JPH07148170A - Optical biological measuring apparatus - Google Patents

Optical biological measuring apparatus

Info

Publication number
JPH07148170A
JPH07148170A JP5330040A JP33004093A JPH07148170A JP H07148170 A JPH07148170 A JP H07148170A JP 5330040 A JP5330040 A JP 5330040A JP 33004093 A JP33004093 A JP 33004093A JP H07148170 A JPH07148170 A JP H07148170A
Authority
JP
Japan
Prior art keywords
light
subject
light guide
filter
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5330040A
Other languages
Japanese (ja)
Other versions
JP3241516B2 (en
Inventor
Yoshio Tsunasawa
義夫 綱沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technology Research Association of Medical and Welfare Apparatus
Original Assignee
Technology Research Association of Medical and Welfare Apparatus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Research Association of Medical and Welfare Apparatus filed Critical Technology Research Association of Medical and Welfare Apparatus
Priority to JP33004093A priority Critical patent/JP3241516B2/en
Publication of JPH07148170A publication Critical patent/JPH07148170A/en
Application granted granted Critical
Publication of JP3241516B2 publication Critical patent/JP3241516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To measure diffuse transmission reflected light from a wide irradiated area simultaneously by sending a beam on a point of an object to be measured and using a two-dimensional detector. CONSTITUTION:The decreasing rate of a luminous energy compensating filter 10 decreases from the center of the filter 10 radially and concentrically outward. The filter 10 has a bore at the center of concentric circles having each light decreasing rate, and an optical fiber 12 is passed through the bore and is fixed to the filter 10 using a shading ring 14. A near-infrared beam travels through the optical fiber 12 and irradiates the object. The diffuse transmission reflected light from the object travels through the filter 10 and is detected by a two-dimensional detector 18 facing the filter 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は近赤外光を被検体の生体
に照射し、その拡散透過反射光を検出して被検体内の情
報を非破壊的に得る光学的生体測定装置に関するもので
ある。このような光学的生体測定装置は、例えば生体酸
素モニタや光CTなどとして利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical biometric apparatus for irradiating a living body of a subject with near-infrared light and detecting the diffuse transmitted / reflected light to nondestructively obtain information in the subject. Is. Such an optical biometric device is used, for example, as a biological oxygen monitor or optical CT.

【0002】[0002]

【従来の技術】600〜1200nmの範囲の近赤外光
線は生体の透過性がよく、生体中の数cmの距離を通過
した後でも十分測定が可能な強度を保つ。そして、好都
合なことに、生体機能を反映する重要な物質であるヘモ
グロビンやチトクロムオキシダーゼなどの吸収スペクト
ルがちょうどこの波長域に存在するので、近赤外光のこ
の性質を利用して生体機能を無侵襲で測定することが行
なわれている。
2. Description of the Related Art Near-infrared rays in the range of 600 to 1200 nm have good permeability to living organisms and maintain sufficient intensity for measurement even after passing a distance of several cm in living organisms. Conveniently, since the absorption spectra of hemoglobin and cytochrome oxidase, which are important substances that reflect biological functions, exist in this wavelength range, this property of near-infrared light is utilized to eliminate biological functions. Invasive measurements are performed.

【0003】生体に近赤外光を照射し、その近赤外光が
生体各部で散乱して生体を透過して出てきたものをCC
Dカメラなどの二次元検出器により受光し、計算により
生体内部の吸収の分布を画像化する考え方が知られてい
る。
The near-infrared light is applied to the living body, and the near-infrared light is scattered at various parts of the living body and transmitted through the living body to be CC.
It is known that light is received by a two-dimensional detector such as a D camera and the absorption distribution inside the living body is imaged by calculation.

【0004】被検体が大人の頭部である場合のように測
定部が大きいときは、被検体を挾んで受光点を送光点と
対向する側に設定する透過測定法は、光の減光量が測定
範囲を越えるため実施が不可能である。しかし、図1
(A)に示すように、送光ファイバ1を被検体3に押し
当て、その被検体3との当接点を送光点として、その送
光点と同じ側の被検体上で数cmの距離r離れた受光点
で受光ファイバ2により生体中を拡散透過反射した光を
測定することができる。これにより生体内部の信号を得
る方法が酸素モニタなどでは行なわれている。以下、こ
のような、送光点と同じ側で送光点から離れた受光点に
出る測定光を拡散透過反射光と記す。送光点からの測定
光が被検体3内で拡散透過反射することにより、図1
(A)に破線で示された測定範囲7内の情報が得られ
る。
When the object to be measured is large, such as when the subject is an adult's head, the transmission measurement method in which the subject is sandwiched and the light receiving point is set on the side opposite to the light transmitting point is the light extinction amount. Is beyond the measurement range, so it cannot be performed. However,
As shown in (A), the light-sending fiber 1 is pressed against the subject 3, and the contact point with the subject 3 is used as the light-sending point, and a distance of several cm on the subject on the same side as the light-sending point. It is possible to measure the light diffusely transmitted and reflected in the living body by the light receiving fiber 2 at the light receiving point separated by r. As a result, a method for obtaining a signal inside the living body is performed in an oxygen monitor or the like. Hereinafter, such measurement light emitted at the light receiving point on the same side as the light transmitting point and away from the light transmitting point will be referred to as diffuse transmitted / reflected light. When the measurement light from the light transmitting point is diffused, transmitted and reflected in the subject 3,
Information within the measurement range 7 indicated by a broken line in (A) is obtained.

【0005】これに対し、図1(B)に示すように、送
光ファイバ1からの測定光をレンズ4で広げて被検体3
に照射し、被検体3の入射点自身の拡散反射を広い面積
の検出器5で検出する方法がある。この場合は被検体の
表面深さ1mm以内の情報が得られ、被検体の色の測定
などに利用される。図1(B)は45度入射、90度測
定の例であり、入射方向と測定方向はこの例に限らない
としても、図1(B)の方法は単に拡散反射法と称する
ものである。本発明の対象とする方法は拡散透過反射法
であり、送光点と受光点を離すことにより、被検体の深
部の情報が得られる点を利用するものである。
On the other hand, as shown in FIG. 1 (B), the measuring light from the light transmitting fiber 1 is spread by the lens 4 and the subject 3 is examined.
There is a method in which the detector 5 having a large area detects the diffuse reflection of the incident point of the subject 3 itself. In this case, information about the surface depth of the subject within 1 mm is obtained and used for measuring the color of the subject. FIG. 1B is an example of 45-degree incidence and 90-degree measurement. Even if the incident direction and the measurement direction are not limited to this example, the method of FIG. 1B is simply called a diffuse reflection method. The target method of the present invention is the diffuse transmission reflection method, which utilizes the point that information on the deep part of the subject can be obtained by separating the light transmitting point and the light receiving point.

【0006】[0006]

【発明が解決しようとする課題】拡散透過反射法の受光
部として二次元検出器を用いようとするとき、送光点と
受光点の間の距離rによって受光点に現われる光量が大
幅に異なる。図2(A)に示されるように、生体の被検
体7に対し、送光点から測定光を入射させると、送光点
と同じ側で距離rmm離れた受光点にその測定光が拡散
透過反射して現われる光の強度は、定常光に対する拡散
方程式を解くことによって得られる。その解は、例えば
「APPLIED OPTICS」 Vol. 28, PP. 2331-2336 (1989)に
(7)式として与えられている。その(7)式を時間に
対し積分することにより、次の式(1)が求められる。
When a two-dimensional detector is used as the light receiving portion of the diffuse transmission reflection method, the amount of light that appears at the light receiving point greatly differs depending on the distance r between the light transmitting point and the light receiving point. As shown in FIG. 2 (A), when the measurement light is incident on the subject 7 of the living body from the light transmission point, the measurement light is diffused and transmitted to the light reception point on the same side as the light transmission point and separated by a distance rmm. The intensity of the reflected light is obtained by solving the diffusion equation for stationary light. The solution is given as the equation (7) in "APPLIED OPTICS" Vol. 28, PP. 2331-2336 (1989), for example. The following formula (1) is obtained by integrating the formula (7) with respect to time.

【0007】[0007]

【数1】 [Equation 1]

【0008】ここで、R(r)は送光点からrmmの距
離における受光点での単位面積当りの光の強度であり、
送光点への入射光強度を単位面積当り1とした場合の強
度である。したがって、R(r)の単位はmm-2であ
る。Z0は仮想的な入射深さで、Z0=1mmとした。D
は拡散係数で、D=1/3(μa+μs')で与えられ、
単位はmmである。μaは吸収係数、μs’は補正散乱
係数(transport-corrected scattering coefficient)
で、ここでは2mm-1とした。
Here, R (r) is the intensity of light per unit area at the light receiving point at a distance of rmm from the light transmitting point,
This is the intensity when the intensity of light incident on the light transmitting point is set to 1 per unit area. Therefore, the unit of R (r) is mm -2 . Z 0 is a virtual incident depth, and Z 0 = 1 mm. D
Is the diffusion coefficient, given by D = 1/3 (μa + μs'),
The unit is mm. μa is the absorption coefficient and μs' is the transport-corrected scattering coefficient.
Therefore, here, it is set to 2 mm −1 .

【0009】(1)式で吸収係数μaとして0.01m
-1とした場合と、0.02mm-1とした場合の計算結
果を図2(B)に示す。送光点と受光点の間の距離rが
10mmの場合と50mmの場合とでは受光光量は数桁
も異なってくる。そのため、通常の二次元検出器のダイ
ナミックレンジには収まらなくなる。このことは、1点
から送光するときに広い受光面積にわたって同時に測定
することができないことを意味している。本発明の目的
は、被検体に1点から送光し、二次元検出器を用いて広
い受光面積にわたって拡散透過反射光を同時に測定でき
るようにすることである。
In equation (1), the absorption coefficient μa is 0.01 m.
The calculation results when m −1 and 0.02 mm −1 are shown in FIG. When the distance r between the light transmitting point and the light receiving point is 10 mm and when the distance r is 50 mm, the received light amount differs by several digits. Therefore, the dynamic range of a normal two-dimensional detector cannot be obtained. This means that it is not possible to measure simultaneously over a wide light receiving area when transmitting light from one point. An object of the present invention is to send light to a subject from one point and simultaneously measure diffuse transmitted reflected light over a wide light receiving area by using a two-dimensional detector.

【0010】[0010]

【課題を解決するための手段】本発明では、被検体の一
点の送光点から被検体に測定光を照射する送光手段と、
送光点から離れた被検体上の多数の受光点から出る測定
光の拡散透過反射光を検出する二次元検出器と、被検体
と二次元検出器との間に設けられ、送光点から外側に向
って送光点から離れるほど減光率が減少する光量補償フ
ィルタとを備えている。
According to the present invention, a light transmitting means for irradiating a subject with measuring light from one light transmitting point of the subject,
A two-dimensional detector that detects the diffuse transmitted reflected light of the measurement light emitted from a large number of light receiving points on the subject away from the light transmitting point, and is provided between the subject and the two-dimensional detector. And a light amount compensation filter whose extinction rate decreases as the distance from the light transmission point increases toward the outside.

【0011】本発明の好ましい態様では、互いに相対的
位置関係を保って束ねられた複数本の導光路をもち、一
端面が被検体に対向して配置されるライトガイドと、ラ
イトガイドの他端面からそのライトガイドの1本の導光
路を介して被検体に測定光を照射する送光手段と、ライ
トガイドの他端面に対向し、ライトガイドの他端面での
送光用の導光路以外の導光路から出る測定光の拡散透過
反射光を検出する二次元検出器と、ライトガイドの他端
面と二次元検出器との間に設けられ、中心から外側に向
って外側ほど減光率が減少する光量補償フィルタとを備
えている。
In a preferred aspect of the present invention, a light guide having a plurality of light guide paths bundled in a relative positional relationship with each other, one end surface of which is arranged to face a subject, and the other end surface of the light guide. From the light guide means for irradiating the subject with the measurement light through one light guide path of the light guide and the other end surface of the light guide other than the light guide path for light transmission at the other end surface of the light guide. It is installed between the two-dimensional detector that detects the diffuse transmitted and reflected light of the measurement light emitted from the light guide and the other end surface of the light guide and the two-dimensional detector. And a light amount compensation filter for

【0012】本発明のさらに好ましい態様では、送光手
段は光源からの測定光を導く送光ファイバを備えてお
り、その送光ファイバが光量補償フィルタの一部に固定
又は連動され、光量補償フィルタと送光ファイバが同時
に移動させられて送光点の走査が行なわれる。
In a further preferred aspect of the present invention, the light transmitting means includes a light transmitting fiber for guiding the measurement light from the light source, and the light transmitting fiber is fixed or interlocked with a part of the light amount compensating filter, and the light amount compensating filter is provided. And the light transmitting fiber are simultaneously moved to scan the light transmitting point.

【0013】光量補償フィルタは、図2(B)に示され
たような送光点から受光点までの距離rの増大により拡
散透過反射光が減衰する関係を補償するように、透過光
の減光率が外側に向かって例えば同心円状に減少するよ
うに設計されたフィルタである。
The light amount compensating filter reduces the transmitted light so as to compensate for the relationship that the diffuse transmitted reflected light is attenuated as the distance r from the light transmitting point to the light receiving point is increased as shown in FIG. 2B. The filter is designed so that the light rate decreases concentrically toward the outside.

【0014】[0014]

【作用】1つの送光点から近赤外光を被検体に入射さ
せ、被検体中を拡散透過反射してきた光の二次元的な分
布を測定するとき、光量補償フィルタを設けているの
で、そのフィルタの中心に送光点を位置させたときは、
距離rの広い範囲にわたって光の二次元的な強度分布が
圧縮され、広い面積にわたり二次元検出器のダイナミッ
クレンジに収まるようになる。送光点をフィルタの減光
率変化の中心に位置させると、検出信号の処理が容易
で、受光点の光の二次元的な強度分布を圧縮する上で効
果が大きい。なお、フィルタの減光率は送光点から離れ
る程小さくなっておればよく、等しい透過率の点を結ぶ
線は同心円に限らず、角形、六角形などでもよい。減光
率は連続的に変わってもよいし、段階状に変わっていて
もよい。要は射出光の二次元的な強度分布が、二次元検
出器のダイナミックレンジに入るよう圧縮されればよ
い。
When the near-infrared light is made incident on the subject from one light-transmitting point and the two-dimensional distribution of the light diffusely transmitted and reflected in the subject is measured, the light quantity compensation filter is provided. When the sending point is located at the center of the filter,
The two-dimensional intensity distribution of light is compressed over a wide range of the distance r so that the light falls within the dynamic range of the two-dimensional detector over a wide area. When the light transmitting point is located at the center of the change in the extinction ratio of the filter, the detection signal can be easily processed, and the effect of compressing the two-dimensional intensity distribution of the light at the light receiving point is great. It should be noted that the extinction ratio of the filter may be smaller as it goes away from the light transmitting point, and the line connecting the points of equal transmissivity is not limited to the concentric circles, but may be a polygon, a hexagon, or the like. The extinction rate may change continuously or in steps. The point is that the two-dimensional intensity distribution of the emitted light may be compressed so that it falls within the dynamic range of the two-dimensional detector.

【0015】[0015]

【実施例】図3は第1の実施例を表わす。10は本発明
における光量補償フィルタであり、その減光率は中心か
ら外側に向って同心円状に減少するように設定されてい
る。フィルタ10の減光率の同心円の中心には穴があけ
られ、その穴には送光ファイバ12の一端が通され、遮
光リング14によって送光ファイバ12がフィルタ10
に固定されている。送光ファイバ12を固定した状態で
フィルタ10が被検体16に押し当てられ、送光ファイ
バ12から被検体に近赤外の測定光が照射される。被検
体からの拡散透過反射光はフィルタ10を経て出射し、
フィルタ10に対向して設けられた二次元検出器18に
より検出される。二次元検出器18はCCDカメラのよ
うに、光学系と二次元受光素子を備えた検出器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows a first embodiment. Reference numeral 10 is a light amount compensation filter according to the present invention, and its extinction ratio is set so as to decrease concentrically from the center toward the outside. A hole is opened in the center of the concentric circle of the extinction ratio of the filter 10, and one end of the light transmitting fiber 12 is passed through the hole, and the light transmitting ring 12 causes the light transmitting fiber 12 to move.
It is fixed to. The filter 10 is pressed against the subject 16 with the light transmitting fiber 12 fixed, and the subject is irradiated with near-infrared measurement light from the light transmitting fiber 12. The diffuse transmitted reflected light from the subject is emitted through the filter 10,
It is detected by the two-dimensional detector 18 provided so as to face the filter 10. The two-dimensional detector 18 is a detector including an optical system and a two-dimensional light receiving element, such as a CCD camera.

【0016】光量補償フィルタ10の光学的特性は、図
4に示されるように、その減光率が中心で最も大きく、
周辺に向って同心円状に減少していくような特性をもっ
ている。実線は減光率が連続的に変化するように設計さ
れたフィルタの例であり、破線は減光率が階段状に変化
するように設計されたフィルタである。中心部の斜線で
示された部分12aは送光ファイバ12が入る穴であ
り、その周りの破線で示された部分14aは遮光リング
14の部分である。これらの部分は生体からの拡散透過
反射光が出ないので測定することはできない。
As shown in FIG. 4, the optical characteristics of the light quantity compensating filter 10 are such that the extinction ratio is the largest at the center,
It has the characteristic that it decreases concentrically toward the periphery. The solid line is an example of a filter designed so that the extinction ratio changes continuously, and the broken line is a filter designed so that the extinction ratio changes stepwise. A shaded portion 12a of the central portion is a hole into which the light transmitting fiber 12 is inserted, and a portion 14a around it, which is indicated by a broken line, is a portion of the light shielding ring 14. These parts cannot be measured because diffused / reflected light from the living body is not emitted.

【0017】光量補償フィルタ10は、写真フィルムを
図4に示されるような減光率変化を示すパターンになる
ように露光して得ることができる。同心円状に露光量を
調節する1つの方法として、生体のようなものに実際に
1点から光を入射させ、その拡散透過反射光により写真
フィルムを露光する方法をあげることができる。減光率
を階段状に変化させるには、減光率の異なるフィルムを
同心円状に張り合わせばよい。本発明は光量補償フィル
タ10の作り方に限定されない。
The light amount compensating filter 10 can be obtained by exposing a photographic film so as to form a pattern showing a change in extinction ratio as shown in FIG. One method for concentrically adjusting the exposure amount is a method in which light is actually made incident on a living body from one point and the photographic film is exposed by the diffuse transmitted reflected light. In order to change the extinction ratio stepwise, films having different extinction ratios may be laminated concentrically. The present invention is not limited to how to make the light amount compensation filter 10.

【0018】この実施例では、図3に示されるように、
フィルタ10は被検体16に密着させて送光ファイバ1
2から測定光を照射する。被検体16からの拡散透過反
射光は、送光点の近くでは強く、送光点から離れるに従
って図2(B)に示されるように減衰する。しかし、図
4に示されるような減光特性をもつフィルタ10を被検
体16上に重ねて測定することによって、フィルタ10
を透過して出てきた被検体16の各部分からの光の強度
はほぼ同じレベルに補償されるため、同時に広い範囲の
測定が可能となる。測定データは予め知られているフィ
ルタ10の減光率で割ることにより復元される。
In this embodiment, as shown in FIG.
The filter 10 is in close contact with the subject 16 and the optical fiber 1
Irradiate measurement light from 2. The diffuse transmitted reflected light from the subject 16 is strong near the light-sending point and attenuates as it goes away from the light-sending point as shown in FIG. 2 (B). However, the filter 10 having the extinction characteristic as shown in FIG.
Since the intensities of the light from the respective portions of the subject 16 that have passed through and are emitted are compensated to almost the same level, it is possible to measure a wide range at the same time. The measurement data is restored by dividing it by the extinction rate of the filter 10 which is known in advance.

【0019】図3のようにフィルタ10に送光ファイバ
12を固定しておけば、送光点を移動させても周囲の減
光率が自動的に必要な値に設定される。遮光リング14
と送光ファイバ12の影になる部分は測定できないが、
それらの部分の情報は送光点を移動させれば得られるの
で、差し支えはない。
If the light transmitting fiber 12 is fixed to the filter 10 as shown in FIG. 3, even if the light transmitting point is moved, the surrounding extinction ratio is automatically set to a required value. Shading ring 14
Although the shadowed part of the optical fiber 12 cannot be measured,
The information of those parts can be obtained by moving the light transmitting point, so there is no problem.

【0020】図5は第2の実施例を表わしたものであ
る。(A)は概略斜視図、(B)は光学補償フィルタを
示す斜視図である。被検体16を二次元検出器18で直
接観測する代りに、ライトガイド20によって被検体1
6の二次元情報をいったん別の平面に導いて、その平面
から出る光を二次元検出器18で観測するようにしたも
のである。
FIG. 5 shows a second embodiment. (A) is a schematic perspective view and (B) is a perspective view showing an optical compensation filter. Instead of directly observing the subject 16 with the two-dimensional detector 18, the subject 1 is examined by the light guide 20.
The two-dimensional information 6 is once guided to another plane, and the light emitted from the plane is observed by the two-dimensional detector 18.

【0021】ライトガイド20は互いに相対的位置関係
を保って束ねられた複数本の光ファイバを持ち、その一
端面が被検体16に当接される。ライトガイド20の他
端面はライトガイド出入口面22となって、ライトガイ
ド走査部外箱24の一端面に導かれている。ライトガイ
ド出入口面22には光学補償フィルタ10が配置され、
光学補償フィルタ10の減光率変化の同心円の中心には
図3の実施例と同様に送光ファイバ12が固定されてい
る。ライトガイド20では被検体16と接する端面の光
ファイバの配列と、ライトガイド出入口面22での光フ
ァイバの配列は同じ配列となるように設定されており、
被検体16の像がライトガイド出入口面22に再現され
る。ライトガイド20と被検体16との接触面積とライ
トガイド出入口面22の面積は、必ずしも同じである必
要はなく、縮小又は拡大された画像としてライトガイド
出入口面22に再現されるようにしてもよい。
The light guide 20 has a plurality of optical fibers bundled in a relative positional relationship with each other, and one end surface of which comes into contact with the subject 16. The other end surface of the light guide 20 serves as a light guide entrance / exit surface 22 and is guided to one end surface of the light guide scanning unit outer box 24. The optical compensation filter 10 is arranged on the light guide entrance / exit surface 22,
The light transmitting fiber 12 is fixed to the center of the concentric circle of the change of the extinction ratio of the optical compensation filter 10 as in the embodiment of FIG. In the light guide 20, the arrangement of the optical fibers on the end surface which is in contact with the subject 16 and the arrangement of the optical fibers on the light guide entrance / exit surface 22 are set to be the same.
The image of the subject 16 is reproduced on the light guide entrance / exit surface 22. The contact area between the light guide 20 and the subject 16 and the area of the light guide entrance / exit surface 22 do not necessarily have to be the same, and may be reproduced on the light guide entrance / exit surface 22 as a reduced or enlarged image. .

【0022】ライトガイド走査部外箱24内にはフィル
タ10を介してライトガイド出入口面22と対向して二
次元検出器18が配置されている。送光ファイバ12か
ら出る光はライトガイド20のうちの1本の光ファイバ
を介して被検体16に送光され、残りの光ファイバが受
光ファイバの役割を果たす。
A two-dimensional detector 18 is disposed inside the light guide scanning unit outer box 24 so as to face the light guide entrance / exit surface 22 via the filter 10. The light emitted from the light transmitting fiber 12 is transmitted to the subject 16 via one optical fiber of the light guide 20, and the remaining optical fibers function as a light receiving fiber.

【0023】フィルタ10を矢印のように縦方向と横方
向に移動させて送光点を走査することができる。このよ
うにしてライトガイド20の光ファイバの全ての光ファ
イバから順に送光したときの多数の拡散透過反射光の二
次元的な画像が得られ、これを内部の吸収体の分布を求
める計算の原データとなすことができる。
The light transmitting point can be scanned by moving the filter 10 in the vertical and horizontal directions as indicated by the arrow. In this way, a two-dimensional image of a large number of diffuse transmitted / reflected light when light is sequentially transmitted from all the optical fibers of the light guide 20 is obtained, and the two-dimensional image is obtained by calculation for obtaining the distribution of the absorber inside. Can be made with raw data.

【0024】図5の実施例ではライトガイド20を設け
たことにより、(1)被検体16の表面が平面でなくて
も適用できること、(2)被検体16に密着したライト
ガイド20を固定したままで、ライトガイド出入口面2
2の平面で送光ファイバを切り換えることにより送光点
を走査できること、及び(3)遮光が容易なこと、の3
つの利点をもつ。図5の実施例では二次元検出器18に
代えて独立した検出器を必要数並べ、それらの検出器を
ライトガイド22の各光ファイバに一対一に対応させる
ようにしてもよい。
In the embodiment of FIG. 5, by providing the light guide 20, (1) it can be applied even if the surface of the subject 16 is not flat, and (2) the light guide 20 in close contact with the subject 16 is fixed. Until now, light guide entrance / exit surface 2
3) that the light-sending point can be scanned by switching the light-sending fiber on the plane 2 and that (3) it is easy to shield light
It has one advantage. In the embodiment shown in FIG. 5, a required number of independent detectors may be arranged instead of the two-dimensional detector 18, and these detectors may be made to correspond one-to-one to the respective optical fibers of the light guide 22.

【0025】[0025]

【発明の効果】本発明では光量補償フィルタを設けるこ
とによって二次元検出器を用いた拡散透過反射測定が可
能になり、多数の測定点情報を同時に得ることができ、
効率がよくなる。請求項2の本発明は拡散反射測定に利
用した場合に、次のような効果を達成することができ
る。(1)被検体の表面が平面でなくても適用できるこ
と、(2)被検体に密着したライトガイドを固定したま
まで、ライトガイド出入口面の平面で送光ファイバを切
り換えることにより送光点を走査できること、及び遮光
が容易なこと。そして、それにさらに光量補償フィルタ
を設けることによって、拡散透過反射測定に利用するこ
とができるようになる。送光手段の光ファイバを光量補
償フィルタに固定することによって、送光点の周りの減
光特性を維持したままで送光点を走査することができる
ようになる。
According to the present invention, by providing a light quantity compensation filter, it becomes possible to perform diffuse transmission reflection measurement using a two-dimensional detector, and it is possible to obtain a large number of measurement point information at the same time.
Efficiency is improved. The present invention according to claim 2 can achieve the following effects when used for diffuse reflectance measurement. (1) It can be applied even if the surface of the subject is not flat. (2) The light-sending point can be changed by switching the light-sending fiber on the flat surface of the light guide entrance / exit surface while keeping the light guide in close contact with the subject. Being able to scan and easy to block light. Then, by further providing a light amount compensation filter, it can be used for diffuse transmission / reflection measurement. By fixing the optical fiber of the light transmitting means to the light amount compensation filter, it becomes possible to scan the light transmitting point while maintaining the dimming characteristic around the light transmitting point.

【図面の簡単な説明】[Brief description of drawings]

【図1】拡散透過反射法(A)と拡散反射法(B)を比
較して説明する断面図である。
FIG. 1 is a cross-sectional view for comparing and explaining a diffuse transmission reflection method (A) and a diffuse reflection method (B).

【図2】拡散透過反射光の強度を送光点からの距離の関
係で示した図であり、(A)は拡散透過反射を模式的に
示す図、(B)は計算結果を示す図である。
2A and 2B are diagrams showing the intensity of diffuse transmitted reflected light in relation to the distance from a light transmitting point, FIG. 2A is a diagram schematically showing diffuse transmitted reflected light, and FIG. 2B is a diagram showing calculation results. is there.

【図3】第1の実施例を示す斜視図である。FIG. 3 is a perspective view showing a first embodiment.

【図4】同実施例における光量補償フィルタの減光特性
を示す図である。
FIG. 4 is a diagram showing a dimming characteristic of a light quantity compensation filter in the embodiment.

【図5】第2の実施例を示す図であり、(A)は概略斜
視図、(B)は光量補償フィルタを示す斜視図である。
5A and 5B are diagrams showing a second embodiment, wherein FIG. 5A is a schematic perspective view and FIG. 5B is a perspective view showing a light amount compensation filter.

【符号の説明】[Explanation of symbols]

10 光量補償フィルタ 12 送光ファイバ 14 遮光リング 16 被検体 18 二次元検出器 20 ライトガイド 10 Light Compensation Filter 12 Optical Fiber 14 Light-shielding Ring 16 Subject 18 Two-dimensional Detector 20 Light Guide

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検体の一点の送光点から被検体に測定
光を照射する送光手段と、送光点から離れた被検体上の
多数の受光点から出る測定光の拡散透過反射光を検出す
る二次元検出器と、被検体と二次元検出器との間に設け
られ、送光点から外側に向って送光点から離れるほど減
光率が減少する光量補償フィルタと、を備えたことを特
徴とする光学的生体測定装置。
1. A light transmitting means for irradiating a subject with measuring light from one light transmitting point of the subject, and diffuse transmission reflection light of the measuring light emitted from a large number of light receiving points on the subject distant from the light transmitting point. A two-dimensional detector that detects the light, and a light amount compensation filter that is provided between the subject and the two-dimensional detector, and that the extinction rate decreases toward the outside from the light-sending point and away from the light-sending point. An optical biometric device characterized by the above.
【請求項2】 互いに相対的位置関係を保って束ねられ
た複数本の導光路をもち、一端面が被検体に対向して配
置されるライトガイドと、ライトガイドの他端面からそ
のライトガイドの1本の導光路を介して被検体に測定光
を照射する送光手段と、ライトガイドの他端面に対向
し、ライトガイドの他端面での送光用の導光路以外の導
光路から出る測定光の拡散透過反射光を検出する二次元
検出器と、を備えたことを特徴とする光学的生体測定装
置。
2. A light guide having a plurality of light guide paths bundled in a relative positional relationship with each other, one end surface of which is arranged to face a subject, and another light guide from the other end surface of the light guide. A light-transmitting means for irradiating a subject with measurement light through one light guide path, and a measurement exiting from a light guide path opposite to the other end surface of the light guide and other than the light guide path for light transmission at the other end surface of the light guide. An optical biometric device, comprising: a two-dimensional detector that detects diffuse transmitted / reflected light.
【請求項3】 ライトガイドの前記他端面と二次元検出
器との間に、中心から外側に向って減光率が減少する光
量補償フィルタをさらに設けた請求項2に記載の光学的
生体測定装置。
3. The optical biometric measurement according to claim 2, further comprising a light amount compensation filter having a reduced extinction ratio from the center to the outside between the other end surface of the light guide and the two-dimensional detector. apparatus.
【請求項4】 送光手段は光源からの測定光を導く送光
ファイバを備えており、その送光ファイバが光量補償フ
ィルタの一部に固定又は連動され、光量補償フィルタと
送光ファイバが同時に移動させられて送光点の走査が行
なわれる請求項1又は3に記載の光学的生体測定装置。
4. The light transmitting means is provided with a light transmitting fiber for guiding the measuring light from the light source, and the light transmitting fiber is fixed or linked to a part of the light amount compensating filter, and the light amount compensating filter and the light transmitting fiber are simultaneously provided. The optical biometric device according to claim 1 or 3, wherein the optical biometric device is moved to scan the light transmitting point.
JP33004093A 1993-11-30 1993-11-30 Optical biometric device Expired - Fee Related JP3241516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33004093A JP3241516B2 (en) 1993-11-30 1993-11-30 Optical biometric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33004093A JP3241516B2 (en) 1993-11-30 1993-11-30 Optical biometric device

Publications (2)

Publication Number Publication Date
JPH07148170A true JPH07148170A (en) 1995-06-13
JP3241516B2 JP3241516B2 (en) 2001-12-25

Family

ID=18228104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33004093A Expired - Fee Related JP3241516B2 (en) 1993-11-30 1993-11-30 Optical biometric device

Country Status (1)

Country Link
JP (1) JP3241516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119130A1 (en) * 2016-01-08 2017-07-13 株式会社三菱ケミカルホールディングス Non-invasive biological lipid measuring instrument and non-invasive biological lipid measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119130A1 (en) * 2016-01-08 2017-07-13 株式会社三菱ケミカルホールディングス Non-invasive biological lipid measuring instrument and non-invasive biological lipid measuring method
JPWO2017119130A1 (en) * 2016-01-08 2018-11-08 株式会社三菱ケミカルホールディングス Non-invasive biological lipid measuring instrument and non-invasive biological lipid measuring method

Also Published As

Publication number Publication date
JP3241516B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
CA1247397A (en) Spectrophotometric method and apparatus for the non- invasive determination of glucose in body tissues
JP3035336B2 (en) Blood flow measurement device
US5241369A (en) Two-dimensional optical scatterometer apparatus and process
US5529065A (en) Method for measuring scattering medium and apparatus for the same
US8346347B2 (en) Skin optical characterization device
JP3617576B2 (en) Optical measuring device for light scatterers
EP0627620A1 (en) Method for measuring internal information in scattering medium and apparatus for the same
US4703187A (en) Method and apparatus for the determination of the thickness of transparent layers of lacquer
EP0569104A1 (en) Portable spectrophotometer
US20060056661A1 (en) Method and device for recognition of natural skin
KR960012329B1 (en) Surface inspection method and device with irradiation
JPH09206283A (en) Device for measuring light reflection
US20070052967A1 (en) Method and apparatus for optical interactance and transmittance measurements
JP2000512764A (en) Inspection apparatus using small-angle topographic method for determining internal structure and composition of object
US5811824A (en) Method and an apparatus for testing whether a diamond has a layer of synthetic diamond deposited thereon
JPH08322821A (en) Optical measurement instrument for light absorber
US4725139A (en) Method and apparatus for detecting defects in transparent materials
JPH11230901A (en) Measuring apparatus for reflection of light
JPH07143967A (en) Method and apparatus for measuring light transmissivity of skin
JP3241516B2 (en) Optical biometric device
JP4470939B2 (en) Biospectrum measurement device
US20040092822A1 (en) Diffuse reflectance spectroscopy
CN113303792B (en) Organization division non-invasive detection method, device and system and wearable equipment
JPH10160570A (en) Powder atr measuring method, device therefor, and infrared spectrophotometer
JPH08182654A (en) Light transmissivity measurement device for skin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees