JPH07148419A - Method for concentrating oxygen isotope - Google Patents

Method for concentrating oxygen isotope

Info

Publication number
JPH07148419A
JPH07148419A JP29816193A JP29816193A JPH07148419A JP H07148419 A JPH07148419 A JP H07148419A JP 29816193 A JP29816193 A JP 29816193A JP 29816193 A JP29816193 A JP 29816193A JP H07148419 A JPH07148419 A JP H07148419A
Authority
JP
Japan
Prior art keywords
component
raw material
distillation
fraction
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29816193A
Other languages
Japanese (ja)
Inventor
Tomoshi Kitamoto
本 朝 史 北
Masami Shimizu
水 正 己 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Century Medical Inc
Original Assignee
Century Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Century Medical Inc filed Critical Century Medical Inc
Priority to JP29816193A priority Critical patent/JPH07148419A/en
Publication of JPH07148419A publication Critical patent/JPH07148419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To concentrate simply and stably <17>O existing in an extremely poor ratio in nature to a high concentration keeping equilibrium in a distillation column. CONSTITUTION:The distillation operation to distill an oxygen compound containing <16>O, <17>O, and <18>O components which is loaded in a distillation column and the extraction operation to extract the top fraction and the bottom fraction in the column in a specified ratio while a raw material being supplied so that the total amount of the extract becomes equal to that of the raw material supplied are carried out alternately to concentrate the <17>O component at the bottom. After the concentration ratio between the <17>O component and the <18>O component at the bottom becomes equal to the concentration ratio between them in the raw material, the bottom fraction recovery operation in which the bottom fraction of an amount equal to that of the raw material supplied is recovered while the raw material being supplied and the top fraction extraction operation in which the top fraction of an amount equal to that of the raw material to be extracted is extracted while the raw material being supplied are repeated alternately, and the distillation operation for the total reflux distillation of the raw material in the column is conducted between the recovery operation and the extraction operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素又は酸素化合物を
分留することによって酸素同位体16O,17O及び18Oを
濃縮する酸素同位体の濃縮方法であって、特に自然存在
比の極めて少ない17O及び18Oを濃縮するのに好適な濃
縮装置及び濃縮方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for enriching oxygen isotopes, in which oxygen isotopes 16 O, 17 O and 18 O are enriched by fractionating oxygen or oxygen compounds. The present invention relates to a concentration device and a concentration method suitable for concentrating extremely small amounts of 17 O and 18 O.

【0002】[0002]

【従来の技術】近年、成人病の診断に使われ始めた酸素
同位体17Oや18Oは、その自然存在比が非常に少なく、
例えば水H2 Oや一酸化窒素NO等のような酸素化合物
を蒸留することによって濃縮して生産している。
2. Description of the Related Art In recent years, oxygen isotopes 17 O and 18 O, which have begun to be used for diagnosis of adult diseases, have a very low natural abundance ratio,
For example, oxygen compounds such as water H 2 O and nitric oxide NO are condensed and produced by distillation.

【0003】例えば水H2 Oについては、その同位体と
してH2 16O,H2 17O,H2 18Oが存在するが、それ
ぞれの自然存在比は、16O,17O,18Oの自然存在比と
等しく、H2 16Oが 99.76%であるのに対し、H2 17
が0.0374%,H2 18Oが0.203 %である。
For example, with respect to water H 2 O, H 2 16 O, H 2 17 O and H 2 18 O exist as its isotopes, and the natural abundance ratios of each are 16 O, 17 O and 18 O. Equal to the natural abundance, H 2 16 O is 99.76%, while H 2 17 O
Is 0.0374% and H 2 18 O is 0.203%.

【0004】ところで、現在、商業的に行われている水
蒸留法では、9ステージからなる水蒸留塔のカスケード
を用いて生産しており、その構造及び制御システムが非
常に複雑で、しかも、1日あたり98.4%のH2 18Oを1
5ccと、20%のH2 17Oを5cc生産することがで
きるに過ぎず、濃縮効率が極めて低く、生産されたH 2
17OやH2 18Oのコストが非常に高いものとなる。
By the way, water currently used commercially
In the distillation method, a water distillation column cascade consisting of 9 stages
Are manufactured by using the
Always complex, and 98.4% H per day2 181 for O
5cc and 20% H2 17It is possible to produce 5cc of O
The produced H is very low in concentration efficiency. 2
17O or H2 18The cost of O becomes very high.

【0005】このため、本出願人は、極めて簡単に17
を濃縮することのできるセミバッチ/セミコンティニュ
アス方式による濃縮方法を提案した(特願平3−227
072号)。これは、16O成分,17O成分,18O成分の
三種類が含まれた原料を蒸留した場合に、沸点の温度が
16O成分より低く、18O成分より高い17O成分が蒸留塔
の中間位置で濃縮されることを利用したもので、塔頂留
分と塔底留分を所定の割合で抜き取りながら中間位置で
17O成分を濃縮していき、その中間位置における17O成
分と18O成分の含有率を原料の組成比と略等しい状態に
維持して当該中間位置から17O成分が濃縮された側流留
分を製品として抜き取るようにしている。
For this reason, the present applicant has a very simple method of using 17 O
We have proposed a semi-batch / semi-continuous method for concentrating water (Japanese Patent Application No. 3-227).
072). This is because when the raw material containing three kinds of 16 O component, 17 O component and 18 O component was distilled, the boiling point temperature was
Utilizing the fact that 17 O component lower than 16 O component and higher than 18 O component is concentrated in the middle position of the distillation column, and the top fraction and the bottom fraction are withdrawn at a predetermined ratio while the top fraction and the bottom fraction are withdrawn.
The 17 O component is concentrated, and the content ratio of the 17 O component and the 18 O component in the intermediate position is maintained substantially equal to the composition ratio of the raw material, and the side stream distillation in which the 17 O component is concentrated is obtained from the intermediate position. I try to extract the minutes as a product.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、17O成
分が濃縮される中間位置は理論的には決定できるもの
の、現実の生産工程においては種々の外的要因や条件変
化によって、理論値とは異なる位置で濃縮されたり、処
理操作中に17O成分が濃縮される位置が上下したりする
ので、その位置を理論的な位置と一致させるために塔頂
留分と塔底留分の抜取割合を微妙に調節する複雑な制御
を行なわなければならず、平衡状態を維持することが困
難で、17O成分が濃縮された側流留分を安定的に回収す
ることができないという新たな問題が生じた。そこで、
本発明は、自然存在比の極めて少ない17Oを高い濃度ま
で簡単に濃縮することができ、しかも蒸留塔内の平衡状
態を維持し17O成分を安定的に濃縮することができるよ
うにすることを課題としている。
However, although the intermediate position where the 17 O component is concentrated can be determined theoretically, it differs from the theoretical value in the actual production process due to various external factors and changes in conditions. Since the concentration of 17 O component at the position and the position where the 17 O component is concentrated move up and down during the processing operation, in order to match the position with the theoretical position, the extraction ratio of the top fraction and the bottom fraction should be adjusted. There is a new problem that it is difficult to maintain the equilibrium state due to complicated control that is finely adjusted, and the side stream fraction enriched with 17 O component cannot be stably recovered. It was Therefore,
INDUSTRIAL APPLICABILITY The present invention makes it possible to easily concentrate 17 O having a very small natural abundance to a high concentration, and further to maintain the equilibrium state in the distillation column and stably concentrate the 17 O component. Is an issue.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に、本発明は、酸素同位体16O,17O及び18Oを含む酸
素又は酸素化合物を原料として蒸留塔に供給し、各同位
体を濃縮する酸素同位体の濃縮方法において、 a)蒸留塔に充填された原料を蒸留する蒸留操作と、原
料を供給しながら塔頂留分及び塔底留分を所定の抜取割
合で総抜取量が原料供給量と等くなるように抜き取る抜
取操作とを交互に行い、 b)前記抜取操作の一回の総抜取量に対する塔頂留分抜
取量の割合を原料に含まれる16O成分の組成比より小さ
く設定すると共に、塔底留分抜取量の割合を原料に含ま
れる18O成分の組成比より大きく設定して、塔底におけ
17O成分と 18O成分の濃度比が原料に含まれるこれら
の濃度比と略等しくなるまで前記各操作を繰り返し、 c)17O成分及び18O成分の塔底の濃度比が原料の濃度
比と略等しくなった後は、原料を供給しながら17O成分
及び18O成分が濃縮された塔底留分を原料供給量と等し
い量だけ回収する塔底留分回収操作と、原料を供給しな
がら16O成分が濃縮された塔頂留分を原料供給量と等し
い量だけ抜き取る塔頂留分抜取操作とを交互に繰り返す
と共に、前記回収操作と前記抜取操作を行う間に、蒸留
塔に充填されている原料を蒸留する蒸留操作を行い、 d)17O成分及び18O成分の塔底の濃度比を原料の濃度
比と等しい状態に維持するために、前記回収操作時に供
給される原料中に含まれる16O成分の量が、抜取操作時
に供給される原料中に含まれる17O成分と18O成分の総
量よりやや多くなるように原料供給量を設定したことを
特徴とする。
[Means for Solving the Problem] To solve this problem
In the present invention, the oxygen isotope16O,17O and18Acid containing O
The raw materials are oxygen or oxygen compounds, and each isotope is supplied to the distillation column.
A method for concentrating oxygen isotopes for concentrating a body, comprising: a) a distillation operation for distilling a raw material packed in a distillation column;
The top fraction and bottom fraction are withdrawn while feeding
When the total amount of extraction is equal to the amount of raw material supplied
Alternately with the taking-out operation, b) Withdrawing the overhead fraction with respect to one total withdrawal amount of the above-mentioned taking-out
Intake ratio is included in raw materials16Less than composition ratio of O component
And the ratio of the amount of the bottom fraction extracted is included in the raw material.
Be18Set it higher than the composition ratio of the O component and keep it at the bottom of the tower.
Ru17With O component 18Those in which the concentration ratio of O component is included in the raw materials
Repeat each of the above operations until the concentration ratio of17O component and18The concentration ratio of the O component at the bottom is the concentration of the raw material
After the ratio becomes almost equal, while supplying the raw materials17O component
as well as18The bottom fraction in which the O component is concentrated is used as the raw material supply amount.
Column bottoms collection operation to collect only a large amount and do not supply raw materials.
Rattle16The overhead fraction enriched with O component is equal to the raw material supply amount.
Alternately repeat withdrawal operation of top fraction
Along with performing the recovery operation and the extraction operation, distillation
A distillation operation for distilling the raw material packed in the column is performed, and d)17O component and18Concentration ratio of the bottom of O component
In order to maintain the ratio equal to
Included in the raw materials supplied16The amount of O component during the sampling operation
Contained in the raw materials supplied to17With O component18Total of O component
That the raw material supply amount is set to be slightly higher than the amount
Characterize.

【0008】[0008]

【作用】本発明によれば、原料として、例えば酸素同位
16O,17O及び18Oが天然同位体組成で含有まれる一
酸化窒素NOを蒸留塔に供給して蒸留操作を行うと、塔
頂側に沸点の低い16O成分が濃縮され、塔底側に沸点の
高い18O成分が濃縮され、中間位置に17O成分が濃縮さ
れる。
According to the present invention, as a raw material, for example, when nitric oxide NO containing oxygen isotopes 16 O, 17 O and 18 O in a natural isotope composition is supplied to a distillation column to perform a distillation operation, The 16 O component having a low boiling point is concentrated on the top side of the column, the 18 O component having a high boiling point is concentrated on the bottom side of the column, and the 17 O component is concentrated at an intermediate position.

【0009】次いで、塔頂留分及び塔底留分を所定量ず
つ抜き取る抜取操作と、前記蒸留操作を交互に行なう。
このとき、全体の抜取量に対する塔頂留分抜取量の抜取
割合は原料に含まれる 16O成分の組成比より小さく設定
されており、塔底留分抜取量の抜取割合は原料に含まれ
18O成分の組成比より大きく設定されているので、17
O成分の濃度のピーク位置が蒸留塔の下方に移動し塔底
17O成分濃度が高くなっていく。
Next, the top fraction and the bottom fraction are not
The withdrawing operation of removing one and the distillation operation are alternately performed.
At this time, remove the overhead fraction withdrawal amount from the total withdrawal amount.
The ratio is included in the raw material 16Set smaller than the composition ratio of O component
The rate of withdrawal of bottoms is not included in the raw materials.
Ru18Since it is set larger than the composition ratio of O component,17
The peak position of the O component concentration moves to the bottom of the distillation column
of17The O component concentration increases.

【0010】この操作を繰り返して、塔底において17
成分が14.4%,18O成分が 78.48%に濃縮され、その濃
度比(1:5.45) が原料に含まれるこれらの組成比(0.
0374:0.2039=1:5.45) と等しくなったら、原料を供
給しながら塔底留分を原料供給量と等しい量だけ回収す
る塔底留分回収操作と、原料を供給しながら塔頂留分を
原料供給量と等しい量だけ抜き取る塔頂留分抜取操作と
を交互に繰り返すと共に、前記回収操作と前記抜取操作
の各バッチ処理を行う間に、蒸留塔に充填されている原
料を全還流蒸留する蒸留操作を行う。
By repeating this operation, 17 O
Ingredients are concentrated to 14.4% and 18 O to 78.48%, and the concentration ratio (1: 5.45) is contained in the raw materials.
0374: 0.2039 = 1: 5.45), the bottom fraction recovery operation of collecting the bottom fraction while supplying the raw material in an amount equal to the raw material supply amount and the top fraction while supplying the raw material While repeating the overhead fraction withdrawing operation of withdrawing only the amount equal to the raw material supply amount, while performing each batch processing of the recovering operation and the withdrawing operation, the raw material charged in the distillation column is subjected to total reflux distillation. Perform a distillation operation.

【0011】このとき、回収操作時に供給される原料中
に含まれる16O成分の量が、抜取操作時に供給される原
料中に含まれる17O成分と18O成分の総量よりやや多く
なるように各原料供給量が設定されている。
At this time, the amount of 16 O component contained in the raw material supplied during the recovery operation is set to be slightly larger than the total amount of 17 O component and 18 O component contained in the raw material supplied during the extraction operation. Each raw material supply amount is set.

【0012】したがって、塔底からは、原料に含まれる
17O成分と18O成分がその組成比で回収されると共に、
塔頂からは原料に含まれる16O成分が 限りなく100%近
くまで濃縮された状態で得られ、塔底における17O成分
18O成分の濃度比は常に原料に含まれる各成分の濃度
比に等しく維持されるので、17O成分が濃縮された塔底
留分を安定的に回収することができる。
Therefore, from the bottom of the tower, it is contained in the raw material.
17 O component and 18 O component are recovered in the composition ratio,
From the top of the tower, the 16 O component contained in the raw material is obtained in a state of being concentrated to almost 100%, and the concentration ratio of the 17 O component and the 18 O component at the bottom of the tower is always the concentration ratio of each component contained in the raw material. Therefore, the bottom fraction enriched with the 17 O component can be stably recovered.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。図1は本発明方法を実施する酸素同位体
濃縮装置の一例を示すフローシートであって、本装置
は、第一蒸留塔1及び第二蒸留塔2を直列に接続してな
る直列型二段蒸留方式を採用している。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a flow sheet showing an example of an oxygen isotope enrichment apparatus for carrying out the method of the present invention. The present apparatus is a series type two-stage apparatus in which a first distillation column 1 and a second distillation column 2 are connected in series. It uses a distillation method.

【0014】第一蒸留塔1には、16O,17O及び18Oを
含有する酸素又は酸素化合物として例えば一酸化窒素N
Oを供給する原料供給管3と、N16O(16O成分)が濃
縮された塔頂留分を抜き取る塔頂留分排出管4と、N17
O(17O成分)及びN18O( 18O成分)が濃縮された塔
底留分を抜き取る塔底留分排出管5が取り付けられてい
る。
In the first distillation column 1,16O,17O and18O
As the oxygen or oxygen compound to be contained, for example, nitric oxide N
Raw material supply pipe 3 for supplying O, N16O (16O component) is rich
An overhead fraction discharge pipe 4 for extracting the condensed overhead fraction;17
O (17O component) and N18O ( 18Tower with concentrated O component)
A column bottoms discharge pipe 5 for withdrawing bottoms is attached.
It

【0015】この第一蒸留塔1は、大径塔1aと小径塔
1bを配管(図示せず)を介して連結されて成り、大径
塔1aと小径塔1bは、その断面積比が例えば 100:1
に選定され、例えば大径塔1aの直径が1mである場
合、小径塔1bの直径が10cmに設定され、その理論段数
は、例えば大径塔1aが560理論段, 小径塔1bが5
40理論段に設定されている。そして、前記原料供給管
3は、大径塔1aの塔底から第10理論段の位置に接続
され、大径塔1aの塔頂留分を排出する塔頂留分排出管
4はN16O貯留タンク7に接続され、小径塔1bの塔底
留分を排出する塔底留分排出管5はバルブV5を介して
ドレイン8と中間製品貯留タンク9に接続されている。
The first distillation column 1 is composed of a large diameter column 1a and a small diameter column 1b which are connected via a pipe (not shown). The large diameter column 1a and the small diameter column 1b have a cross-sectional area ratio of, for example, 100: 1
When the diameter of the large diameter tower 1a is 1 m, the diameter of the small diameter tower 1b is set to 10 cm, and the theoretical plate number is, for example, 560 theoretical plates for the large diameter tower 1a and 5 for the small diameter tower 1b.
It is set at 40 theoretical stages. The raw material supply pipe 3 is connected to the position of the 10th theoretical plate from the bottom of the large diameter column 1a, and the overhead fraction discharge pipe 4 for discharging the overhead fraction of the large diameter column 1a is N 16 O. The bottom fraction discharge pipe 5 that is connected to the storage tank 7 and discharges the bottom fraction of the small diameter column 1b is connected to the drain 8 and the intermediate product storage tank 9 via the valve V 5 .

【0016】なお、蒸留塔1は、大径塔1aの塔頂部及
び塔底部と、小径塔1bの塔頂部及び塔底部に、夫々凝
縮器及び再沸器(いずれも図示せず)が設けられてい
る。そして、蒸留塔1内は、例えばディクソン,マクマ
ホン,ヘリパック等のパッキングが充填されると共に、
蒸留塔1の外側と熱絶縁されて一酸化窒素NOの沸点近
傍の温度(例えば−153℃)に維持されている。
The distillation column 1 is provided with a condenser and a reboiler (both not shown) at the top and bottom of the large diameter column 1a and at the top and bottom of the small diameter column 1b, respectively. ing. The distillation column 1 is filled with packing such as Dickson, McMahon, and Helipack, and
It is thermally insulated from the outside of the distillation column 1 and maintained at a temperature near the boiling point of nitric oxide NO (for example, −153 ° C.).

【0017】また、第一蒸留塔1内には、N16O,N17
O及びN18Oの濃度分布を検出するガス検出器10が上
下方向に所定間隔で複数設けられおり、各ガス検出器1
0の検出結果が、各配管3,4及び5に介装されたバル
ブV3 ,V4 及びV5 を開閉制御する制御装置11に入
力される。
In the first distillation column 1, N 16 O, N 17
A plurality of gas detectors 10 for detecting the concentration distribution of O and N 18 O are provided at predetermined intervals in the vertical direction.
The detection result of 0 is input to the control device 11 that controls the opening and closing of the valves V 3 , V 4 and V 5 provided in the pipes 3, 4 and 5.

【0018】制御装置11は、前記ガス検出器10の検
出結果に基づいて、各バルブV3 ,V4 及びV5 の開閉
タイミング及び流量を設定する設定器11aと、当該設
定器11aの出力信号及び各配管に介装された流量検出
器Q3 ,Q4 及びQ5 の検出信号に基づいてバルブ
3 ,V4 及びV5 を開閉する開閉器11bとからな
り、当該制御装置11には、バルブV3 ,V4 及びV5
を所定のタイミングで開閉制御する所定のプログラムが
記憶されると共に、原料供給量,塔頂留分抜取量,塔底
留分抜取量等が設定されている。
The control device 11 sets the opening and closing timings and flow rates of the valves V 3 , V 4 and V 5 based on the detection result of the gas detector 10 and the output signal of the setting device 11a. and consists of a switch 11b for opening and closing the valves V 3, V 4 and V 5 based on the detection signal of the flow rate detector Q 3, Q 4 and Q 5 interposed to each pipe, to the control unit 11 , Valves V 3 , V 4 and V 5
A predetermined program for controlling the opening and closing of at a predetermined timing is stored, and a raw material supply amount, a top fraction withdrawal amount, a bottom fraction withdrawal amount, etc. are set.

【0019】第二蒸留塔2には、前記中間成品貯留タン
ク9に蓄えられたNOを原料として供給する原料供給管
12と、濃縮されたN16Oを抜き取る塔頂留分排出管1
3と、濃縮されたN18Oを抜き取る塔底留分排出管14
と、濃縮されたN17Oを抜き取る側流留分排出管15が
取り付けられている。
In the second distillation column 2, a raw material supply pipe 12 for supplying the NO stored in the intermediate product storage tank 9 as a raw material and a top distillate discharge pipe 1 for extracting concentrated N 16 O.
3 and a column bottoms discharge pipe 14 for extracting concentrated N 18 O
And a sidestream distillate discharge pipe 15 for extracting concentrated N 17 O is attached.

【0020】第二蒸留塔2は、その内径が第一蒸留塔の
小径塔1bと等しく選定され、理論段数は1100理論段に
設定されている。そして、前記供給管12及び側流留分
排出管15は、蒸留塔2の1/2の高さの位置、即ち下
端から550理論段の位置に接続されている。また、塔
頂留分排出管13はN16O貯留タンク7に接続され、塔
底留分排出管14はN18O貯留タンク16に接続され、
側流留分排出管15はN17O貯留タンク17に接続され
ている。
The inner diameter of the second distillation column 2 is selected to be equal to that of the small diameter column 1b of the first distillation column, and the theoretical plate number is set to 1100 theoretical plates. The supply pipe 12 and the sidestream distillate discharge pipe 15 are connected to a position half the height of the distillation column 2, that is, a position 550 theoretical plates from the lower end. Further, the column top fraction discharge pipe 13 is connected to the N 16 O storage tank 7, and the column bottom fraction discharge pipe 14 is connected to the N 18 O storage tank 16.
The sidestream distillate discharge pipe 15 is connected to the N 17 O storage tank 17.

【0021】なお、第二蒸留塔2の塔頂部及び塔底部に
は、夫々凝縮器及び再沸器(いずれも図示せず)が設け
られている。そして、第二蒸留塔2内には、例えばディ
クソン,マクマホン,ヘリパック等のパッキングが充填
されると共に、蒸留塔2の外側と熱絶縁されて一酸化窒
素NOの沸点近傍の温度(例えば−153℃)に維持さ
れている。
A condenser and a reboiler (both not shown) are provided at the top and bottom of the second distillation column 2, respectively. The second distillation column 2 is filled with packing such as Dixon, McMahon, and Helipack, and is thermally insulated from the outside of the distillation column 2 to a temperature near the boiling point of nitric oxide NO (for example, -153 ° C.). ) Is maintained.

【0022】また、第二蒸留塔2には、側流留分排出管
15の取付位置におけるN17Oの濃度を検出するガス検
出器18aが設けられると共に、N17Oの最高分率点を
検出するために蒸留塔2内のN17Oの濃度分布を検出す
るガス検出器18b,18bが上下方向に所定間隔で複
数設けられおり、これらの検出結果が、各配管12,1
3,14及び15に介装されたバルブV12,V13,V14
及びV15を開閉制御する制御装置19に入力される。
Further, the second distillation column 2 is provided with a gas detector 18a for detecting the concentration of N 17 O at the position where the sidestream distillate discharge pipe 15 is attached, and the maximum fraction point of N 17 O is determined. For detection, a plurality of gas detectors 18b, 18b for detecting the concentration distribution of N 17 O in the distillation column 2 are provided at predetermined intervals in the vertical direction.
Valve V 12 interposed in 3,14 and 15, V 13, V 14
And V 15 are input to the control device 19 which controls opening and closing.

【0023】制御装置19は、前記ガス検出器18a及
び18bの検出結果に基づいて、各バルブV12〜V15
開閉タイミング及び流量を設定する設定器19aと、当
該設定器19aの出力信号と、各配管12〜15に介装
された流量検出器Q12〜Q15の検出信号に基づいてバル
ブV12〜V15を開閉する開閉器19bとからなり、当該
制御装置11には、バルブV12〜V15を開閉制御する所
定のプログラムが記憶されると共に、原料供給量,塔頂
留分抜取量,塔底留分抜取量等が設定されている。
The control unit 19 based on the detection result of the gas detector 18a and 18b, and the setter 19a for setting the opening and closing timing and the flow rate of each valve V 12 ~V 15, the output signal of the setting device 19a and consists of a switch 19b based on the detection signal of the flow rate detector Q 12 to Q 15 interposed in the pipes 12 to 15 for opening and closing the valve V 12 ~V 15, to the control device 11, the valve V with a predetermined program is stored which controls the opening and closing of the 12 ~V 15, the raw material supply amount, the amount sampling overhead fraction, amount, etc. sampling TosokoTome content is set.

【0024】次に、前述した濃縮装置を用いた酸素同位
体の濃縮方法の一例を表1及び表2を伴って説明する。
表1及び表2は夫々第一蒸留塔及び第二蒸留塔の運転経
過をシミュレーションした結果を示すものである。本例
では、自然同位体組成のNOを原料として第一蒸留塔1
で第一次蒸留を行った後、当該第一次蒸留により得られ
た塔底留分を第二蒸留塔2でさらに蒸留する第二次蒸留
を行った。
Next, an example of a method for enriching an oxygen isotope using the above-described enrichment device will be described with reference to Tables 1 and 2.
Tables 1 and 2 show the results of simulating the operating processes of the first distillation column and the second distillation column, respectively. In this example, NO of the natural isotope composition is used as a raw material for the first distillation column 1
After performing the first distillation in step 1, the bottom fraction obtained by the first distillation was further distilled in the second distillation column 2 to perform the second distillation.

【0025】第一次蒸留を行なう場合、第一蒸留塔1に
充填された原料を蒸留する蒸留操作と、原料を供給しな
がら塔頂留分及び塔底留分を所定の抜取割合で且つ総抜
取量が原料供給量と等くなるように抜き取る抜取操作と
を交互に行う。このとき、抜取操作の一回の総抜取量に
対する塔頂留分抜取量の割合を原料に含まれる16O成分
の組成比より小さく設定すると共に、塔底留分抜取量の
割合を原料に含まれる18O成分の組成比より大きく設定
して、塔底における17O成分と 18O成分の含有量の比が
原料組成比と略等しくなるまで前記各操作を繰り返す。
When performing the primary distillation, the first distillation column 1
Distill operation to distill the filled raw material and do not supply the raw material.
The top fraction and bottom fraction of the waste glass are totally removed at the specified extraction ratio.
Withdrawal operation to take out so that the taken amount becomes equal to the raw material supply amount
Alternately. At this time, the total amount of one sampling operation
Included in the raw material is the ratio of the overhead distillate withdrawn16O component
Of the bottom fraction of the bottom fraction.
Included in raw materials18Set larger than the composition ratio of O component
And at the bottom of the tower17With O component 18The ratio of the content of O component is
The above operations are repeated until the composition ratio of the raw materials becomes approximately equal.

【0026】具体的には、まず、原料供給管3から第一
蒸留塔1に一酸化窒素NOを 56540モル仕込み、− 153
℃前後で全還流蒸留運転を行い同位体の濃度分布を略定
常化させる。次いで、さらにNOを3000モル供給しなが
ら、塔頂留分及び塔底留分を所定の抜取割合で且つ総抜
取量が原料供給量と等くなるように抜き取る抜取操作を
行い(表1:バッチ処理番号1〜12)、抜取操作終了
後、次処理の抜取操作を行う間に全還流蒸留運転を行
う。なお、この塔底留分の17O成分濃度は約3〜14%に
達し、自然存在比に比して十分に濃度が高く利用価値を
有するので、ドレイン8を介して製品タンク20に回収
される。
Specifically, first, 56540 mol of nitric oxide NO was charged into the first distillation column 1 from the raw material supply pipe 3, and -153
A total reflux distillation operation is performed at around ℃ to make the isotope concentration distribution approximately steady. Next, while further supplying 3000 mol of NO, a withdrawal operation was performed in which the top fraction and the bottom fraction were withdrawn at a predetermined withdrawal ratio and the total withdrawal amount became equal to the raw material supply amount (Table 1: Batch After the process numbers 1 to 12) and the withdrawal operation are completed, the total reflux distillation operation is performed while the withdrawal operation of the next process is performed. The 17 O component concentration of this bottom fraction reaches about 3 to 14%, which is sufficiently higher than the natural abundance ratio and has utility value, so that it is recovered in the product tank 20 via the drain 8. It

【0027】[0027]

【表1】 [Table 1]

【0028】なお、一回の抜取操作による総抜取量に対
する塔頂留分抜取量の割合は原料に含まれるN16Oの組
成比(自然存在比: 99.76%)より小さく設定され(例
えば99.30〜99.63 %)ると共に、塔底留分抜取量の割
合は原料に含まれるN18Oの組成比(自然存在比: 0.2
04%)より大きく設定され(例えば 0.3〜 0.7%)てい
るので、N17Oの濃度のピーク位置が蒸留塔の下方に移
動し塔底におけるN17Oの濃度が高くなっていく。
The ratio of the withdrawal amount of the overhead fraction to the total withdrawal amount in one withdrawal operation is set smaller than the composition ratio of N 16 O contained in the raw material (natural abundance ratio: 99.76%) (for example, from 99.30 to 99.63%) and the ratio of the amount of the bottom fraction withdrawn is the composition ratio of N 18 O contained in the raw material (natural abundance ratio: 0.2
Since 04%) greater than the set has (e.g. from 0.3 to 0.7 percent), the peak position of the concentration of N 17 O is the concentration of N 17 O in the mobile and the column bottom under the distillation column becomes higher.

【0029】そして、第一蒸留塔1の塔底におけるN17
Oが例えばモル分率で約14.4%に達し、且つ、N18Oが
例えばモル分率で 78.48%に達して、N17OとN18Oの
濃度比が原料のNOに含まれるこれらの濃度比(モル分
率比で約1:5.45)に略一致した後は、N17O及びN18
Oが濃縮された塔底留分を中間製品として中間製品回収
タンク9に回収する塔底留分回収操作と、N16Oが濃縮
された塔頂留分を貯留タンク7に抜き取る塔頂留分抜取
操作とを交互に繰り返すと共に、前記回収操作と抜取操
作の各バッチ処理の間に、第一蒸留塔1に充填されてい
る原料を全還流蒸留する蒸留操作を行う(表1:バッチ
処理番号13〜)。
N 17 at the bottom of the first distillation column 1
When O reaches, for example, about 14.4% in mole fraction, and N 18 O reaches, for example, 78.48% in mole fraction, the concentration ratio of N 17 O and N 18 O is contained in the raw material NO. After approximately matching the ratio (molar fraction ratio of about 1: 5.45), N 17 O and N 18
A bottoms fraction collecting operation for collecting the bottoms fraction enriched with O as an intermediate product in the intermediate product recovery tank 9, and a tops fraction withdrawing the tops fraction enriched with N 16 O into the storage tank 7. The extraction operation is alternately repeated, and a distillation operation of performing total reflux distillation of the raw material packed in the first distillation column 1 is performed between each batch processing of the recovery operation and the extraction operation (Table 1: Batch processing number). 13-).

【0030】このとき、塔底におけるN17O成分とN18
O成分の濃度比を原料の濃度比と等しい状態に維持する
ために、塔底留分回収操作時に供給される原料中に含ま
れる 16O成分の量が、塔頂留分抜取操作時に供給される
原料中に含まれる17O成分と 18O成分の総量よりやや多
くなるように原料供給量が設定されている。
At this time, N at the bottom of the tower17O component and N18
Maintain the concentration ratio of O component equal to the concentration ratio of raw material
Included in the raw materials supplied during the bottoms fraction recovery operation.
Be 16The amount of O component is supplied during the overhead distilling operation
Contained in raw materials17With O component 18Slightly higher than the total amount of O component
The raw material supply is set so that

【0031】本例では、まず原料を5モル供給しながら
17Oが15.4%に濃縮された塔底留分を5モル回収する
塔底留分回収操作を行なった後、全還流蒸留運転を行う
(バッチ処理番号13)。次いで、原料を 1829.62モル
供給しながらN16Oが濃縮された塔頂留分を 1829.62モ
ル抜き取る塔頂留分抜取操作を行なった後、再び全還流
蒸留運転を行う(バッチ処理番号14)。
In this example, first, while supplying 5 moles of the raw materials, a bottoms fraction collecting operation of collecting 5 moles of a bottoms fraction in which N 17 O was concentrated to 15.4% was performed, and then a total reflux distillation operation was performed. Perform (Batch processing number 13). Then, while carrying out the supply of 1829.62 mol of the raw material, the column top fraction withdrawing 1829.62 mol of the N 16 O concentrated overhead fraction is extracted, and then the total reflux distillation operation is again carried out (batch processing number 14).

【0032】この塔底留分回収操作により、17O成分と
18O成分が原料に含まれる組成比のまま濃縮されて回収
されると共に、塔頂からは原料に含まれる16O成分が限
りなく 100%近くまで濃縮された状態で得られ、塔底に
おける17O成分と18O成分の濃度比は常に原料に含まれ
る各成分の濃度比に等しく維持されるので、17O成分を
濃縮した塔底留分が安定的に回収される。以後、同様の
回収操作及び抜取操作を繰り返し( バッチ処理番号15
〜)、塔底留分を中間製品として中間製品貯留タンク9
に蓄える。
By this column bottom fraction recovery operation, 17 O component and
18 with O component is recovered is enriched remain composition ratio contained in the raw material, from overhead obtained in a state in which 16 O component contained in the raw material is concentrated to near 100% as possible, 17 in the bottom Since the concentration ratio of the O component and the 18 O component is always kept equal to the concentration ratio of each component contained in the raw material, the column bottom fraction enriched with the 17 O component is stably recovered. After that, the same collection and extraction operations are repeated (batch processing number 15
~), Intermediate product storage tank 9 using the bottom fraction as an intermediate product
Store in.

【0033】そして、中間製品貯留タンク9に第一蒸留
塔1の側流留分が所定量以上蓄えられたところで、第二
次蒸留を開始する。第二次蒸留は、中間製品貯留タンク
9に蓄えられたNOを原料として第二蒸留塔2に充填し
て全還流蒸留運転を行う。そして、第二蒸留塔2の側流
留分排出管15の取付位置におけるN17Oの濃度が予め
設定した目標のモル分率(例えば 99.08%)に達するま
で、原料を供給しながら塔底留分を原料供給量と等しい
抜取量で抜き取り、次回抜取操作を行うまでの間、再び
全還流蒸留運転を行う。
Then, when a predetermined amount or more of the side stream distillate of the first distillation column 1 is stored in the intermediate product storage tank 9, the secondary distillation is started. In the secondary distillation, NO stored in the intermediate product storage tank 9 is used as a raw material to fill the second distillation column 2 and a total reflux distillation operation is performed. Then, the bottom fraction is supplied while supplying the raw material until the concentration of N 17 O at the mounting position of the sidestream fraction discharge pipe 15 of the second distillation column 2 reaches a preset target mole fraction (eg 99.08%). A portion is withdrawn with an amount equal to the amount of raw material supplied, and the total reflux distillation operation is performed again until the next withdrawal operation is performed.

【0034】具体的には、まず、第二蒸留塔2に、中間
製品貯留タンク9に蓄えられたNOを第二蒸留塔2に11
00モル仕込み、− 153℃前後で全還流蒸留運転を行い同
位体の濃度分布を略定常化させる。次いで、NOをさら
に 200モル供給しながら塔底留分を 200モル抜き取る抜
取操作を行った後、全還流蒸留運転を行い(表2:バッ
チ処理番号1〜8)、側流留分排出管15の取付位置に
おけるN17Oを濃縮していく。
Specifically, first, the NO stored in the intermediate product storage tank 9 is supplied to the second distillation column 2 to the second distillation column 2.
Charge 100 moles and perform total reflux distillation operation at around -153 ° C to make the isotope concentration distribution approximately steady. Next, after performing an extraction operation of extracting 200 mol of the bottom fraction while further supplying 200 mol of NO, a total reflux distillation operation was performed (Table 2: batch treatment Nos. 1 to 8), and a sidestream distillate discharge pipe 15 N 17 O at the mounting position of is concentrated.

【0035】なお、N17Oの最高分率点が側流留分排出
管15の取付位置に対して上下に移動したときは塔頂留
分及び塔底留分の排出量を調整して、N17Oの最高分率
点が側流留分排出管15の取付位置と一致するように調
整する(バッチ処理番号9〜10)。
When the maximum fraction point of N 17 O moves up and down with respect to the mounting position of the sidestream fraction discharge pipe 15, the discharge amount of the top fraction and the bottom fraction is adjusted, Adjust so that the maximum fraction point of N 17 O coincides with the mounting position of the sidestream distillate discharge pipe 15 (batch processing number 9 to 10).

【0036】[0036]

【表2】 [Table 2]

【0037】次いで、側流留分排出管15の取付位置に
おいてN17Oが目標値まで濃縮された後は、N17Oが濃
縮された側流留分を製品として回収する側流留分回収操
作と、塔頂留分及び塔底留分を抜き取る抜取操作とを交
互に繰り返すと共に、前記回収操作と抜取操作の各バッ
チ処理を行う間に、第二蒸留塔2に充填されている原料
を全還流蒸留する蒸留操作を行う(表2:バッチ処理番
号11〜)。
[0037] Then, after the N 17 O in the mounted position of the side Nagar fraction discharge pipe 15 is concentrated to a target value, the side Nagar fraction recovered N 17 O to recover the side Nagar fraction enriched as a product The operation and the withdrawal operation for withdrawing the overhead fraction and the bottom fraction are alternately repeated, and the raw materials with which the second distillation column 2 is filled are charged during the batch processing of the recovery operation and the withdrawal operation. Perform a distillation operation of total reflux distillation (Table 2: Batch processing numbers 11 to 11).

【0038】本例では、原料を5モル供給しながらN17
Oが 99.04%に濃縮された側流留分を5モル回収する回
収操作を行った後、全還流蒸留運転を行う(バッチ処理
番号11)。次いで、原料を 27.27モル供給して塔頂留
分を4.25モル(15.59%)及び塔底留分を 23.02モル(8
4.41%)抜き取る抜取操作を行なった後、再び全還流蒸
留運転を行う(バッチ処理番号12)。
In this example, N 17 was supplied while 5 mol of the raw material was supplied.
After performing a recovery operation for recovering 5 mol of a side-stream fraction in which O is concentrated to 99.04%, a total reflux distillation operation is performed (batch processing number 11). Next, 27.27 mol of the raw material was supplied to the top fraction for 4.25 mol (15.59%) and the bottom fraction for 23.02 mol (8
(4.41%) After performing the extracting operation, the total reflux distillation operation is performed again (batch processing No. 12).

【0039】以後、同様の回収操作及び抜取操作を繰り
返し行うことにより(バッチ処理番号13〜)、約99%
まで濃縮されたN17Oを容易に回収することができ、さ
らに、N16O及びN18Oが夫々99.9%以上の濃度に濃縮
された塔頂留分,塔底留分を副産物として多量に生産す
ることができる。そして、最後に、N16O,N17O及び
18Oに水素を添加して、夫々アンモニアと水に分解し
た後、熱分解して水素を除去することにより窒素と酸素
に分解し、高濃度の酸素同位体162 172 及び18
2 を得ることができる。
Thereafter, by repeating similar collecting operation and extracting operation (batch processing number 13-), about 99% is obtained.
The concentrated N 17 O can be easily recovered, and the overhead fraction and the bottom fraction enriched with N 16 O and N 18 O each having a concentration of 99.9% or more are used as by-products in large amounts. Can be produced. Then, finally, hydrogen is added to N 16 O, N 17 O, and N 18 O to decompose them into ammonia and water, respectively, and then thermally decompose to remove hydrogen to decompose into nitrogen and oxygen. Concentrations of oxygen isotopes 16 O 2 , 17 O 2 and 18 O
You can get 2 .

【0040】なお、実施例の説明では原料としてNOを
使用した場合について説明したが、本発明はこれに限ら
ず、酸素O2 や、他の任意の酸素化合物例えば一酸化炭
素CO等を低温蒸留する場合や、水H2 O等を減圧蒸留
する場合にも適用することができる。また、第一蒸留塔
及び第二蒸留塔におけるN17Oの濃度は供給される原料
に含まれる存在比に応じて任意に設定することができ
る。さらに第一蒸留塔及び第二蒸留塔の形状及やサイズ
は、実施例に示すものに限らず、必要に応じて自由な形
状及びサイズに設定することができる。さらにまた、第
一蒸留塔1及び第二蒸留塔2の二つの蒸留塔を使用して
濃縮する場合について説明したが、本発明は第一蒸留塔
のみを使用する場合はもちろんのこと、さらに他の蒸留
塔を補助的に付加して使用する場合であってもよい。
In the description of the embodiments, the case where NO is used as the raw material has been described, but the present invention is not limited to this, and oxygen O 2 and other arbitrary oxygen compounds such as carbon monoxide CO are distilled at low temperature. The present invention can also be applied to the case where water is distilled off or when water H 2 O or the like is distilled under reduced pressure. Further, the concentration of N 17 O in the first distillation column and the second distillation column can be arbitrarily set according to the abundance ratio contained in the supplied raw material. Furthermore, the shapes and sizes of the first distillation column and the second distillation column are not limited to those shown in the examples, and can be set to any desired shape and size as necessary. Furthermore, although the case where the two distillation columns, the first distillation column 1 and the second distillation column 2, are used for concentration has been described, the present invention is not limited to the case where only the first distillation column is used. It may be a case where the above distillation column is additionally used.

【0041】[0041]

【発明の効果】以上述べたように、本発明によれば、濃
度比の変動が少ない塔底から17O成分を回収するように
しており、塔底において17O成分と18O成分の濃度比が
原料に含まれるこれらの組成比と等しくなったときに、
供給される原料に含まれる17O成分と18O成分に対応す
る量だけ回収しているので、塔底における17O成分と18
O成分の濃度比が原料に含まれるこれらの組成比と等し
く維持され、自然存在比の極めて少ない17Oを高い濃度
まで簡単に濃縮することができ、さらに、このようにし
17O成分が濃縮されたものを原料として第二次蒸留を
行い、その側流留分を回収すれば、より高濃度に濃縮し
17O成分を安定的に回収してその生産コストを大幅に
軽減することができるという非常に優れた効果を有す
る。
As described above, according to the present invention, the 17 O component is recovered from the bottom of the column where the fluctuation of the concentration ratio is small, and the concentration ratio of the 17 O component and the 18 O component is reduced at the bottom of the column. Is equal to the composition ratio of these contained in the raw material,
Since only the amount corresponding to the 17 O component and 18 O component contained in the supplied raw material is recovered, the 17 O component and 18 O component at the bottom of the column are recovered.
Concentration ratio of O component contained in the raw material is maintained equal to the component ratio of the composite can be easily concentrated to high concentrations of very small 17 O in natural abundance, further, in this way 17 O component is concentrated If the side stream fraction is recovered by performing secondary distillation using the obtained product as a raw material, the 17 O component concentrated to a higher concentration can be recovered stably and the production cost can be greatly reduced. It has a very excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用する酸素同位体の濃縮装置を示す
フローシートである。
FIG. 1 is a flow sheet showing an oxygen isotope enrichment device used in the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・・・第一蒸留塔 2・・・・・・・・第二蒸留塔 3・・・・・・・・原料供給管 4・・・・・・・・塔頂留分排出管 5・・・・・・・・塔底留分排出管 6・・・・・・・・側流留分排出管 7・・・・・・・・N16O貯留タンク 8・・・・・・・・ドレイン 9・・・・・・・・中間成品貯留タンク 10・・・・・・・・ガス検出器 11・・・・・・・・制御装置 12・・・・・・・・供給管 13・・・・・・・・塔頂留分排出管 14・・・・・・・・塔底留分排出管 15・・・・・・・・側流留分排出管 16・・・・・・・・N17O貯留タンク 17・・・・・・・・N18O貯留タンク 18a,18b・・・ガス検出器 19・・・・・・・・制御装置 V3 ,V4 ,V5 ,V12,V13,V14,V15・・・バル
ブ Q3 ,Q4 ,Q5 ,Q12,Q13,Q14,Q15・・・流量
検出器
1 --- First distillation column 2 --- Second distillation column 3 --- Raw material supply pipe 4--To top distillation Fractional discharge pipe 5 ... Tower bottom fraction discharge pipe 6 ... Side flow fraction discharge pipe 7 ... N 16 O storage tank 8 ...・ ・ ・ ・ ・ ・ Drain 9 ・ ・ ・ ・ ・ ・ Intermediate product storage tank 10 ・ ・ ・ ・ ・ ・ Gas detector 11 ・ ・ ・ ・ ・ ・ Control device 12 ・ ・ ・ ・ ・ ・・ ・ Supply pipe 13 ・ ・ ・ ・ ・ ・ ・ ・ Top column fraction discharge pipe 14 ・ ・ ・ ・ ・ ・ Column bottom fraction discharge pipe 15 ・ ・ ・ ・ ・ ・ Side flow fraction discharge pipe 16・ ・ ・ ・ ・ ・ ・ ・ N 17 O storage tank 17 ・ ・ ・ ・ ・ ・ N 18 O storage tank 18a, 18b ・ ・ ・ Gas detector 19 ・ ・ ・ ・ ・ ・ Control device V 3 , V 4, V 5, V 12 , V 13, V 14, V 15 ··· valve Q 3 Q 4, Q 5, Q 12 , Q 13, Q 14, Q 15 ··· flow detector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸素同位体16O,17O及び18Oを含む酸
素又は酸素化合物を原料として蒸留塔に供給し、各同位
体を濃縮する酸素同位体の濃縮方法において、 a)蒸留塔に充填された原料を蒸留する蒸留操作と、原
料を供給しながら塔頂留分及び塔底留分を所定の抜取割
合で且つ総抜取量が原料供給量と等くなるように抜き取
る抜取操作とを交互に行い、 b)前記抜取操作の一回の総抜取量に対する塔頂留分抜
取量の割合を原料に含まれる16O成分の組成比より小さ
く設定すると共に、塔底留分抜取量の割合を原料に含ま
れる18O成分の組成比より大きく設定して、塔底におけ
17O成分と 18O成分の濃度比が原料に含まれるこれら
の濃度比と略等しくなるまで前記各操作を繰り返し、 c)17O成分及び18O成分の塔底の濃度比が原料の濃度
比と略等しくなった後は、原料を供給しながら17O成分
及び18O成分が濃縮された塔底留分を原料供給量と等し
い量だけ回収する塔底留分回収操作と、原料を供給しな
がら16O成分が濃縮された塔頂留分を原料供給量と等し
い量だけ抜き取る塔頂留分抜取操作とを交互に繰り返す
と共に、前記回収操作と前記抜取操作を行う間に、蒸留
塔に充填されている原料を蒸留する蒸留操作を行い、 d)17O成分及び18O成分の塔底の濃度比を原料の濃度
比と等しい状態に維持するために、前記回収操作時に供
給される原料中に含まれる16O成分の量が、抜取操作時
に供給される原料中に含まれる17O成分と18O成分の総
量よりやや多くなるように原料供給量を設定したことを
特徴とする酸素同位体の濃縮方法。
1. Oxygen isotope16O,17O and18Acid containing O
The raw materials are oxygen or oxygen compounds, and each isotope is supplied to the distillation column.
A method for concentrating oxygen isotopes for concentrating a body, comprising: a) a distillation operation for distilling a raw material packed in a distillation column;
The top fraction and bottom fraction are withdrawn while feeding
And the total amount of material extracted should be equal to the amount of raw material supplied.
B) withdrawing operation is performed alternately,
Intake ratio is included in raw materials16Less than composition ratio of O component
And the ratio of the amount of the bottom fraction extracted is included in the raw material.
Be18Set it higher than the composition ratio of the O component and keep it at the bottom of the tower.
Ru17With O component 18Those in which the concentration ratio of O component is included in the raw materials
Repeat each of the above operations until the concentration ratio of17O component and18The concentration ratio of the O component at the bottom is the concentration of the raw material
After the ratio becomes almost equal, while supplying the raw materials17O component
as well as18The bottom fraction in which the O component is concentrated is used as the raw material supply amount.
Column bottoms collection operation to collect only a large amount and do not supply raw materials.
Rattle16The overhead fraction enriched with O component is equal to the raw material supply amount.
Alternately repeat withdrawal operation of top fraction
Along with performing the recovery operation and the extraction operation, distillation
A distillation operation for distilling the raw material packed in the column is performed, and d)17O component and18Concentration ratio of the bottom of O component
In order to maintain the ratio equal to
Included in the raw materials supplied16The amount of O component during the sampling operation
Contained in the raw materials supplied to17With O component18Total of O component
That the raw material supply amount is set to be slightly higher than the amount
A characteristic method for enriching oxygen isotopes.
【請求項2】 酸素同位体16O,17O及び18Oを含む酸
素又は酸素化合物を原料として蒸留塔に供給し、各同位
体を濃縮する酸素同位体の濃縮方法において、原料を第
一蒸留塔に供給して第一次蒸留を行なった後、当該第一
次蒸留により得られた塔底留分を第二蒸留塔に供給して
第二次蒸留を行なうように成され、 A)前記第一次蒸留では、 a)第一蒸留塔に充填された原料を蒸留する蒸留操作
と、原料を供給しながら塔頂留分及び塔底留分を所定の
抜取割合で且つ総抜取量が原料供給量と等くなるように
抜き取る抜取操作とを交互に行い、 b)前記抜取操作の一回の総抜取量に対する塔頂留分抜
取量の割合を原料に含まれる16O成分の組成比より小さ
く設定すると共に、塔底留分抜取量の割合を原料に含ま
れる18O成分の組成比より大きく設定して、塔底におけ
17O成分と 18O成分の濃度比が原料に含まれるこれら
の濃度比と略等しくなるまで前記各操作を繰り返し、 c)17O成分及び18O成分の塔底の濃度比が原料の濃度
比と略等しくなった後は、原料を供給しながら17O成分
及び18O成分が濃縮された塔底留分を原料供給量と等し
い量だけ回収する塔底留分回収操作と、原料を供給しな
がら16O成分が濃縮された塔頂留分を原料供給量と等し
い量だけ抜き取る塔頂留分抜取操作とを交互に繰り返す
と共に、前記回収操作と前記抜取操作を行う間に、蒸留
塔に充填されている原料を蒸留する蒸留操作を行い、 d)17O成分及び18O成分の塔底の濃度比を原料の濃度
比と等しい状態に維持するために、前記回収操作時に供
給される原料中に含まれる16O成分の量が、抜取操作時
に供給される原料中に含まれる17O成分と18O成分の総
量よりやや多くなるように原料供給量を設定し、 B)前記第二次蒸留では、 e)前記第一次蒸留により得られた塔底留分を原料とし
て第二蒸留塔に充填して蒸留する蒸留操作と、塔頂留分
及び塔底留分を所定量ずつ抜き取る抜取操作とを交互に
行って、第二蒸留塔の側流留分排出位置における17O成
分の濃度を目標値まで上昇させ、 f)第二蒸留塔の側流留分排出位置における17O成分の
濃度が目標値に達した後は、原料を供給しながら17O成
分が濃縮された側流留分を原料供給量と等しい割合で回
収する回収操作と、原料を供給しながら16O成分が濃縮
された塔頂留分及び18O成分が濃縮された塔底留分を所
定の割合で且つ且つ総抜取量が原料供給量と等くなるよ
うに抜き取る抜取操作とを交互に繰り返すと共に、前記
回収操作と前記抜取操作を行う間に、第二蒸留塔に充填
されている原料を蒸留する蒸留操作を行う、ことを特徴
とする酸素同位体の濃縮方法。
2. Oxygen isotope16O,17O and18Acid containing O
The raw materials are oxygen or oxygen compounds, and each isotope is supplied to the distillation column.
In the method of enriching oxygen isotopes for enriching the body,
After supplying to one distillation column and performing the primary distillation,
The bottom fraction obtained by the secondary distillation is fed to the second distillation column.
A) a distillation operation for performing secondary distillation, A) in the primary distillation, a) distilling the raw material packed in the first distillation column
While supplying the raw materials, the top fraction and bottom fraction are
Make sure that the sampling rate and the total sampling rate are equal to the raw material supply rate
Alternately with the withdrawing operation, b) Withdrawing the overhead fraction with respect to the total withdrawal amount for one operation of the withdrawing operation.
Intake ratio is included in raw materials16Less than composition ratio of O component
And the ratio of the amount of the bottom fraction extracted is included in the raw material.
Be18Set it higher than the composition ratio of the O component and keep it at the bottom of the tower.
Ru17With O component 18Those in which the concentration ratio of O component is included in the raw materials
Repeat each of the above operations until the concentration ratio of17O component and18The concentration ratio of the O component at the bottom is the concentration of the raw material
After the ratio becomes almost equal, while supplying the raw materials17O component
as well as18The bottom fraction in which the O component is concentrated is used as the raw material supply amount.
Column bottoms collection operation to collect only a large amount and do not supply raw materials.
Rattle16The overhead fraction enriched with O component is equal to the raw material supply amount.
Alternately repeat withdrawal operation of top fraction
Along with performing the recovery operation and the extraction operation, distillation
A distillation operation for distilling the raw material packed in the column is performed, and d)17O component and18Concentration ratio of the bottom of O component
In order to maintain the ratio equal to
Included in the raw materials supplied16The amount of O component during the sampling operation
Contained in the raw materials supplied to17With O component18Total of O component
The raw material supply amount is set to be slightly larger than the amount, B) in the second distillation, e) the bottom fraction obtained by the first distillation is used as a raw material
Distillation operation to fill the second distillation column and distill, and the overhead fraction
And withdrawal operation for withdrawing the bottom fraction by a predetermined amount alternately
At the side distillate discharge position of the second distillation column17O success
Min) to the target value, f) at the side distillate discharge position of the second distillation column17O component
After the concentration reaches the target value, while supplying the raw materials17O success
The side-stream distillate enriched in
While collecting and supplying raw materials16O component is concentrated
The overhead fraction and18The bottom fraction of the O component is collected
At a fixed rate, and the total withdrawal amount becomes equal to the raw material supply amount
Repeat the above withdrawing operation alternately and
Fill the second distillation column between the recovery operation and the extraction operation.
Characterized by performing a distillation operation to distill the raw materials
Method for enriching oxygen isotopes.
JP29816193A 1993-11-29 1993-11-29 Method for concentrating oxygen isotope Pending JPH07148419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29816193A JPH07148419A (en) 1993-11-29 1993-11-29 Method for concentrating oxygen isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29816193A JPH07148419A (en) 1993-11-29 1993-11-29 Method for concentrating oxygen isotope

Publications (1)

Publication Number Publication Date
JPH07148419A true JPH07148419A (en) 1995-06-13

Family

ID=17855992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29816193A Pending JPH07148419A (en) 1993-11-29 1993-11-29 Method for concentrating oxygen isotope

Country Status (1)

Country Link
JP (1) JPH07148419A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027509A1 (en) * 1998-11-09 2000-05-18 Nippon Sanso Corporation Method and apparatus for enrichment of heavy component of oxygen isotopes
EP1092467A2 (en) * 1999-10-12 2001-04-18 Nippon Sanso Corporation Apparatus, method for enrichment of the heavy isotopes of oxygen and production method for heavy oxygen water
US7893377B2 (en) 2003-03-04 2011-02-22 Taiyo Nippon Sanso Corporation Method for concentrating oxygen isotope
WO2021199934A1 (en) * 2020-03-31 2021-10-07 大陽日酸株式会社 Stable isotope concentrating method
WO2022102390A1 (en) 2020-11-12 2022-05-19 大陽日酸株式会社 Stable isotope concentrating device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027509A1 (en) * 1998-11-09 2000-05-18 Nippon Sanso Corporation Method and apparatus for enrichment of heavy component of oxygen isotopes
US6461583B1 (en) * 1998-11-09 2002-10-08 Nippon Sanso Corporation Method for enrichment of heavy component of oxygen isotopes
EP1092467A2 (en) * 1999-10-12 2001-04-18 Nippon Sanso Corporation Apparatus, method for enrichment of the heavy isotopes of oxygen and production method for heavy oxygen water
EP1092467A3 (en) * 1999-10-12 2003-02-05 Nippon Sanso Corporation Apparatus, method for enrichment of the heavy isotopes of oxygen and production method for heavy oxygen water
US6835287B1 (en) 1999-10-12 2004-12-28 Nippon Sanso Corporation Apparatus, method for enrichment of the heavy isotope oxygen and production method for heavy oxygen water
US7393447B2 (en) 1999-10-12 2008-07-01 Taiyo Nippon Sanso Corporation Apparatus, method for enrichment of the heavy isotopes of oxygen and production method for heavy oxygen water
US7893377B2 (en) 2003-03-04 2011-02-22 Taiyo Nippon Sanso Corporation Method for concentrating oxygen isotope
WO2021199934A1 (en) * 2020-03-31 2021-10-07 大陽日酸株式会社 Stable isotope concentrating method
WO2022102390A1 (en) 2020-11-12 2022-05-19 大陽日酸株式会社 Stable isotope concentrating device

Similar Documents

Publication Publication Date Title
JPH04364143A (en) Method for purifying crude aqueous solution of ethanol
KR840002431B1 (en) Process for removal of ethylene oxide from solutions containing impurities
CN107438475B (en) Method for energy-efficient recovery of carbon dioxide from an absorbent and apparatus suitable for operating the method
US2530602A (en) Recovery of the constituents of gaseous mixtures
US20030018216A1 (en) Method for producing anhydrous formic acid
US4101375A (en) Isotopically enriched helium-4
HU9201842D0 (en) Method and apparatus for producing nitrogen of ultra-high purity
US2497589A (en) Separation and recovery of the constituents of air
JPH07148419A (en) Method for concentrating oxygen isotope
AU605258B2 (en) Process for the recovery of argon
US3742720A (en) Quantitative recovery of krypton from gas mixtures mainly comprising carbon dioxide
US20050044886A1 (en) Process for production of isotopes
JPH05212203A (en) Distillation separation method
US9945605B2 (en) Process for the removal of CO2 from acid gas
KR940002256B1 (en) Process for separating ethylene oxide from aldehyde impurities
JPS6261006B2 (en)
US3222879A (en) Recovery of krypton and xenon from air separation plants
JPS6075478A (en) Method and apparatus for manufacturing trioxane from commercial formaldehyde aqueous solution
EP1067346A1 (en) Method and apparatus for recovering xenon or a mixture of krypton and xenon from air
SU1058503A3 (en) Method for isolating ammonia from carbon dioxide
US2796330A (en) Method of separating and concentrating isotopes of boron and oxygen
JPS6229990A (en) Purification of ethanol
JPH06134260A (en) Device and method for concentrating oxygen isotope
US2889256A (en) Purification of hexamethylene diamine
US20110302956A1 (en) Rare Gases Recovery Process For Triple Column Oxygen Plant