slidability, a thickness of 1 to 50 μm is suitable.

【0012】本発明によれば、上記手法により形成され
た硬質炭素膜を被覆した部材を評価するに、まず、基体
より硬質炭素膜を剥離する。剥離する方法としては、フ
ッ化水素酸に浸漬して膜を遊離させる方法が好適であ
る。そして、剥離した炭素膜をメノウ乳鉢等により粉砕
する。かかる粉砕は最終的に10μm以下の粒径になる
まで行うことがよい。そして粉砕処理した粉砕物に対し
てラマン分光分析を行う。ラマン分光分析では、粉砕物
を試料板にのせ、顕微ラマンによりレーザービームを粉
砕物にあたる様に調整して分析する。
According to the present invention, in evaluating the member coated with the hard carbon film formed by the above method, first, the hard carbon film is peeled from the substrate. As a method of peeling, a method of immersing in hydrofluoric acid to release the film is suitable. Then, the peeled carbon film is crushed by an agate mortar or the like. Such pulverization is preferably performed until the final particle size is 10 μm or less. Then, Raman spectroscopic analysis is performed on the crushed product. In Raman spectroscopic analysis, a crushed product is placed on a sample plate, and a laser beam is adjusted by microscopic Raman so that the laser beam hits the crushed product for analysis.

【0013】本発明の被覆部材における大きな特徴は、
上記手法により分析した時、ラマン分光分析チャートに
おいて、1332±5cm-1に存在するダイヤモンドの
ピーク強度をI1 、1500±50cm-1に存在するピ
ークの最大ピーク強度をIとした場合のI/I2
で表されるピーク強度比が0.6〜5.0である点にあ
る。かかるピーク強度比を上記の範囲に限定したのは、
強度比が0.6より低いと比摩耗量が大きく摺動部材に
適さず、また5.0より高いと結晶性は高くなるものの
結晶間の微小な間隙等の影響により摩擦係数が大きくな
るためである。また、気相法により形成される硬質炭素
膜は、一般には緻密質であるが、ダイヤモンド以外のグ
ラファイトや非晶質カーボン等が存在すると膜の密度が
次第に低下することとなる。本発明によれば、密度の観
点から3.30〜3.45g/cm3 の密度を有するも
のである。ここでの密度は、基体より剥離した炭素膜を
クレリシ重液により測定したものである。
The major feature of the covering member of the present invention is that
When analyzed by the above method, in the Raman spectroscopic analysis chart, the peak intensity of diamond present at 1332 ± 5 cm −1 is I 1 , and the maximum peak intensity of the peak present at 1500 ± 50 cm −1 is I 2. 1 / I 2
The peak intensity ratio represented by is 0.6 to 5.0. The reason why the peak intensity ratio is limited to the above range is that
If the strength ratio is lower than 0.6, the specific wear amount is large and it is not suitable for sliding members. If the strength ratio is higher than 5.0, the crystallinity is high but the friction coefficient becomes large due to the influence of minute gaps between crystals. Is. The hard carbon film formed by the vapor phase method is generally dense, but if graphite other than diamond or amorphous carbon is present, the density of the film will gradually decrease. According to the present invention, it has a density of 3.30 to 3.45 g / cm 3 from the viewpoint of density. The density here is a value obtained by measuring the carbon film peeled from the substrate with a Kureishi heavy liquid.

【0014】このようなI1 /I2 のピーク強度比が上
記の範囲で示されるような硬質炭素膜は、例えば、プラ
ズマCVD法により反応室内に導入するダイヤモンド生
成ガス中の炭素含有ガスの濃度をダイヤモンドが安定し
て生成する条件より大きくすれば、ダイヤモンドと同時
にグラファイトを生成することができる。
Such a hard carbon film having an I 1 / I 2 peak intensity ratio within the above range can be used, for example, in the concentration of the carbon-containing gas in the diamond-forming gas introduced into the reaction chamber by the plasma CVD method. If is larger than the conditions under which diamond is stably formed, graphite can be formed simultaneously with diamond.

【0015】[0015]

【作用】気相法により形成されるダイヤモンド膜などの
硬質炭素膜は、その成膜時の条件の不安定さなどから、
膜中で特に厚み方向に不均一なものとなっているのは通
常である。このような不均一の硬質炭素膜に対してレー
ザーラマン分光分析により評価を行う場合、非晶質カー
ボンは、励起光やラマン光を吸収するため、例えば膜表
面に非晶質カーボンが局在化するとダイヤモンド成分ま
で励起光が届かなかったり、あるいは届いてもラマン光
が吸収されるために正確な評価ができなくなる。
[Function] A hard carbon film such as a diamond film formed by the vapor phase method is
It is normal for the film to be non-uniform especially in the thickness direction. When such a nonuniform hard carbon film is evaluated by laser Raman spectroscopy, amorphous carbon absorbs excitation light or Raman light, so that amorphous carbon is localized on the film surface, for example. Then, the excitation light does not reach the diamond component, or Raman light is absorbed even if it reaches the diamond component, so that accurate evaluation cannot be performed.

【0016】そこで、本発明によれば、硬質炭素膜を基
体より剥離しこれを粉砕処理したものに対してラマン分
光分析を行うことにより硬質炭素膜の正確な評価を行う
ことができる。このことについて具体的に図1に従来の
測定方法による分析結果と、粉砕処理したものに対する
分析結果を示した。図1からも明らかなように、従来法
では1332±3cm-1付近のダイヤモンドのピークは
小さいものが、粉砕処理することにより鋭いピークが発
現し、粉砕処理の有無により評価結果が大幅に異なるこ
とがわかる。
Therefore, according to the present invention, the hard carbon film can be accurately evaluated by performing Raman spectroscopic analysis on the hard carbon film separated from the substrate and crushed. Regarding this, specifically, FIG. 1 shows the analysis result by the conventional measuring method and the analysis result for the pulverized product. As is clear from FIG. 1, although the conventional method has a small diamond peak near 1332 ± 3 cm −1 , a sharp peak is developed by the crushing treatment, and the evaluation results are significantly different depending on the presence or absence of the crushing treatment. I understand.

【0017】また、本発明によれば、上記評価方法に基
づき算出されるI1 /I2 の比率が0.6〜5.0のも
のが摺動特性に非常に優れた摺動部材として好適で、優
れた耐摩耗性と低摩擦係数を実現することができる。
Further, according to the present invention, a sliding member having an I 1 / I 2 ratio of 0.6 to 5.0 calculated based on the above evaluation method is suitable as a sliding member having very excellent sliding characteristics. Thus, excellent wear resistance and low coefficient of friction can be realized.

【0018】[0018]

【実施例】以下、本発明を次の例で説明する。硬質炭素
膜を被覆する基体として窒化珪素質焼結体(室温〜80
0℃の熱膨張係数3.7×10-6/℃)を準備した。こ
の基体をマイクロ波CVD反応炉内に設置し、反応ガス
として水素ガス、CH4 ガスおよびCO2 ガスを用い、
ガスの総流量を300sccmとし、CH4 :CO2
1:2の比率で全量中1〜50%のガス比で炉内に導入
するとともに、2.45GHzのマイクロ波を導入しプ
ラズマを発生させて基体表面に硬質炭素膜を形成した。
なお、1つの条件につき数個の試料を作製した。
The present invention will be described below with reference to the following examples. As a substrate for coating the hard carbon film, a silicon nitride sintered body (room temperature to 80
A thermal expansion coefficient of 0 ° C. 3.7 × 10 −6 / ° C.) was prepared. This substrate was placed in a microwave CVD reaction furnace, and hydrogen gas, CH 4 gas and CO 2 gas were used as reaction gases,
The total gas flow rate is 300 sccm, and CH 4 : CO 2 =
A hard carbon film was formed on the surface of the substrate by introducing into the furnace at a gas ratio of 1 to 50% of the total amount at a ratio of 1: 2 and generating a plasma by introducing a microwave of 2.45 GHz.
Several samples were prepared under one condition.

【0019】得られた被覆部材からフッ化水素酸により
硬質炭素膜を剥離しその一部をめのう乳鉢により10μ
m以下になるまで粉砕処理し、その粉砕物に対してラマ
ン分光分析を行った。分析の結果、得られたチャートよ
り、図2に示すような方法でベースラインを処理した後
に1332±5cm-1に存在するダイヤモンドのピーク
強度I1 と、1500±50cm-1に存在するダイヤモ
ンド以外のグラファイトや非晶質カーボンによる最大ピ
ーク強度I2 とのピーク強度比I1 /I2 を算出し表1
に示した。
The hard carbon film was peeled off from the obtained covering member with hydrofluoric acid, and a part of the hard carbon film was removed with an agate mortar to 10 μm.
It was pulverized until it became m or less, and Raman spectroscopic analysis was performed on the pulverized product. As a result of the analysis, from the obtained chart, the peak intensity I 1 of the diamond present at 1332 ± 5 cm −1 and the diamond other than 1500 ± 50 cm −1 after treating the baseline by the method shown in FIG. The peak intensity ratio I 1 / I 2 to the maximum peak intensity I 2 due to graphite or amorphous carbon of
It was shown to.

【0020】一方、硬質炭素膜の粉砕物に対してはクレ
リシ重液法により密度も測定し、その結果を表1に示し
た。そして、ピーク強度比I1 /I2 と密度とを図2に
プロットした。
On the other hand, the crushed product of the hard carbon film was also measured for density by the Clerici heavy liquid method, and the results are shown in Table 1. Then, the peak intensity ratio I 1 / I 2 and the density were plotted in FIG.

【0021】さらに、同一条件下で作製された硬質炭素
膜被覆部材に対してピンオンディスク法に基づき、相手
材としてアルミニウム金属を用い、荷重19.6N、摺
動距離100km、摺動速度2m、大気中、無潤滑で摺
動試験を行い、比摩耗量、摩擦係数を測定し表1に示し
た。
Further, based on the pin-on-disk method, aluminum metal was used as a mating material for the hard carbon film coated member produced under the same conditions, with a load of 19.6 N, a sliding distance of 100 km, and a sliding speed of 2 m. A sliding test was conducted in the air without lubrication, and the specific wear amount and the friction coefficient were measured and shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】図2によれば、密度と硬質炭素膜の粉砕処
理物へのラマン分光分析におけるピーク強度比I1 /I
2 との間にリニアな相関があることがわかる。このこと
は、粉砕処理物へのラマン分光分析が硬質炭素膜の特性
を正確に評価していることを証明するものである。
According to FIG. 2, the density and the peak intensity ratio I 1 / I in the Raman spectroscopic analysis of the crushed material of the hard carbon film are shown.
It can be seen that there is a linear correlation with 2 . This proves that Raman spectroscopic analysis on the ground product accurately evaluates the properties of the hard carbon film.

【0024】また、表1の結果によれば、I1 /I2
5.0を越える場合、ダイヤモンドの結晶性の高いもの
であったが、摩擦係数が大きく相手材の摩耗が大きくな
ることがわかった。また、I1 /I2 が0.6より低い
場合には、ダイヤモンド以外の成分が多くなり、比摩耗
量が大きくなるために被覆部材としては使用できないの
に対して、I1 /I2 が0.6〜5.0の範囲ではいず
れも摩耗量が小さく、摩擦係数も小さく、摺動部材に適
していることがわかる。
Further, according to the results of Table 1, when I 1 / I 2 exceeds 5.0, the crystallinity of diamond was high, but the friction coefficient was large and the wear of the mating material was large. I understood. Further, when I 1 / I 2 is lower than 0.6, components other than diamond increase and the specific wear amount increases, so that it cannot be used as a covering member, whereas I 1 / I 2 It can be seen that in the range of 0.6 to 5.0, the wear amount is small and the friction coefficient is small, which is suitable for the sliding member.

【0025】[0025]

【発明の効果】以上詳述したように、本発明の硬質炭素
膜被覆部材によれば、優れた耐摩耗性および低摩擦係数
を実現でき、摺動部材として適した硬質炭素膜被覆部材
を提供することができる。
As described above in detail, according to the hard carbon film coated member of the present invention, excellent wear resistance and low friction coefficient can be realized, and a hard carbon film coated member suitable as a sliding member is provided. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の測定方法と本発明に基づき粉砕物に対す
るラマン分光分析によるチャートである。
FIG. 1 is a chart by Raman spectroscopic analysis of a ground product based on a conventional measurement method and the present invention.

【図2】本発明に基づくラマン分光分析のピーク強度比
1 /I2 の算出方法を説明するための図である。
FIG. 2 is a diagram for explaining a method of calculating a peak intensity ratio I 1 / I 2 of Raman spectroscopic analysis according to the present invention.

【図3】本発明に基づくラマン分光分析のピーク強度比
1 /I2 と密度との関係を示す図である。
FIG. 3 is a graph showing the relationship between the peak intensity ratio I 1 / I 2 and the density of Raman spectroscopic analysis according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F16C 33/24 A 6814−3J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F16C 33/24 A 6814-3J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定の基板表面に硬質炭素膜を被覆してな
る硬質炭素膜被覆部材において、前記硬質炭素膜を前記
基体より剥離し、粉砕処理した粉砕物をラマン分光分析
した時、1332±5cm-1に存在するダイヤモンドの
ピーク強度をI1 、1500±50cm-1に存在するピ
ークの最大ピーク強度をI2 とした場合のI1 /I2
表されるピーク強度比が0.6〜5.0であることを特
徴とする硬質炭素膜被覆部材。
1. A hard carbon film-coated member having a predetermined substrate surface coated with a hard carbon film, wherein the hard carbon film is peeled from the substrate, and the crushed product is subjected to Raman spectroscopic analysis to obtain 1332 ± The peak intensity ratio represented by I 1 / I 2 is 0.6, where I 1 is the peak intensity of the diamond present at 5 cm −1 and I 2 is the maximum peak intensity of the peak present at 1500 ± 50 cm −1. The hard carbon film-coated member is characterized in that it is ˜5.0.
JP29936793A 1993-11-30 1993-11-30 Hard carbon film-coated member Pending JPH07149583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29936793A JPH07149583A (en) 1993-11-30 1993-11-30 Hard carbon film-coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29936793A JPH07149583A (en) 1993-11-30 1993-11-30 Hard carbon film-coated member

Publications (1)

Publication Number Publication Date
JPH07149583A true JPH07149583A (en) 1995-06-13

Family

ID=17871648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29936793A Pending JPH07149583A (en) 1993-11-30 1993-11-30 Hard carbon film-coated member

Country Status (1)

Country Link
JP (1) JPH07149583A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660093B2 (en) * 2000-05-25 2003-12-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Inner tube for CVD apparatus
US7537835B2 (en) 2001-09-27 2009-05-26 Kabushiki Kaisha Toyota Chuo Kenkyusho High friction sliding member
WO2017033791A1 (en) * 2015-08-26 2017-03-02 東洋製罐グループホールディングス株式会社 Ironing die and die module
CN113039025A (en) * 2018-10-31 2021-06-25 东洋制罐集团控股株式会社 Jig for machining, machining method, and method for manufacturing seamless can body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660093B2 (en) * 2000-05-25 2003-12-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Inner tube for CVD apparatus
US7537835B2 (en) 2001-09-27 2009-05-26 Kabushiki Kaisha Toyota Chuo Kenkyusho High friction sliding member
WO2017033791A1 (en) * 2015-08-26 2017-03-02 東洋製罐グループホールディングス株式会社 Ironing die and die module
CN107921518A (en) * 2015-08-26 2018-04-17 东洋制罐集团控股株式会社 Processing punch die and punch die module is thinned
JPWO2017033791A1 (en) * 2015-08-26 2018-06-28 東洋製罐グループホールディングス株式会社 Die and die module for ironing
US20180229287A1 (en) * 2015-08-26 2018-08-16 Toyo Seikan Group Holdings, Ltd. Die for ironing working and die module
CN107921518B (en) * 2015-08-26 2020-05-08 东洋制罐集团控股株式会社 Die for ironing and die block
CN113039025A (en) * 2018-10-31 2021-06-25 东洋制罐集团控股株式会社 Jig for machining, machining method, and method for manufacturing seamless can body
US20210354191A1 (en) * 2018-10-31 2021-11-18 Toyo Seikan Group Holdongs, Ltd. Machining jig, machining method, and method of manufacturing seamless can bodies
CN113039025B (en) * 2018-10-31 2024-01-12 东洋制罐集团控股株式会社 Machining jig, machining method, and method for manufacturing seamless can body

Similar Documents

Publication Publication Date Title
Abyzov et al. Diamond–tungsten based coating–copper composites with high thermal conductivity produced by Pulse Plasma Sintering
US5989511A (en) Smooth diamond films as low friction, long wear surfaces
US5772760A (en) Method for the preparation of nanocrystalline diamond thin films
Zhang et al. A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered aC films
Lifshitz Hydrogen-free amorphous carbon films: correlation between growth conditions and properties
Yamamoto et al. Relationship between tribological properties and sp3/sp2 structure of nitrogenated diamond-like carbon deposited by plasma CVD
WO1997013892A9 (en) Improved method for the preparation of nanocrystalline diamond thin films
US5849079A (en) Diamond film growth argon-carbon plasmas
Polychronopoulou et al. Nanostructure, mechanical and tribological properties of reactive magnetron sputtered TiCx coatings
De Bonis et al. Diamond-like carbon thin films produced by femtosecond pulsed laser deposition of fullerite
Baba et al. Formation of amorphous carbon thin films by plasma source ion implantation
Ullmann et al. Effects of MeV ion irradiation of thin cubic boron nitride films
Meletis et al. The use of intensified plasma-assisted processing to enhance the surface properties of titanium
Manova et al. In situ XRD measurements to explore phase formation in the near surface region
Onate et al. Deposition of hydrogenated BC thin films and their mechanical and chemical characterization
Shah et al. Langmuir probe characterization of nitrogen plasma for surface nitriding of AISI-4140 steel
JPH07149583A (en) Hard carbon film-coated member
Arezzo et al. An XPS study of diamond films grown on differently pretreated silicon substrates
Jacobsohn et al. Plasma deposition of amorphous carbon films from CH4 atmospheres highly diluted in Ar
Thamm et al. Investigations on PECVD boron carbonitride layers by means of ERDA, XPS and nano-indentation measurements
Sharda et al. Highly stressed carbon film coatings on silicon: Potential applications
Omarov et al. The influence of different ratio of Ar and CH66 gases and ion bombardment on the growth rate and sp3 bonds content in DLC-coatings synthesized in RF discharge
Delhez et al. Structure and properties of surface layers: X-ray diffraction studies
Hoffman et al. Formation mechanism of nano-diamond films from energetic species: From experiment to theory
Baba et al. Preparation of amorphous carbon thin films by ion beam assisted ECR-plasma CVD