JPH07147986A - Human parvovirus gene, polypeptide coded with the same and use - Google Patents

Human parvovirus gene, polypeptide coded with the same and use

Info

Publication number
JPH07147986A
JPH07147986A JP4281017A JP28101792A JPH07147986A JP H07147986 A JPH07147986 A JP H07147986A JP 4281017 A JP4281017 A JP 4281017A JP 28101792 A JP28101792 A JP 28101792A JP H07147986 A JPH07147986 A JP H07147986A
Authority
JP
Japan
Prior art keywords
gly
leu
ser
thr
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4281017A
Other languages
Japanese (ja)
Inventor
Osamichi Yamazaki
修道 山崎
Yasuko Matsunaga
泰子 松永
Naokazu Takeda
直和 武田
Zenji Matsuura
善治 松浦
Hiroyuki Ogawa
博之 小川
Hideharu Shimizu
英晴 清水
Kunio Kamata
公仁夫 鎌田
Daisuke Kurosawa
大介 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Denka Seiken Co Ltd
Original Assignee
Denka Seiken Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Seiken Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Seiken Co Ltd
Priority to JP4281017A priority Critical patent/JPH07147986A/en
Publication of JPH07147986A publication Critical patent/JPH07147986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To provide the gene coding a human parvovirus (HPV) antigen protein, enabling to massively produce the antigen protein, capable of being utilized for the high sensitive measurement of the HPV and the HPV-resistant antibody in a specimen, and useful for the diagnoses of HPV-originated diseases, etc. CONSTITUTION:The serum of a patient infected with infectious erythema is diluted with a phosphate-buffered physiological saline (pH: 7.2), mixed with proteinase K and sodium dodecyl sulfate, subjected to their reaction at 37 deg.C for 1hr, mixed with phenol, chloroform and isoamyl alcohol, and subsequently centrifuged to recover the supernatant liquid. The supernatant liquid is added to ethanol and subsequently allowed to stand at -20 deg.C to obtain the precipitates of human parvovirus DNA. The DNA is multiplied by a PCR method, and then treated with a restriction enzyme to obtain the objective human parvovirus gene enabling the mass production of the human parvovirus antigen protein and enabling the measurement the human parvovirus or the human parvovirus- resistant antibody in a specimen in high sensitivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、急性赤芽球ろう、慢性
骨髄不全、流産、胎児水腫、肝障害、出血熱、関節炎や
リウマチなど種々の疾患の病因にかかわる新規なヒトパ
ルボウイルスの遺伝子、それがコードするポリペプチド
及びその用途に関する。
FIELD OF THE INVENTION The present invention relates to a novel human parvovirus gene involved in the pathogenesis of various diseases such as acute erythroblast wax, chronic bone marrow failure, abortion, fetal edema, liver injury, hemorrhagic fever, arthritis and rheumatism. , A polypeptide it encodes and its use.

【0002】[0002]

【従来の技術】パルボウイルスは、一本鎖の直鎖DNA
ゲノムを有し、ゲノムの各末端はパリンドロミック(Pa
llindromic)DNA配列の存在により、特徴的なヘアピ
ンループ構造を持つ最小のウイルス群(Parvoviridae
科)に属する。
2. Description of the Related Art Parvovirus is a single-stranded linear DNA.
It has a genome, and each end of the genome has a palindromic (Pa
llindromic) DNA sequence, the smallest virus group (Parvoviridae) with a characteristic hairpin loop structure.
Family).

【0003】Parvoviridae科ウイルスの粒子は立方対称
形で、Cubic symmetry を示し、32個のキャプソメア
(capsomere )を持ち、直径約20〜25nm の小型のウイ
ルスで、エンベロープを保有せず、エーテル抵抗性であ
る。また熱、乾燥などに比較的耐性のウイルスである
〔Intervirology,23,61-73(1985)〕。ウイルスの複製と
カプシッドの形成は感染細胞の核内で行われる。
Parvoviridae virus particles have a cubic symmetry, exhibit Cubic symmetry, have 32 capsomeres, are small viruses with a diameter of about 20-25 nm, do not have an envelope, and are ether-resistant. is there. It is also a virus that is relatively resistant to heat and drying [Intervirology, 23, 61-73 (1985)]. Viral replication and capsid formation occur in the nucleus of infected cells.

【0004】脊椎動物のパルボウイルスは自律性及び欠
損性の群に分類される。
Vertebrate parvoviruses are divided into autonomous and defective groups.

【0005】自律性のパルボウイルス<パルボウイルス
属(Parvovirus)>は、宿主細胞に複製を継続しうる
が、欠損性のパルボウイルス<デペンドウイルス(Depe
ndovirus)>はヘルパーウイルスによるコインフェクシ
ョンが必要となる。自律性の動物パルボウイルスには、
ウシ(BPV )、ブタ(PPV )、イヌ(CPV)、ネコ(FPL
V)、ラット(H-1 )、ミンク(ADV )、及びヒト(HPV
)が知られており、一般に病原性は似ているがこれら
のウイルス間で免疫学的な交叉性は見出されていない。
そこで、ヒトパルボウイルスの診断や疫学調査さらに
ワクチンの開発を行う場合、そのウイルスがヒトパルボ
ウイルス由来であることが重要である。
The autonomous parvovirus <Parvovirus> can continue to replicate in the host cell, but the defective parvovirus <Depevirus (Depevirus)
ndovirus)> requires coinfection by a helper virus. Autonomous animal parvoviruses include:
Bovine (BPV), Pig (PPV), Dog (CPV), Cat (FPL)
V), rat (H-1), mink (ADV), and human (HPV
) Are known, and generally have similar pathogenicity, but no immunological cross-reactivity has been found between these viruses.
Therefore, it is important that the virus is derived from human parvovirus when diagnosing the human parvovirus, conducting an epidemiological survey and developing a vaccine.

【0006】ヒトパルボウイルスは、1975年に輸血用血
液中に偶然発見された〔Lancet,i:72-73(1975)〕が、病
原性は不明であった。その後、鎌状赤血球貧血に生じた
急性赤芽球ろうがヒトパルボウイルスによるものである
ことが報告された〔Lancet,i:664-665(1981)〕。また、
小児に流行する伝染性紅斑症の病因ウイルスであること
が確認され〔Lancet,i:1378(1983) 〕、それが感染源と
なり成人にも感染が及び、関節炎を主症状とする病気が
起こることが分かった。さらに伝染性紅斑流行後に胎児
水腫で流産した症例が報告され〔Lancet,ii:1033-1034
(1984) 〕、妊婦のヒトパルボウイルス感染が死産や胎
児水腫の原因となることが証明され、わが国においても
ヒトパルボウイルス感染による胎児死亡例が報告された
〔日本産婦人科学会誌,40:99-100(1988)〕。そして、健
常成人においても、不定の発疹症、出血熱様疾患、関節
炎の原因となるところが知られ〔医学の歩み,142:530-5
32(1987)〕、最近ではリウマチとの関係も推測されてい
る〔Arch.Intern.Med.148:2587-2589(1988) 〕。
Human parvovirus was accidentally found in blood for transfusion in 1975 [Lancet, i: 72-73 (1975)], but its pathogenicity was unknown. Subsequently, it was reported that the acute erythroblast wax that occurred in sickle cell anemia was due to human parvovirus [Lancet, i: 664-665 (1981)]. Also,
It has been confirmed that it is a causative virus of erythema infectious disease that prevails in children [Lancet, i: 1378 (1983)], and it becomes a source of infection, which also affects adults and causes diseases with arthritis as the main symptom. I understood. Furthermore, a case of abortion due to fetal edema was reported after the epidemic of contagious erythema [Lancet, ii: 1033-1034].
(1984)], it was proved that human parvovirus infection in pregnant women causes stillbirth and edema of the fetus, and fetal death cases due to human parvovirus infection were also reported in Japan [Journal of Obstetrics and Gynecology, 40:99]. -100 (1988)]. And even in healthy adults, it is known to cause indefinite eruption, hemorrhagic fever-like disease, and arthritis [History of Medicine, 142: 530-5
32 (1987)], and recently, a relationship with rheumatism has been speculated [Arch.Intern.Med.148: 2587-2589 (1988)].

【0007】以上のように、ヒトパルボウイルスは、臨
床的にきわめて興味深いウイルスであり、人の生命に影
響を与えることもありうることから、治療や予防対策の
必要性が明確となってきている。
[0007] As described above, human parvovirus is a clinically extremely interesting virus and may affect human life. Therefore, the necessity of treatment and preventive measures has become clear. .

【0008】しかしながら、ヒトパルボウイルスは、人
の初代骨髄細胞を用いイン ビトロでの培養からはじま
り、慢性骨髄性白血病の患者から得られた赤血球細胞や
胎児肝細胞中の赤芽細胞を用いた培養が可能であるが、
産業上利用するに充分な培養系はまだ見つかっていな
い。そのため、ヒトパルボウイルス抗原の取得が困難で
あり、診断系の一般化が遅れており、臨床検査が容易に
行えないのが現状である。
[0008] However, human parvovirus started from in vitro culture using human primary bone marrow cells, and culture using red blood cells obtained from patients with chronic myelogenous leukemia or erythroblasts in fetal liver cells. Is possible, but
A culture system sufficient for industrial use has not yet been found. Therefore, it is difficult to obtain the human parvovirus antigen, the generalization of the diagnostic system has been delayed, and clinical tests cannot be easily performed at present.

【0009】一般的にヒトパルボウイルスは経鼻感染に
より起こるが、非日常的には輸血と血液製剤の注入によ
り感染する。感染標的細胞は赤芽球系の前駆細胞である
ことがイン ビトロの造血幹細胞培養系で証明された
〔Nature,302:426-429(1983)〕。
Human parvovirus is generally caused by nasal infection, but it is unusually transmitted by blood transfusion and infusion of blood products. It was proved in the in vitro hematopoietic stem cell culture system that the infected target cells were erythroid progenitor cells [Nature, 302: 426-429 (1983)].

【0010】ヒトパルボウイルスが感染した場合、1周
間後にウイルス血症となるが発熱、筋肉痛、倦怠感が現
れるだけで、感染後約2〜3週間目から紅斑や関節痛等
の症状が観察される。これらの症状はウイルス抗体によ
る免疫複合体によるものであると考えられている。その
ため、症状が現れる頃にはウイルスは殆ど駆逐されてい
るため、ウイルス抗原の検出は困難である。
When infected with human parvovirus, viremia occurs after one week, but fever, myalgia, and malaise only appear, and symptoms such as erythema and arthralgia appear from about 2 to 3 weeks after infection. To be observed. These symptoms are believed to be due to immune complexes with viral antibodies. Therefore, it is difficult to detect the viral antigen because the virus is almost exterminated when the symptoms appear.

【0011】従ってヒトパルボウイルス感染の証明は、
ウイルス抗原の検出が困難であるため、血清中に抗ヒト
パルボウイルス抗体を検出することによって行われてい
る。
Therefore, the proof of human parvovirus infection is
Since it is difficult to detect viral antigens, it is performed by detecting anti-human parvovirus antibody in serum.

【0012】ヒトパルボウイルスの診断は、伝染性紅斑
流行時のウイルス血症の血清より、ウイルス粒子を精製
し、それを抗原として、抗原抗体反応系を用いた以下の
方法により限られた施設で行われているにすぎない。免
疫電気向流法〔医学の歩み,135:317-318(1985)〕、エン
ザイムイムノアッセイ法〔医学の歩み,134:909-910(198
5)〕、ラジオイムノアッセイ法〔感染症学雑誌,58:1213
-1220(1985) 〕。しかし、免疫電気向流法は検出感度が
低く、エンザイムイムノアッセイ法やラジオイムノアッ
セイ法を用いた場合ウイルス抗原量の不足が問題にな
る。
Diagnosis of human parvovirus is carried out at a limited number of facilities by the following method using an antigen-antibody reaction system in which virus particles are purified from the sera of viremia during the epidemic of infectious erythema. It's just happening. Immuno-electric countercurrent method (medical history, 135: 317-318 (1985)), enzyme immunoassay method (medical history, 134: 909-910 (198)
5)], Radioimmunoassay [Journal of Infectious Diseases, 58: 1213
-1220 (1985)]. However, the immunoelectric countercurrent method has a low detection sensitivity, and when an enzyme immunoassay method or a radioimmunoassay method is used, the lack of the amount of viral antigen becomes a problem.

【0013】このような状況から、有用かつ大量のウイ
ルス抗原の取得がヒトパルボウイルスの診断系の開発に
有用かつ不可欠である。
Under such circumstances, the acquisition of a useful and large amount of viral antigen is useful and indispensable for the development of a diagnostic system for human parvovirus.

【0014】一般的にウイルス抗原の取得方法は、細胞
培養でウイルスを増殖させる方法、もしくは、遺伝子組
換え法、たとえばウイルス遺伝子をクローニングして、
抗原蛋白や非感染性のウイルス粒子を大量に発現させる
方法に大別される。
In general, a method for obtaining a viral antigen is a method in which a virus is propagated in a cell culture, or a gene recombination method, for example, cloning a viral gene,
It is roughly classified into a method of expressing a large amount of an antigen protein and non-infectious virus particles.

【0015】細胞培養系は、慢性骨髄性白血病の患者か
ら得られた赤芽球系細胞〔J.Infect.Dis.160:548(198
9)〕、胎児肝細胞中の赤芽球細胞〔J.Virol.63:2422-24
26(1989)〕など限定的な細胞系のみで培養が可能であ
る。しかしウイルスの回収率はきわめて低く、また、通
常の骨髄中にはウイルス標的細胞がきわめて少なく、新
鮮初代培養以外の培養が困難であり、細胞培養系は使用
範囲に制限がある。最近、株化細胞の1つに感受性が確
認されたが、この系ではウイルスの増殖率はきわめて低
い〔臨床と微生物,16:177-186(1989) 〕。この様に、ヒ
トパルボウイルスの細胞培養系を用いた方法で、ヒトパ
ルボウイルス抗原を有用かつ大量に取得することは不可
能である。
The cell culture system is erythroid cells [J. Infect. Dis. 160: 548 (198) obtained from a patient with chronic myelogenous leukemia.
9)], erythroblast cells in fetal liver cells [J. Virol. 63: 2422-24
26 (1989)] and can be cultured only in a limited cell line. However, the virus recovery rate is extremely low, and the number of virus target cells in normal bone marrow is extremely low, making it difficult to culture other than fresh primary culture, and the cell culture system has a limited range of use. Recently, sensitivity to one of the established cell lines was confirmed, but the growth rate of the virus is extremely low in this system [Clinical and Microbial, 16: 177-186 (1989)]. Thus, it is impossible to obtain a useful and large amount of human parvovirus antigen by the method using the human parvovirus cell culture system.

【0016】一方、遺伝子組換え法によってウイルス抗
原を有用かつ大量に発現させて取得するためには、ヒト
パルボウイルスの遺伝子が必要である。現在、ヒトパル
ボウイルスに感染した鎌形赤血球貧血患者血清由来のヒ
トパルボウイルスB19株遺伝子の全配列が報告されて
いる〔J.Virol.,58:921-936(1986) 〕。この米国でクロ
ーン化されたヒトパルボウイルス遺伝子の塩基配列の解
析から、ウイルス構造蛋白質としてウイルス粒子を構成
するのは、VP−1(分子量約84KDa )及びVP−2
(分子量約58KDa )の2種類の蛋白質のみであり、ヒト
パルボウイルスに感染した宿主がこれらVP−1及びV
P−2を標的として抗原抗体反応を惹起することが確か
められている〔J.Virol.,61:2627(1987)〕。
On the other hand, the human parvovirus gene is required for obtaining useful and large-scale expression of viral antigens by the gene recombination method. At present, the entire sequence of the human parvovirus B19 strain gene derived from sickle cell anemia patient sera infected with human parvovirus has been reported [J. Virol., 58: 921-936 (1986)]. From the analysis of the nucleotide sequence of the human parvovirus gene cloned in the United States, it is found that VP-1 (molecular weight about 84 KDa) and VP-2 constitute viral particles as viral structural proteins.
There are only two types of proteins (molecular weight of about 58 KDa), and the host infected with human parvovirus can detect these VP-1 and V
It has been confirmed that the antigen-antibody reaction is induced by targeting P-2 [J. Virol., 61: 2627 (1987)].

【0017】そこで、伝染性紅斑患者血清からPCR法
によりヒトパルボウイルス構造蛋白遺伝子の一部を増幅
し、クローニングした報告例〔特開平4−88985〕
やヒトパルボウイルス構造タンパク質遺伝子の一部の遺
伝子領域から、大腸菌で発現させた抗原によるエンザイ
ムイムノアッセイを用いた報告例〔J.Clin.Microbiol.,
30:305-311(1992)〕がある。
Therefore, a report example in which a part of the human parvovirus structural protein gene was amplified from the serum of an infectious erythema patient by the PCR method and cloned [JP-A-4-88985]
And a partial gene region of the human parvovirus structural protein gene, a reported example using an enzyme immunoassay with an antigen expressed in Escherichia coli [J. Clin. Microbiol.,
30: 305-311 (1992)].

【0018】しかし、これらはヒトパルボウイルス構造
遺伝子の一部分の報告例であり、ヒトパルボウイルス構
造タンパク質の一部分を利用したにすぎない。そして、
このエンザイムイムノアッセイを用いたヒトパルボウイ
ルス抗体検出は、伝染性紅斑患者血清より精製したヒト
パルボウイルス粒子を抗原として用いたRIAよりも検
出率が低くかった。
However, these are reported examples of a part of the human parvovirus structural gene, and utilize only a part of the human parvovirus structural protein. And
The human parvovirus antibody detection using this enzyme immunoassay had a lower detection rate than RIA using human parvovirus particles purified from the serum of an infectious erythema patient as an antigen.

【0019】[0019]

【発明が解決しようとする課題】従って、本発明の目的
は、ヒトパルボウイルス抗原蛋白の大量培養を可能に
し、また、高感度に検体中のヒトパルボウイルス又は抗
ヒトパルボウイルス抗体を測定することを可能たらしめ
る手段を提供することである。
Therefore, an object of the present invention is to enable large-scale culture of human parvovirus antigen protein and to measure human parvovirus or anti-human parvovirus antibody in a sample with high sensitivity. It is to provide a means to make possible.

【0020】[0020]

【課題を解決するための手段】そこで、本発明者らは、
ヒトパルボウイルスの非構造遺伝子及び構造遺伝子をコ
ードする遺伝子領域を得るため検討した結果、従来公知
のヒトパルボウイルス遺伝子と、アミノ酸レベル及びD
NAレベルでいくつか構造の異なる新規な、また診断系
の開発に有用な、たとえばヒトパルボウイルスのウイル
ス粒子様構造物(Empty particle) の作製も可能な、非
構造遺伝子及び構造遺伝子を含むヒトパルボウイルス遺
伝子領域を得ることができ、かつこの遺伝子領域から発
現させた完全長の構造タンパク質VP−1、VP−2に
よるエンザイムイムノアッセイを用いた検討の結果、ヒ
トパルボウイルスの構造タンパク質VP−1とVP−2
の免疫学的反応の違いを見出し、さらに Empty particl
e を用いたエンザイムイムノアッセイが、ヒトパルボウ
イルス粒子を用いたエンザイムイムノアッセイと同等な
検出感度及び特異性であることを見いだし、さらに昆虫
細胞Sf9よりTn5の方がヒトパルボウイルス蛋白の
発現量が多いことを見いだし、本発明を完成するに至っ
た。
Therefore, the present inventors have
As a result of an examination to obtain a gene region encoding a non-structural gene and a structural gene of human parvovirus, it was found that the known human parvovirus gene, amino acid level and D
Human parvo containing a non-structural gene and a structural gene, which is useful for the development of a novel and diagnostic system having several structures different at the NA level and is capable of producing, for example, an empty particle of human parvovirus (Empty particle) As a result of the examination using the enzyme immunoassay with the full-length structural proteins VP-1 and VP-2 capable of obtaining the viral gene region and expressed from this gene region, the human parvovirus structural proteins VP-1 and VP were found. -2
Of immunological reaction of
It was found that the enzyme immunoassay using e had the same detection sensitivity and specificity as the enzyme immunoassay using human parvovirus particles, and that Tn5 expressed more human parvovirus protein than insect cell Sf9. The present invention has been completed and the present invention has been completed.

【0021】すなわち、本発明は、上記式(1)で表さ
れるヒトパルボウイルス遺伝子を提供する。また、本発
明は、上記式(2)のアミノ酸配列をコードするヒトパ
ルボウイルスVP―1構造遺伝子を提供する。さらに、
本発明は、上記式(3)のアミノ酸配列をコードするヒ
トパルボウイルスVP―2構造遺伝子を提供する。ま
た、本発明は、上記式(4)のアミノ酸配列をコードす
るヒトパルボウイルス非構造(NS)遺伝子を提供す
る。さらに本発明は、上記本発明のいずれかの遺伝子を
含み、宿主細胞内で該遺伝子を発現することができる組
換えベクターを提供する。さらにまた、本発明は、上記
本発明の組換えベクターにより形質転換された形質転換
体を提供する。また、本発明は、前記式(2)ないし
(4)のいずれかで示されるアミノ酸配列を有するポリ
ペプチドを提供する。さらに、本発明は、これらのポリ
ペプチドから構成されるヒトパルボウイルスのウイルス
粒子様構造物を提供する。また、本発明は、上記本発明
のいずれかのポリペプチド又は上記本発明のウイルス粒
子様構造物を免疫原として用いて抗体を作製し、該抗体
を用いる免疫測定により検体中のヒトパルボウイルスを
検出する方法を提供する。さらに、本発明は、上記本発
明のいずれかのポリペプチド又は上記本発明のウイルス
粒子様構造物を抗原として用い、免疫測定法により検体
中の抗ヒトパルボウイルス抗体を検出する方法を提供す
る。さらに、本発明は、上記式(1)で示される遺伝子
の一部とそれぞれハイブリダイズする1対のオリゴヌク
レオチドを用いてPCR法により式(1)で示される遺
伝子又はその一部を増幅し、該増幅された遺伝子又はそ
の一部を検出することから成る、検体中のヒトパルボウ
イルスの検出方法を提供する。
That is, the present invention provides the human parvovirus gene represented by the above formula (1). The present invention also provides a human parvovirus VP-1 structural gene encoding the amino acid sequence of the above formula (2). further,
The present invention provides a human parvovirus VP-2 structural gene encoding the amino acid sequence of the above formula (3). The present invention also provides a human parvovirus nonstructural (NS) gene encoding the amino acid sequence of the above formula (4). The present invention further provides a recombinant vector containing any of the above genes of the present invention and capable of expressing the gene in a host cell. Furthermore, the present invention provides a transformant transformed with the above recombinant vector of the present invention. The present invention also provides a polypeptide having the amino acid sequence represented by any of the above formulas (2) to (4). Furthermore, the present invention provides virion-like structures of human parvoviruses composed of these polypeptides. The present invention also provides an antibody using any of the polypeptides of the present invention or the virus particle-like structure of the present invention as an immunogen, and detects human parvovirus in a sample by immunoassay using the antibody. Provide a way to detect. Further, the present invention provides a method for detecting an anti-human parvovirus antibody in a sample by an immunoassay using the above-mentioned polypeptide of the present invention or the above-mentioned virus particle-like structure of the present invention as an antigen. Furthermore, the present invention uses a pair of oligonucleotides each hybridizing with a part of the gene represented by the above formula (1) to amplify the gene represented by the formula (1) or a part thereof by the PCR method, A method for detecting human parvovirus in a sample, which comprises detecting the amplified gene or a part thereof.

【0022】後でより詳細に説明するが、上記式(1)
ないし(4)で示される遺伝子の塩基配列は従来から公
知のヒトパルボウイルス遺伝子の塩基配列とは異なって
おり、新規なものである。この完全長遺伝子を利用して
ポリペプチドを発現させ、それを利用した免疫測定によ
り検体中のヒトパルボウイルス又は抗ヒトパルボウイル
ス抗体の検出を感度良く行うことができる。なお、これ
らの遺伝子は、各式に記載した完全長のものを用いるこ
とが好ましいが、これらの一部を欠いていても同程度に
高感度の検出が可能と成ることがあろうことは当業者に
よって議論の余地なく認識されることである。従って、
これらの遺伝子の一部が欠失し、置換し又は挿入があっ
たとしても、式(1)ないし(4)の遺伝子と同様に用
いることができるものは式(1)ないし(4)に記載さ
れたものと実質的に同一であり、本発明の範囲内に入る
ものと解釈する。
As will be described in more detail later, the above equation (1)
The nucleotide sequences of the genes represented by (4) to (4) are novel because they are different from the nucleotide sequences of the conventionally known human parvovirus genes. By using this full-length gene to express a polypeptide and immunoassay using the gene, human parvovirus or anti-human parvovirus antibody in a sample can be detected with high sensitivity. In addition, although it is preferable to use the full-length genes described in each formula as described above, it is possible that even if a part of these genes is lacking, detection can be performed with the same high sensitivity. It is undisputedly recognized by the vendor. Therefore,
Even if some of these genes are deleted, substituted or inserted, those that can be used in the same manner as the genes of formulas (1) to (4) are described in formulas (1) to (4). It is substantially the same as what was done and is intended to fall within the scope of the present invention.

【0023】上述のように、本発明は、上記本発明の遺
伝子を含み、宿主細胞内で該遺伝子を発現することがで
きる組換えベクターを提供する。このような組換えベク
ターは、市販のベクターのクローニング部位に上記遺伝
子を常法により挿入することにより容易に調製すること
ができる。ベクターとしては、pUC19のような大腸
菌用ベクターを用いることもできるし、また、後述の実
施例で明らかになるように、バキュロウイルスベクター
(J. General Virology, Vol.68, pp.1233-1250, 1987)
を用いることも好ましい。
As described above, the present invention provides a recombinant vector containing the gene of the present invention and capable of expressing the gene in a host cell. Such a recombinant vector can be easily prepared by inserting the above gene into the cloning site of a commercially available vector by a conventional method. As the vector, a vector for E. coli such as pUC19 can be used, and as will be apparent from the examples described below, a baculovirus vector (J. General Virology, Vol.68, pp.1233-1250, (1987)
It is also preferable to use.

【0024】本発明の形質転換体は、上記本発明の組換
えベクターで宿主細胞を常法により形質転換することに
より得られる。宿主細胞は、構築した組換えベクターの
宿主を利用する。すなわち、大腸菌用ベクターに遺伝子
を挿入して組換えベクターを構築した場合には大腸菌が
宿主となる。また、バキュロウイルスベクターを用いて
組換えベクターを構築した場合には昆虫細胞を好ましく
用いることができる。昆虫細胞としては特にTn5(In
vitrogen社製High Five (商品名))が好ましく用いら
れる。
The transformant of the present invention can be obtained by transforming a host cell with the above-mentioned recombinant vector of the present invention by a conventional method. As the host cell, a host of the constructed recombinant vector is used. That is, when a gene is inserted into an E. coli vector to construct a recombinant vector, E. coli serves as a host. Insect cells can be preferably used when a recombinant vector is constructed using a baculovirus vector. In particular, Tn5 (In
High Five (trade name) manufactured by Invitrogen is preferably used.

【0025】上述のように、本発明は、前記式(2)な
いし(4)のアミノ酸配列を有するポリペプチドを提供
する。なお、上記と同様に、式(2)ないし(4)に記
載されたアミノ酸配列を有するポリペプチドの一部が欠
失し、置換し又は挿入があったとしても、式(2)ない
し(4)に記載されたアミノ酸を有するポリペプチドと
同様に用いることができるものは式(2)ないし(4)
に記載されたアミノ酸を有するポリペプチドと実質的に
同一であり、本発明の範囲内に入るものと解釈する。下
記実施例で具体的に述べるように、これらのポリペプチ
ドからヒトパルボウイルスのウイルス粒子様構造物を構
築することができ、このウイルス粒子様構造物も本発明
の範囲に含まれる。
As described above, the present invention provides a polypeptide having the amino acid sequence of the above formulas (2) to (4). As in the case of the above, even if a part of the polypeptide having the amino acid sequence described in formulas (2) to (4) is deleted, substituted or inserted, the formulas (2) to (4) Which can be used in the same manner as the polypeptide having the amino acid described in (1) to (4).
It is substantially the same as the polypeptide having the amino acid described in 1. and is intended to fall within the scope of the present invention. As described in detail in Examples below, human parvovirus virus particle-like structures can be constructed from these polypeptides, and these virus particle-like structures are also included in the scope of the present invention.

【0026】これらのポリペプチド又はウイルス粒子様
構造物を抗原として用いて、検体中の抗ヒトパルボウイ
ルス抗体を免疫測定により検出することができる。免疫
測定方法自体はこの分野において周知であり、本発明に
おいては、従来より周知の種々の免疫測定方法、すなわ
ち、用いる標識に基づいて分類すれば酵素免疫分析法、
放射免疫分析法、蛍光抗体分析法その他を採用すること
ができ、また、測定形式で分類すれば競合法、サンドイ
ッチ法その他を採用することができる。なお、本願発明
者らは、ヒトパルボウイルスに感染した患者の体内にお
いて、抗VP−2抗体が感染初期に多く存在し、感染後
期に急速に減少するのに対し、抗VP−1抗体は感染初
期には少ないが感染後期に多く存在し、抗体価が下がる
のが遅いことを見出した。従って、VP−1とVP−2
ポリペプチドの混合物を抗原として用いて免疫測定を行
えば、感染の初期でも後期でも抗ヒトパルボウイルス抗
体を検出することができ、検出率を高めることができ
る。この場合、VP−1とVP−2の混合比率は10:
1ないし1:10が好ましく、さらには1:2ないし
1:4が好ましい。なお、上記ウイルス粒子様構造物は
VP−1とVP−2ポリペプチドの両方を含むので、こ
れを抗原として用いることにより上記検出率向上効果を
もたらすことができる。また、抗VP−1IgG抗体と
抗VP−2IgG抗体の反応性及び抗体量に差があるの
で、VP−1抗原固相プレート及びVP−2抗原固相プ
レートを用いたIgG抗体検出により、IgG抗体検出
のみで感染の時期を推測することが可能となった。
Using these polypeptides or virus particle-like structures as antigens, anti-human parvovirus antibodies in a sample can be detected by immunoassay. The immunoassay method itself is well known in the art, and in the present invention, various conventionally well-known immunoassay methods, that is, enzyme immunoassay methods if classified based on the label used,
A radioimmunoassay method, a fluorescent antibody analysis method, and the like can be adopted, and a competitive method, a sandwich method, and the like can be adopted by classifying in a measurement format. The inventors of the present invention have found that in the body of a patient infected with human parvovirus, anti-VP-2 antibody is abundant in the early stage of infection and rapidly decreases in the latter stage of infection, whereas anti-VP-1 antibody is infected. It was found that there were few in the early stage but many in the late stage of infection, and the antibody titer slowed down. Therefore, VP-1 and VP-2
When an immunoassay is performed using a mixture of polypeptides as an antigen, anti-human parvovirus antibody can be detected in the early and late stages of infection, and the detection rate can be increased. In this case, the mixing ratio of VP-1 and VP-2 is 10 :.
1 to 1:10 is preferable, and 1: 2 to 1: 4 is more preferable. Since the above virus particle-like structure contains both VP-1 and VP-2 polypeptides, it is possible to bring about the above detection rate improving effect by using this as an antigen. Further, since there is a difference in reactivity and antibody amount between the anti-VP-1 IgG antibody and the anti-VP-2 IgG antibody, the IgG antibody is detected by the IgG antibody detection using the VP-1 antigen solid phase plate and the VP-2 antigen solid phase plate. It was possible to estimate the time of infection only by detection.

【0027】また、上記ポリペプチド又はウイルス粒子
様構造物を免疫原として用いて常法によりこれらのポリ
ペプチド又はウイルス粒子様構造物に体する抗体を作製
し、この抗体を用いて免疫測定法により検体中のヒトパ
ルボウイルスを検出することもできる。免疫測定法とし
ては、上記と同様周知のいずれのものをも採用すること
ができる。
Further, using the above-mentioned polypeptide or virus particle-like structure as an immunogen, an antibody against the polypeptide or virus particle-like structure is prepared by a conventional method, and this antibody is used in an immunoassay method. It is also possible to detect human parvovirus in a sample. As the immunoassay, any well-known method as described above can be adopted.

【0028】また、上述のように、本発明は、上記式
(1)で示される遺伝子の一部とハイブリダイズする1
対のオリゴヌクレオチドを用いてPCR法により式
(1)で示される遺伝子又はその一部を増幅し、増幅さ
れた遺伝子又はその一部を検出することから成る、検体
中のヒトパルボウイルスの検出方法を提供する。この方
法に用いられるDNAプライマー(オリゴヌクレオチ
ド)としては、特に限定されないが、下記のDNAプラ
イマー群1及びDNAプライマー群2の中からそれぞれ
少なくとも1種ずつ選ばれるもの好ましく用いることが
できる。 DNAプライマー群1 D-1: GCTGCCATGTGGGAGCTTCTAATC D-4: TTCCCGCCTTATGCAAATGGGCAGC DNAプライマー群2 U-2: GTGTTAGGCTGTCTTATAGGTACA U-4: CTTGTATTCATGGTCTACTAAC
Further, as mentioned above, the present invention hybridizes with a part of the gene represented by the above formula (1).
A method for detecting human parvovirus in a specimen, which comprises amplifying the gene represented by the formula (1) or a part thereof by PCR using a pair of oligonucleotides and detecting the amplified gene or a part thereof. I will provide a. The DNA primer (oligonucleotide) used in this method is not particularly limited, but it is preferable to use at least one selected from the following DNA primer group 1 and DNA primer group 2. DNA primer group 1 D-1: GCTGCCATGTGGGAGCTTCTAATC D-4: TTCCCGCCTTATGCAAATGGGCAGC DNA primer group 2 U-2: GTGTTAGGCTGTCTTATAGGTACA U-4: CTTGTATTCATGGTCTACTAAC

【0029】以下、本発明を、より具体的に詳細に説明
するが、本発明は下記に記載のものに限定されるもので
はない。
The present invention will be described in more detail below, but the present invention is not limited to the following.

【0030】1.ヒトパルボウイルスの非構造遺伝子及
び構造遺伝子を含む遺伝子領域 ヒトパルボウイルスは、長さ約 5.4 kbの直鎖の一本
鎖DNAゲノムを有するウイルスで、ゲノムの各末端は
パリンドロミック(Pallindromic)DNA配列により、
特徴的なヘアピンループ構造で終わっている。
1. Human parvovirus gene region including nonstructural and structural genes Human parvovirus is a virus having a linear single-stranded DNA genome of about 5.4 kb in length, and each end of the genome is a palindromic DNA. Depending on the array
It ends with a characteristic hairpin loop structure.

【0031】ヒトパルボウイルスの非構造遺伝子及び構
造遺伝子を含む遺伝子領域を得るには、例えば、伝染性
紅斑(EI)患者の血清より、ショ糖密度勾配遠心によ
って精製したウイルス粒子から常法によってヒトパルボ
ウイルスDNAを抽出精製してクローニングを行う。
In order to obtain a gene region containing a non-structural gene and a structural gene of human parvovirus, for example, humans are routinely prepared from virus particles purified by sucrose density gradient centrifugation from serum of a patient with erythema infectiousum (EI). Parvovirus DNA is extracted and purified for cloning.

【0032】また、次の方法も可能である。それは、欧
米で報告されたヒトパルボウイルスB19のAu株遺伝
子配列〔J.Virol.58:921-936(1986)〕やWi株〔Virolo
gy,157:534-538(1987)〕に基づき合成したDNAプライ
マーを使用して、ポリメラーゼ連鎖反応〔PCR法;Na
ture,324:163(1986)〕によって目的とするヒトパルボウ
イルスの非構造遺伝子及び構造遺伝子を含む遺伝子領域
を増幅することができる。
The following method is also possible. It is the human parvovirus B19 Au strain gene sequence [J. Virol. 58: 921-936 (1986)] and Wi strain [Virolo reported in Europe and America.
gy, 157: 534-538 (1987)], using a DNA primer synthesized according to the polymerase chain reaction [PCR method;
ture, 324: 163 (1986)], the target gene region of the human parvovirus including the nonstructural gene and the structural gene can be amplified.

【0033】具体的には、たとえば、精製したヒトパル
ボウイルスDNAに、該遺伝子の部分配列から成るDN
Aプライマーと該遺伝子に相補的な部分配列から成るD
NAプライマーの2種のDNAプライマーをアニーリン
グさせ、常法に従って、該DNAプライマー間のDNA
を増幅させる。
Specifically, for example, DN comprising a partial sequence of the gene is added to purified human parvovirus DNA.
A consisting of a primer and a partial sequence complementary to the gene
Two kinds of DNA primers, NA primer, are annealed, and the DNA between the DNA primers is prepared by a conventional method.
To be amplified.

【0034】最も好ましいプライマーは、上記した通り
である。このプライマーを用いてPCRを行うとヒトパ
ルボウイルスの非構造遺伝子及び構造遺伝子を含む遺伝
子領域を増幅することができる。得られたDNA断片
を、たとえばpUC19(宝酒造社製)などの様な一般
的なクローニングベクター等に組み込んで、得られたク
ローンからプラスミドDNAを抽出し、該ベクターに組
み込まれているDNA配列をジデオキシ法等により決定
することにより、目的とするヒトパルボウイルスの非構
造遺伝子及び構造遺伝子を含む遺伝子領域の全塩基配列
を決めることが出来る。
The most preferred primers are as described above. When PCR is carried out using this primer, the gene region containing the non-structural gene and the structural gene of human parvovirus can be amplified. The obtained DNA fragment is inserted into a general cloning vector such as pUC19 (manufactured by Takara Shuzo Co., Ltd.) and the like, and plasmid DNA is extracted from the obtained clone, and the DNA sequence incorporated in the vector is treated with dideoxy. By determining by the method or the like, it is possible to determine the entire base sequence of the gene region including the target non-structural gene and structural gene of human parvovirus.

【0035】本発明によれば、ヒトパルボウイルスの非
構造遺伝子及び構造遺伝子を含む遺伝子領域は、前記式
(1)で示される塩基配列を有しており、また構造遺伝
子VP−1は前記式(2)で示される塩基配列及びアミ
ノ酸配列を、また構造遺伝子VP−2は前記式(3)で
示される塩基配列及アミノ酸配列を、また非構造遺伝子
NSは、前記式(4)で示される塩基配列及びアミノ酸
配列を有していた。これら前記式(1)〜前記式(4)
で表される塩基配列中、塩基レベルで41箇所、アミノ
酸レベルで10〜13箇所が、公知のヒトパルボウイル
スB19株(Au株、Wi株)の配列と異なっていた。
According to the present invention, the gene region containing the non-structural gene and the structural gene of human parvovirus has the nucleotide sequence represented by the above formula (1), and the structural gene VP-1 is represented by the above formula. The nucleotide sequence and amino acid sequence represented by (2), the structural gene VP-2 is represented by the formula (3), and the nonstructural gene NS is represented by the formula (4). It had a base sequence and an amino acid sequence. These formulas (1) to (4)
In the nucleotide sequence represented by, 41 positions at the base level and 10 to 13 positions at the amino acid level were different from the sequence of the known human parvovirus B19 strain (Au strain, Wi strain).

【0036】2.ヒトパルボウイルス構造タンパク質V
P−1やVP−2及び非構造タンパク質NSの作製及び
それを用いた抗原、抗体検出系の構築 ウイルス構造タンパク質としてウイルス粒子に存在して
いるのは、量的に少ないVP−1(84KDa)と量的
に多くウイルス粒子の主体をなしているVP−2(58
KDa)であり、VP−1、VP−2に対して宿主は抗
体を産生する。よって、このVP−1、VP−2抗原を
用いることによりヒトパルボウイルスに対する抗体を検
出することが出来る。
2. Human parvovirus structural protein V
Construction of P-1 and VP-2 and non-structural protein NS and construction of antigen and antibody detection system using them VP-1 (84 KDa) is present in virus particles as a viral structural protein And VP-2 (58), which is the main component of virus particles in quantity.
KDa), and the host produces antibodies against VP-1 and VP-2. Therefore, an antibody against human parvovirus can be detected by using the VP-1 and VP-2 antigens.

【0037】ヒトパルボウイルスのVP−1,VP−2
抗原を得るためには、ヒトパルボウイルス抗原を確保し
なければならない。しかし、現在までヒトパルボウイル
スの細胞培養系は、特殊な遺伝的疾患患者の骨髄細胞を
用いた報告例がある[Blood.70:384-391(1987)]にすぎ
ず、またウイルスの回収率はきわめて悪いため、実際に
はその使用範囲にも限度があった。
Human parvovirus VP-1, VP-2
In order to obtain the antigen, the human parvovirus antigen must be secured. However, until now, there have been only reports of human parvovirus cell culture systems using bone marrow cells of patients with specific genetic diseases [Blood. 70: 384-391 (1987)], and the virus recovery rate Since it is extremely bad, its range of use was actually limited.

【0038】そこで、本発明のヒトパルボウイルス非構
造遺伝子及び構造遺伝子を含む遺伝子領域を用いて以下
のようにして完全長のヒトパルボウイルス構造タンパク
質VP−1、VP−2を作製した。
Therefore, full-length human parvovirus structural proteins VP-1 and VP-2 were prepared as follows by using the human parvovirus nonstructural gene of the present invention and the gene region containing the structural gene.

【0039】ヒトパルボウイルス非構造遺伝子及び構造
遺伝子を含む遺伝子領域、前記式(1)やヒトパルボウ
イルス構造遺伝子VP−1、前記式(2)及びヒトパル
ボウイルス構造遺伝子VP−2、前記式(3)をタンパ
ク質発現させるのに最も都合がよい制限酵素等により切
断し、原核細胞(例えば大腸菌など)発現ベクターや真
核細胞(例えばCHO細胞など)発現ベクター、昆虫細
胞(例えばSf9,Tn5など)発現ベクターに再クロ
ーニングを行い発現させる。
A gene region containing a human parvovirus non-structural gene and a structural gene, the above formula (1) and the human parvovirus structural gene VP-1, the above formula (2) and the human parvovirus structural gene VP-2, the above formula ( 3) is cleaved with a restriction enzyme or the like that is most convenient for protein expression, and a prokaryotic (eg Escherichia coli etc.) expression vector, eukaryotic (eg CHO cell etc.) expression vector, insect cell (eg Sf9, Tn5 etc.) Re-cloning into an expression vector to express.

【0040】発現された完全長のヒトパルボウイルス構
造タンパク質VP−1、VP−2は、不溶性になってお
り精製には困難を要していた。そこで、尿素バッファー
で可溶化し、適当な吸着、イオン交換、分子ふるい、疎
水、等電点、クロマトグラフィーを組み合わせて発現蛋
白を精製し、完全長のヒトパルボウイルス構造タンパク
質VP−1、VP−2を得た。
The expressed full-length human parvovirus structural proteins VP-1 and VP-2 were insoluble and required purification. Therefore, the expressed protein was solubilized with a urea buffer, purified by a combination of appropriate adsorption, ion exchange, molecular sieving, hydrophobicity, isoelectric point, and chromatography, and the full-length human parvovirus structural proteins VP-1, VP- were purified. Got 2.

【0041】発現させ、精製した完全長のヒトパルボウ
イルス構造タンパク質VP−1、VP−2を炭酸バッフ
ァー(pH9.5 )で至適濃度に希釈してから、ELISA
用ポリスチレンマイクロプレートに固相して、ヒトパル
ボウイルス抗体検出エンザイムイムノアッセイ試薬を試
作した。
The expressed and purified full-length human parvovirus structural proteins VP-1 and VP-2 were diluted with a carbonate buffer (pH 9.5) to an optimum concentration, and then subjected to ELISA.
A human parvovirus antibody detection enzyme immunoassay reagent was prototyped by immobilizing it on a polystyrene microplate for commercial use.

【0042】この試作したエンザイムイムノアッセイ試
薬を用いて、伝染性紅斑患者の抗ヒトパルボウイルスI
gG抗体の経時変化を調べ以下の事が分かった。完全長
のヒトパルボウイルス構造タンパク質VP−1、VP−
2に対するIgG抗体は共に出現するが、完全長のヒト
パルボウイルス構造タンパク質VP−1に対するIgG
抗体の方が、完全長のヒトパルボウイルス構造タンパク
質VP−2に対するIgG抗体より抗体量の持続性は長
いことが分かった。
Using this prototype enzyme immunoassay reagent, anti-human parvovirus I in patients with erythema infectiousum was used.
The change over time of the gG antibody was examined and the following was found. Full-length human parvovirus structural proteins VP-1, VP-
IgG antibodies against 2 also appear, but IgG against full-length human parvovirus structural protein VP-1
It was found that the antibody has a longer duration of antibody amount than the IgG antibody against the full-length human parvovirus structural protein VP-2.

【0043】ここで、完全長のヒトパルボウイルス構造
遺伝子VP−2のタンパク質のコード領域は、完全長の
ヒトパルボウイルス構造遺伝子VP−1のC末端部分に
完全に含まれている。そこで、以前よりヒトパルボウイ
ルスの抗体検出には、ヒトパルボウイルス構造タンパク
質VP−1のみで十分可能であると思われていた。
Here, the coding region for the protein of the full-length human parvovirus structural gene VP-2 is completely contained in the C-terminal portion of the full-length human parvovirus structural gene VP-1. Therefore, it was previously believed that the human parvovirus structural protein VP-1 alone was sufficient for the detection of human parvovirus antibodies.

【0044】しかし、完全長のヒトパルボウイルス構造
タンパク質VP−1とVP−2の免疫学的な反応性に違
いがあることが分かったので、ヒトパルボウイルスのよ
り確実な診断には、完全長のヒトパルボウイルス構造タ
ンパク質VP−1のみではなく完全長のヒトパルボウイ
ルス構造タンパク質VP−2も必要であることが分かり
本発明に至った。
However, since it was revealed that the immunological reactivity of the full-length human parvovirus structural proteins VP-1 and VP-2 was different, the full-length human parvovirus can be more reliably diagnosed. It was found that the full-length human parvovirus structural protein VP-2 as well as the human parvovirus structural protein VP-1 is required.

【0045】3.バキュロウイルスを用いた Empty par
ticle の発現、精製及び Emptyparticle を用いた抗体
検出系の構築 ヒトパルボウイルスの粒子は、構造タンパク質VP−
1、VP−2で構成されていることが知られている。
〔J.Virol.,58:921-936(1986) 〕そして、構造タンパク
質VP−1、VP−2をそれぞれ単独に同一細胞で発現
させると、構造タンパク質VP−1、VP−2が同一細
胞内でウイルス粒子様構造物(Empty particle)を作る
ことが分かった。〔Proc.Natl.Acad.Sci.USA,86:7601-7
605(1989) 〕
3. Empty par using baculovirus
Expression of particles, purification, and construction of antibody detection system using empty particles Human parvovirus particles are structural proteins VP-
1 and VP-2 are known.
[J. Virol., 58: 921-936 (1986)] When the structural proteins VP-1 and VP-2 are individually expressed in the same cell, the structural proteins VP-1 and VP-2 are expressed in the same cell. It was found that a virus particle-like structure (Empty particle) was created. (Proc.Natl.Acad.Sci.USA, 86: 7601-7
605 (1989))

【0046】そこで、バキュロウイルスによる発現系を
用いて、ウイルス粒子様構造物の発現を行った。Empty
particleの発現は、本発明のヒトパルボウイルス非構造
遺伝子及び構造遺伝子を含む遺伝子領域を用いて以下の
方法で行った。
Therefore, expression of virus particle-like structures was carried out using an expression system using baculovirus. Empty
Expression of particles was performed by the following method using the human parvovirus nonstructural gene of the present invention and the gene region containing the structural gene.

【0047】ヒトパルボウイルス非構造遺伝子及び構造
遺伝子を含む遺伝子領域、前記式(1)やヒトパルボウ
イルス構造遺伝子VP−1、前記式(2)及びヒトパル
ボウイルス構造遺伝子VP−2、前記式(3)を完全長
のVP−1及び完全長のVP−2タンパク質の発現に最
も都合がよい制限酵素等により切断し、真核細胞(例え
ばCHO細胞など)発現ベクター、昆虫細胞(例えばS
f9、Tn5など)発現ベクターに再クローニングして
発現させる。
A gene region containing a human parvovirus non-structural gene and a structural gene, the above formula (1) and the human parvovirus structural gene VP-1, the above formula (2) and the human parvovirus structural gene VP-2, the above formula ( 3) is cleaved with a restriction enzyme or the like that is most convenient for expression of full-length VP-1 and full-length VP-2 proteins, and then eukaryotic cell (eg, CHO cell) expression vector, insect cell (eg, S cell).
f9, Tn5, etc.) and cloned into an expression vector for expression.

【0048】次いで、昆虫細胞(Sf9、Tn5)を用
いたヒトパルボウイルス蛋白の発現検討より、Tn5細
胞を用いた方がSf9細胞を用いるより発現量が多いこ
とを確認した。
Next, from the examination of human parvovirus protein expression using insect cells (Sf9, Tn5), it was confirmed that the expression level was higher in Tn5 cells than in Sf9 cells.

【0049】発現された Empty particle は、ウイルス
粒子様構造を取っているため、ウイルス粒子の精製法が
適用できる。例えば、ショ糖密度勾配遠心法や塩化セシ
ウム密度勾配遠心法等で精製できる。
Since the expressed Empty particles have a virus particle-like structure, a method for purifying virus particles can be applied. For example, it can be purified by a sucrose density gradient centrifugation method, a cesium chloride density gradient centrifugation method, or the like.

【0050】発現させ、精製した Empty particle を炭
酸バッファー(pH9.5 )及びPBS等で至適濃度に希釈
してから、ELISA用ポリスチレンマイクロプレート
に固相して、ヒトパルボウイルス抗体検出エンザイムイ
ムノアッセイ試薬を作製した。
The expressed and purified Empty particles are diluted with carbonate buffer (pH 9.5), PBS and the like to an optimum concentration and then solid-phased on a polystyrene microplate for ELISA to detect human parvovirus antibody enzyme immunoassay reagent. Was produced.

【0051】また、発現させ、精製した Empty particl
e をPBS等により至適濃度まで希釈して、Empty part
icle キャプチャー法によるエンザイムイムノアッセイ
試薬を作製した。
The expressed and purified Empty particl
e is diluted to the optimum concentration with PBS etc.
An enzyme immunoassay reagent was prepared by the icle capture method.

【0052】この試作したエンザイムイムノアッセイ試
薬により、伝染性紅斑流行時の血清を用いたヒトパルボ
ウイルス抗体検出を行った。その結果、患者血清中から
精製したヒトパルボウイルス粒子を用いたエンザイムイ
ムノアッセイとほぼ同等な検出感度及び特異性が得られ
た。従って、本発明であるバキュロウイルス発現蛋白Em
pty particleを用いたエンザイムイムノアッセイ試薬
は、最も検出感度及び特異性が高いので、従来よりも確
実でかつ臨床学的に有意義なヒトパルボウイルス抗体検
出試薬であることが分かった。
Using this prototype enzyme immunoassay reagent, human parvovirus antibody detection was performed using serum at the time of epidemic erythema infestation. As a result, detection sensitivity and specificity almost equal to those of the enzyme immunoassay using human parvovirus particles purified from patient serum were obtained. Therefore, the baculovirus-expressed protein Em of the present invention is
Since the enzyme immunoassay reagent using pty particles has the highest detection sensitivity and specificity, it was found to be a more reliable and clinically meaningful human parvovirus antibody detection reagent than before.

【0053】[0053]

【発明の効果】本発明のヒトパルボウイルス非構造遺伝
子及び構造遺伝子を含む遺伝子領域は、その全配列ある
いはPCR法で得られるDNA断片を公知の発現ベクタ
ーに導入し、該発現ベクターで形質転換した宿主細胞内
で発現させることにより、ラジオイムノアッセイ法、エ
ンザイムイムノアッセイ法等の診断に使用し得る組換え
抗原を得ることができる。また、ヒトパルボウイルス構
造遺伝子VP−1に対するIgG抗体は、ヒトパルボウ
イルス構造遺伝子VP−2に対するIgG抗体に比べ、
抗体量の持続性が長いことに基づいて、IgG抗体だけ
でも感染時期の推測が可能なヒトパルボウイルス抗体検
出系の開発を行うことが出来る。また、感染初期におい
てはヒトパルボウイルス構造タンパク質VP−2に対す
る抗体の方がヒトパルボウイルス構造タンパク質VP−
1に対する抗体より抗体量が多い場合が多々あることに
基づいて、ヒトパルボウイルス構造タンパク質VP−
1、VP−2を混合することにより、従来の抗ヒトパル
ボウイルス抗体検出系よりも検出率が高いヒトパルボウ
イルス抗体検出試薬を開発することが出来る。また、バ
キュロウイルス発現蛋白 Empty particle を用いたエン
ザイムイムノアッセイが、ヒトパルボウイルス粒子を用
いたエンザイムイムノアッセイと同等な検出感度及び特
異性を示していることから、従来よりも確実でかつ臨床
学的に有意義なヒトパルボウイルス抗体検出試薬を開発
することが出来る。また、昆虫細胞(Sf9、Tn5)
を用いた発現量の検討から、Tn5細胞を用いた方がS
f9細胞を用いるより発現量が多いことを見い出し、ヒ
トパルボウイルス抗原の高収量な大量発現系を確立する
ことが出来る。
INDUSTRIAL APPLICABILITY The gene region containing the human parvovirus non-structural gene and structural gene of the present invention is transformed with the whole sequence or a DNA fragment obtained by the PCR method into a known expression vector, and then transformed with the expression vector. By expressing in a host cell, a recombinant antigen that can be used for diagnosis such as radioimmunoassay and enzyme immunoassay can be obtained. In addition, the IgG antibody against human parvovirus structural gene VP-1 is compared with the IgG antibody against human parvovirus structural gene VP-2.
Based on the long-lasting antibody amount, it is possible to develop a human parvovirus antibody detection system capable of inferring the time of infection using only IgG antibody. In addition, at the early stage of infection, the antibody against human parvovirus structural protein VP-2 is more human parvovirus structural protein VP-.
The human parvovirus structural protein VP-
By mixing 1 and VP-2, a human parvovirus antibody detection reagent having a higher detection rate than conventional anti-human parvovirus antibody detection systems can be developed. In addition, since the enzyme immunoassay using the baculovirus-expressed protein Empty particle shows the same detection sensitivity and specificity as the enzyme immunoassay using human parvovirus particles, it is more reliable and clinically meaningful than before. A new human parvovirus antibody detection reagent can be developed. Insect cells (Sf9, Tn5)
From the examination of the expression level using S.
It was found that the expression level was higher than that using f9 cells, and a high-yield large-scale expression system of human parvovirus antigen can be established.

【0054】以下、実施例に基づいて本発明をさらに詳
しく説明するが、本発明はこれらの実施例に限定される
ものではない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to these examples.

【0055】[0055]

【実施例】実施例1 ヒトパルボウイルス遺伝子のクローニング (1)ヒトパルボウイルスゲノムDNAの調製 伝染性紅斑流行時にヒトパルボウイルスに感染した患者
二人の血清(血清No.8及びNo.10 )各々約200 μl をリ
ン酸緩衝生理食塩水〔PBS〕(pH7.2) で10倍に希釈
した。希釈した血清に最終濃度100μg/mlのプロ
テインネースKと最終濃度1%のドデシル硫酸ナトリウ
ム〔SDS〕を加え、37℃で約1時間反応させた。次
いで、この反応液を等量に分け、TE飽和フェノール、
クロロホルム及びイソアミルアルコール(25:24:
1)を等量加えて混合した。混合後、15,000rp
m、約10分間遠心分離して上清を回収した。回収した
上清に最終濃度1 μg/mlのグリコーゲンを加え、さらに
上清の1/10量の3M酢酸ナトリウムを加えた後、全溶液
の2.5倍量のエタノールを加えて、−20℃で一晩静
置してエタノール沈澱を行った。
EXAMPLES Example 1 Cloning of human parvovirus gene (1) Preparation of human parvovirus genomic DNA Serum (serum No. 8 and No. 10) of two patients infected with human parvovirus at the time of epidemic of infectious erythema, respectively. About 200 μl was diluted 10-fold with phosphate buffered saline [PBS] (pH 7.2). To the diluted serum, protein nause K having a final concentration of 100 μg / ml and sodium dodecyl sulfate [SDS] having a final concentration of 1% were added and reacted at 37 ° C. for about 1 hour. Then, the reaction solution was divided into equal amounts, and TE saturated phenol,
Chloroform and isoamyl alcohol (25:24:
An equal amount of 1) was added and mixed. After mixing, 15,000 rp
The supernatant was recovered by centrifugation for about 10 minutes. Glycogen at a final concentration of 1 µg / ml was added to the recovered supernatant, 1/10 amount of 3M sodium acetate was added to the supernatant, and then 2.5 times the amount of ethanol of the whole solution was added to -20 ° C. Then, the mixture was left standing overnight in ethanol precipitation.

【0056】エタノール沈澱溶液を15,000rp
m、約10分間遠心分離した。沈澱を70%エタノール
で洗浄後、乾固させた。乾固後、TEバッファー(10mM
Tris-HCl(pH7.5)-1mM EDTA )20μlに溶解した。
Ethanol precipitation solution was added to 15,000 rp
Centrifuge for about 10 minutes. The precipitate was washed with 70% ethanol and then dried. After drying to dryness, TE buffer (10 mM
It was dissolved in 20 μl of Tris-HCl (pH 7.5) -1 mM EDTA).

【0057】(2)ヒトパルボウイルス遺伝子の増幅及
び塩基配列の決定 実施例1−(1)で得たヒトパルボウイルスゲノムDN
A溶液1 μl を用いて、Saiki らの方法[Nature,324:1
63(1986)]に従い、Gene Amp PCR Reagent Kit(宝酒造
社製)を用いたPCR法で、ヒトパルボウイルス非構造
遺伝子及び構造遺伝子を含む遺伝子領域を増幅した。即
ち、50mM KCl,10mM Tris−HCl
(pH8.3),5mMMgCl2 ,0.1% ゼラチ
ンを含む反応液中にヒトパルボウイルスDNA溶液1μ
lと下記の2種類のDNAプライマーそれぞれ100p
moles及びTaqポリメラーゼ5ユニットを加え、
最終量100μlとした。 D-4: TTCCCGCCTTATGCAAATGGGCAGC U-2: GTGTTAGGCTGTCTTATAGGTACA 図1に2種類のDNAプライマー位置を示した。増幅断
片はヒトパルボウイルス非構造遺伝子及び構造遺伝子を
含む遺伝子領域(F)、ヒトパルボウイルス構造伝子を
含む遺伝子領域(VP)、ヒトパルボウイルス非構造遺
伝子を含む遺伝子領域(NS)を含む。
(2) Amplification of human parvovirus gene and determination of nucleotide sequence Human parvovirus genome DN obtained in Example 1- (1)
Using 1 μl of solution A, the method of Saiki et al. [Nature, 324: 1
63 (1986)], the gene region containing the human parvovirus nonstructural gene and the structural gene was amplified by the PCR method using the Gene Amp PCR Reagent Kit (manufactured by Takara Shuzo). That is, 50 mM KCl, 10 mM Tris-HCl
(PH 8.3), 5 mM MgCl2, 0.1% gelatin in a reaction solution containing human parvovirus DNA solution 1μ
l and the following two types of DNA primers 100p each
moles and Taq polymerase 5 units,
The final volume was 100 μl. D-4: TTCCCGCCTTATGCAAATGGGCAGC U-2: GTGTTAGGCTGTCTTATAGGTACA FIG. 1 shows two types of DNA primer positions. The amplified fragment contains a human parvovirus non-structural gene and a gene region containing a structural gene (F), a gene region containing a human parvovirus structural gene (VP), and a gene region containing a human parvovirus non-structural gene (NS).

【0058】この反応液を(95℃、1分)−(55
℃、2分)−(72℃、3分)のサイクルで増幅反応を
30サイクル行った後、さらに72℃、5分ポリメラー
ゼ反応を行わせ、DNAの伸長反応を完全にした。反応
終了液を1%アガロースゲル電気泳動で分画した結果、
約4.7KbのPCR増幅産物を確認した。この約4.
7KbのPCR増幅産物をGeneclean II[BIO101社製]
でDNAを回収した後、さらにDNA Blunting Kit(宝酒
造製)を用いて平滑化した。
This reaction solution was added at (95 ° C., 1 minute)-(55
After carrying out 30 cycles of amplification reaction in a cycle of (° C, 2 minutes)-(72 ° C, 3 minutes), a further polymerase reaction was carried out at 72 ° C, 5 minutes to complete the DNA extension reaction. The reaction solution was fractionated by 1% agarose gel electrophoresis.
A PCR amplification product of about 4.7 Kb was confirmed. About this 4.
7Kb PCR amplification product is Geneclean II [BIO101]
After recovering the DNA with a DNA Blunting Kit (manufactured by Takara Shuzo), the DNA was further smoothed.

【0059】次にpUC19 5μgを制限酵素SmaI 5ユニ
ットで37℃、2時間消化後、アルカリフォスファター
ゼ(BRL 社製)で5’末端を脱リン酸化した。
Next, 5 μg of pUC19 was digested with 5 units of the restriction enzyme SmaI for 2 hours at 37 ° C., and the 5 ′ end was dephosphorylated with alkaline phosphatase (BRL).

【0060】上記PCR増幅断片とpUC19 断片をLigati
on Kit(宝酒造社製)を用いて結合させ、CaCl2
〔Molecular Cloning,p250 Cold Spring Harbar Labora
tory〕によって大腸菌XL1-Blueに導入した。得られた形
質転換体を適当に10個選択、Birnboimらのアルカリ―
SDS法〔Nucleic Acids Res.,7:1513(1979) 〕でDN
Aを精製し、制限酵素マッピングによりPCR増幅断片
を有するクローン(血清No.10 由来:pUC19/F8、血清N
o.8由来:pUC19/C2と命名)を得た。なお、これらの形
質転換体(Escherichia coli XL1-Blue(pUC19/F8) 及び
Escherichia coliXL1-Blue(pUC19/C2) とそれぞれ命名
した)は、工業技術院微生物工業技術研究所に寄託され
ており、その受託番号は、それぞれ微工研菌寄第131
25号及び微工研菌寄第13124号である。
The PCR-amplified fragment and the pUC19 fragment were combined with Ligati.
on Kit (Takara Shuzo Co., Ltd.), and the CaCl 2 method [Molecular Cloning, p250 Cold Spring Harbar Labora
was introduced into E. coli XL1-Blue. The 10 transformants obtained were appropriately selected, and the alkali of Birnboim et al.
DN by SDS method [Nucleic Acids Res., 7: 1513 (1979)]
A clone was purified and cloned with a PCR amplified fragment by restriction enzyme mapping (from serum No. 10: pUC19 / F8, serum N).
Origin of o.8: pUC19 / C2) was obtained. In addition, these transformants (Escherichia coli XL1-Blue (pUC19 / F8) and
Escherichia coli XL1-Blue (pUC19 / C2) has been deposited at the Institute of Microbial Science and Technology of the Agency of Industrial Science and Technology, and the deposit numbers are 131
No. 25 and 13124, Microtechnology Research Institute.

【0061】得られたクローンからプラスミドDNAを
精製し、各PCR増幅断片について、Sequenase Versio
n 2.0 DNA Sequencing Kit(United State Biochemical
Corporation 製)或いはABI社製DNAシーケンサ
ー373Aで塩基配列を決定した(図2〜図10)。そ
の結果、非構造遺伝子及び構造遺伝子を含む遺伝子領域
は、4,677 bp、構造遺伝子を含む遺伝子領域は、2,756
bp、非構造遺伝子を含む遺伝子領域は、3,383 bpであっ
た。そこで、アメリカ及びヨーロッパで解析された既知
のヒトパルボウイルス遺伝子配列(前述)との比較を行
った(表1〜3)。
Plasmid DNA was purified from the obtained clones, and for each PCR amplified fragment, Sequenase Versio
n 2.0 DNA Sequencing Kit (United State Biochemical
(Manufactured by Corporation) or a DNA sequencer 373A manufactured by ABI company was used to determine the nucleotide sequence (FIGS. 2 to 10). As a result, the gene region containing non-structural genes and structural genes was 4,677 bp, and the gene region containing structural genes was 2,756 bp.
The gene region including bp and nonstructural gene was 3,383 bp. Therefore, a comparison was made with the known human parvovirus gene sequences (described above) analyzed in the United States and Europe (Tables 1 to 3).

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【表3】 [Table 3]

【0065】表1〜3より、式(1)〜(4)で表され
る塩基配列及びアミノ酸配列中、塩基レベルで41箇
所、アミノ酸レベルで10〜13箇所が、公知のヒトパ
ルボウイルスB19株(Au株、Wi株)と異なってい
た。またこの結果より、ヒトパルボウイルスは欧米と日
本との間で地域差の存在が示唆され、本発明である式
(1)〜式(4)は、新規なヒトパルボウイルス遺伝子
であることが見いだされた。
From Tables 1 to 3, in the base sequences and amino acid sequences represented by the formulas (1) to (4), 41 positions at the base level and 10 to 13 positions at the amino acid level are known human parvovirus B19 strains. (Au strain, Wi strain). Further, these results suggest that human parvoviruses have regional differences between Europe and the United States and Japan, and it is found that the formulas (1) to (4) of the present invention are novel human parvovirus genes. It was

【0066】実施例2 大腸菌を用いたVP−1及びV
P−2抗原の発現 (1)マルチクローニング部位を有する発現ベクターの
作成 特開平4―82900に記載のPL プロモーター発現ベ
クター pPLN-CSF214C△9 5μg を制限酵素NdeI及びH
indIII それぞれ5unitsで37℃、2時間消化後、1%
アガロースゲル電気泳動で3.5Kb のDNA断片を分画
し、Geneclean IIでDNAを回収した。次にpUC19 を同
様に制限酵素NdeI及びHindIII で消化後、1%アガロー
スゲル電気泳動を行ない、0.27Kbの断片を回収した。3.
5Kb の断片と0.27Kbの断片をLigation Kit(宝酒造社
製)を用いて結合させ、大腸菌JM109に導入した。
Example 2 VP-1 and V using E. coli
Expression of P-2 Antigen (1) Preparation of Expression Vector Having Multiple Cloning Sites PL promoter expression vector pPLN-CSF214CΔ95 5 μg described in JP-A-4-82900 was digested with restriction enzymes NdeI and H
indIII 1% after digesting with 5units each at 37 ℃ for 2 hours
A 3.5 Kb DNA fragment was fractionated by agarose gel electrophoresis, and the DNA was recovered by Geneclean II. Next, pUC19 was similarly digested with restriction enzymes NdeI and HindIII, and then subjected to 1% agarose gel electrophoresis to recover a 0.27 Kb fragment. 3.
The 5 Kb fragment and the 0.27 Kb fragment were ligated using Ligation Kit (manufactured by Takara Shuzo) and introduced into Escherichia coli JM109.

【0067】得られた形質転換体を適当に10個選択、
アルカリ―SDS法でDNAを精製し、制限酵素NdeI及
びHindIII によるマッピングにより目的のプラスミドpP
LN-MCSを取得した(図11)。
The 10 transformants obtained were appropriately selected,
Purify the DNA by the alkali-SDS method and map it with the restriction enzymes NdeI and HindIII to obtain the desired plasmid pP.
LN-MCS was obtained (Fig. 11).

【0068】(2)VP−2抗原発現ベクターの作製 実施例1で得られたプラスミドpUC19/F8 5μg を制限酵
素HindIII 5unitsで37℃、2時間消化後、1%アガロ
ースゲル電気泳動で5.1Kb のDNA断片を分画し、Gene
clean IIでDNAを回収した。この断片を自己結合さ
せ、大腸菌JM109に導入した。得られた形質転換体を適
当に10個選択、アルカリ―SDS法でDNAを精製
し、制限酵素PstI及びHindIII によるマッピングにより
目的のプラスミドpVP を取得した。
(2) Preparation of VP-2 antigen expression vector 5 μg of the plasmid pUC19 / F8 obtained in Example 1 was digested with the restriction enzyme HindIII 5 units at 37 ° C. for 2 hours, and then 5.1 Kb of 1% agarose gel electrophoresis was performed. Fractionate the DNA fragments and
The DNA was recovered with clean II. This fragment was self-ligated and introduced into E. coli JM109. The 10 transformants thus obtained were appropriately selected, the DNA was purified by the alkali-SDS method, and the target plasmid pVP was obtained by mapping with the restriction enzymes PstI and HindIII.

【0069】プラスミドpVP 10μg を制限酵素EcoRI 10
units で37℃、2時間消化し、フェノール抽出―エタ
ノール沈澱を行なった。DNAを溶解後、制限酵素PstI
1unitで37℃、10分間部分消化し、1%アガロース
ゲル電気泳動を行なった。1.8Kb の断片を分画し、Gene
clean IIでDNAを回収した。次にプラスミドpPLN-MCS
5μg を制限酵素NdeI及びEcoRI それぞれ10units で3
7℃、2時間消化後、1%アガロースゲル電気泳動で3.
5Kb のDNA断片を分画し、Geneclean IIでDNAを回
収した。さらにDNAシンセサイザーを用いて、以下に
示すオリゴヌクレオチドを合成した。 5'-TATGACTTCAGTGAATTCTGCA-3' 5'-GAATTCACTGAAGTCA-3' 上記オリゴヌクレオチドをそれぞれMEGALABEL (宝酒造
社製)を用いて5’末端をリン酸化した後、リン酸化オ
リゴヌクレオチドをアニールした。
10 μg of the plasmid pVP was digested with the restriction enzyme EcoRI 10
It was digested with units at 37 ° C. for 2 hours, and phenol extraction-ethanol precipitation was performed. After lysing the DNA, the restriction enzyme PstI
After partial digestion with 1 unit at 37 ° C. for 10 minutes, 1% agarose gel electrophoresis was performed. Fractionation of 1.8 Kb fragment
The DNA was recovered with clean II. Then plasmid pPLN-MCS
3 μg of 5 μg with 10 units each of NdeI and EcoRI restriction enzymes
After digestion at 7 ℃ for 2 hours, 1% agarose gel electrophoresis 3.
A 5 Kb DNA fragment was fractionated and the DNA was recovered by Geneclean II. Furthermore, the following oligonucleotides were synthesized using a DNA synthesizer. 5'-TATGACTTCAGTGAATTCTGCA-3 '5'-GAATTCACTGAAGTCA-3' Each of the above oligonucleotides was phosphorylated at the 5'end with MEGALABEL (Takara Shuzo), and then the phosphorylated oligonucleotide was annealed.

【0070】1.8Kb の断片、3.5Kb の断片及びアニール
したオリゴヌクレオチドを結合させ、大腸菌N4830-1 に
導入した。得られた形質転換体を適当に24個選択、ア
ルカリ―SDS法でDNAを精製し、制限酵素NdeI,Pst
I 及びEcoRI によるマッピングにより目的のプラスミド
pVP200を取得した(図12)。
The 1.8 Kb fragment, the 3.5 Kb fragment and the annealed oligonucleotide were ligated and introduced into E. coli N4830-1. Twenty-four transformants obtained are appropriately selected, DNA is purified by the alkali-SDS method, and the restriction enzymes NdeI, Pst
Target plasmid by mapping with I and EcoRI
We obtained pVP200 (Fig. 12).

【0071】(3)VP−1抗原発現ベクターの作製 プラスミドpVP 10μg を制限酵素HindIII とBamHI でそ
れぞれ10units で37℃、2時間消化後、1%アガロー
スゲル電気泳動で1.5Kb のDNA断片を分画し、Genecl
ean IIでDNAを回収した。次にプラスミドM13mp19 RF
5μg も同様に制限酵素HindIII と BamHIで1%アガロ
ースゲル電気泳動を行ない、7.2Kb の断片を回収した。
1.5Kb 及び7.2Kb の断片を結合させた後、大腸菌JM109
に感染させた。組換えファージの選択はXgal存在下、La
cZを指標として行った。White plaqueを適当に12個選
択、大腸菌JM109 に再感染させた。アルカリ―SDS法
でRF型DNAを精製し、制限酵素HindIII 及びBamHI
によるマッピングにより目的のプラスミドp19-VPを取得
した。
(3) Preparation of VP-1 antigen expression vector 10 μg of plasmid pVP was digested with restriction enzymes HindIII and BamHI at 10 units each at 37 ° C. for 2 hours, and a 1.5 Kb DNA fragment was fractionated by 1% agarose gel electrophoresis. And Genecl
DNA was recovered with ean II. Then plasmid M13mp19 RF
Similarly, 5 μg was subjected to 1% agarose gel electrophoresis with restriction enzymes HindIII and BamHI to recover a 7.2 Kb fragment.
After ligating the 1.5 Kb and 7.2 Kb fragments, E. coli JM109
Infected. Selection of recombinant phage was carried out in the presence of Xgal in La
cZ was used as an index. Twelve white plaques were appropriately selected and re-infected with Escherichia coli JM109. The RF-type DNA was purified by the alkali-SDS method, and the restriction enzymes HindIII and BamHI were used.
The desired plasmid p19-VP was obtained by mapping with.

【0072】次にプラスミドp19-VPを大腸菌JM109 に感
染させ、ファージを取得した。これより一本鎖ファージ
DNAを精製した。また変異導入プライマーとして以下
の配列からなるオリゴヌクレオチドを合成した。 5'- TTACTCATATGCTACAAAGCTTGGCG -3' 一本鎖ファージDNAと変異導入プライマーをアニール
した後、T7-GEN(UnitedStates Biochemical Corporati
on(USB) 社製)を用いて部位特異的変異(site-directe
d mutagenesis )を行った。site-directed mutagenesi
s の方法はUSB 社のプロトコールに従った。変異導入部
位は図13に示す通りである。得られたファージを適当
に24個選択し、大腸菌JM109 を再感染させた。アルカ
リ―SDS法でRF型DNAを精製し、制限酵素NdeIに
よるマッピング及びDNA sequencingにより目的のプラス
ミドmp19-VP1を取得した。
Next, Escherichia coli JM109 was infected with the plasmid p19-VP to obtain phage. From this, single-stranded phage DNA was purified. In addition, an oligonucleotide having the following sequence was synthesized as a mutation-introducing primer. After annealing the 5'-TTACTCATATGCTACAAAGCTTGGCG -3 'single-stranded phage DNA and the mutagenic primer, T7-GEN (United States Biochemical Corporati
on (USB) manufactured by using site-directed mutation
d mutagenesis). site-directed mutagenesi
The method of S followed the protocol of USB company. The mutagenesis site is as shown in FIG. Twenty-four of the obtained phages were appropriately selected and E. coli JM109 was reinfected. RF type DNA was purified by the alkali-SDS method, and the target plasmid mp19-VP1 was obtained by mapping with the restriction enzyme NdeI and DNA sequencing.

【0073】プラスミドmp19-VP1 20 μg を制限酵素Nd
eIとBglIでそれぞれ20units で37℃、2時間消化後、
1%アガロースゲル電気泳動で0.6Kb のDNA断片を分
画し、Geneclean IIでDNAを回収した。プラスミドpV
P 10μg を制限酵素BstXI 10units で55℃、2時間消
化後、さらに制限酵素BglI 10unitsで37℃、2時間消
化し1%アガロースゲル電気泳動で1.7Kb のDNA断片
を分画し、GenecleanIIでDNAを回収した。さらにプ
ラスミドpVP200 10 μg を制限酵素BstXI 20units で5
5℃、2時間消化後、さらに制限酵素NdeI 20unitsで3
7℃、2時間消化後、1%アガロースゲル電気泳動で3.
8Kb のDNA断片を分画し、GenecleanIIでDNAを回
収した。上記0.6Kb 、1.7Kb 及び3.8Kb のDNA断片を
結合させ、大腸菌N4830-1 に導入した。得られた形質転
換体を適当に20個選択、アルカリ―SDS法でDNA
を精製し、制限酵素NdeI、BstXI 及びPvuII によるマッ
ピングにより目的のプラスミドpVP100を取得した(図1
4)。
20 μg of the plasmid mp19-VP1 was digested with the restriction enzyme Nd
After digesting with eI and BglI in 20units at 37 ℃ for 2 hours,
A 0.6 Kb DNA fragment was fractionated by 1% agarose gel electrophoresis, and the DNA was recovered by Geneclean II. Plasmid pV
After digesting P 10 μg with the restriction enzyme BstXI 10 units for 2 hours at 55 ° C, and further digesting with the restriction enzyme BglI 10 units for 2 hours at 37 ° C, fractionate the 1.7 Kb DNA fragment by 1% agarose gel electrophoresis and use the Geneclean II to separate the DNA. Recovered. Furthermore, plasmid pVP200 (10 μg) was digested with restriction enzyme BstXI 20 units to obtain 5
After digesting at 5 ℃ for 2 hours, further 3 with restriction enzyme NdeI 20 units
After digestion at 7 ℃ for 2 hours, 1% agarose gel electrophoresis 3.
The 8 Kb DNA fragment was fractionated, and the DNA was recovered by Geneclean II. The above 0.6 Kb, 1.7 Kb and 3.8 Kb DNA fragments were ligated and introduced into Escherichia coli N4830-1. 20 transformants obtained are appropriately selected, and DNA is selected by the alkali-SDS method.
Was purified and the desired plasmid pVP100 was obtained by mapping with the restriction enzymes NdeI, BstXI and PvuII (Fig. 1).
4).

【0074】(4)VP−1及びVP−2抗原の発現 大腸菌N4830-1[pVP100] 及び大腸菌N4830-1[pVP200] を
50μg/ml Ampicilinを含むLB培地1mlで30℃、1
6時間培養した。前培養液1mlを新しいLB培地10
0mlに接種した。30℃、約3時間培養後、予め65
℃に暖めたLB培地100mlを加え、42℃でさらに
3時間培養した。培養後、遠心分離し菌体を回収した。
(4) Expression of VP-1 and VP-2 antigens Escherichia coli N4830-1 [pVP100] and Escherichia coli N4830-1 [pVP200] were expressed.
1 ml of LB medium containing 50 μg / ml Ampicilin at 30 ℃, 1
Cultured for 6 hours. 1 ml of the preculture liquid was added to 10 ml of fresh LB
0 ml was inoculated. After culturing at 30 ° C for about 3 hours, 65
100 ml of LB medium warmed to ° C was added, and the mixture was further cultured at 42 ° C for 3 hours. After culturing, the cells were collected by centrifugation and collected.

【0075】菌体の一部をPhosphate Buffered-Saline
(PBS)に懸濁し超音波破砕機で菌体を破砕した後、Laemm
li の方法〔Nature,227:680(1970)〕に従ってSDS―
ポリアクリルアミドゲル電気泳動〔SDS−PAGE〕
を行った。泳動後、伝染性紅斑患者血清を用いてウエス
タンブロッティング〔Proc.Natl.Acad.Sci.USA.,76:311
6-3120(1979)〕を行った。その結果、分子量84,000及び
58,000の位置に反応した。従ってVP−1及びVP−2
抗原の発現が確認された。
A part of the bacterial cells was used as Phosphate Buffered-Saline.
After suspending in (PBS) and crushing the cells with an ultrasonic crusher, Laemm
SDS according to the method of Li [Nature, 227: 680 (1970)]
Polyacrylamide gel electrophoresis [SDS-PAGE]
I went. After the migration, Western blotting was performed using serum of infectious erythema patient [Proc. Natl. Acad. Sci. USA., 76: 311].
6-3120 (1979)]. As a result, the molecular weight is 84,000 and
Reacted to 58,000 positions. Therefore, VP-1 and VP-2
The expression of the antigen was confirmed.

【0076】また超音波破砕処理した菌体を5,500gで1
0分間遠心分離し、上清画分と沈澱画分に分離した。そ
れぞれの画分をSDS―ポリアクリルアミドゲル電気泳
動しコマシュー・ブリリアント・ブルー(CBB) で染色し
た結果、VP−1及びVP−2抗原は沈澱画分に見ら
れ、インクルージョン・ボディを形成していた。
In addition, the sonicated cells were treated with 5,500 g of 1
Centrifugation was performed for 0 minutes to separate a supernatant fraction and a precipitate fraction. Each fraction was subjected to SDS-polyacrylamide gel electrophoresis and stained with Coomassie Brilliant Blue (CBB). As a result, the VP-1 and VP-2 antigens were found in the precipitated fraction and formed an inclusion body. .

【0077】(5)VP−1及びVP−2抗原発現大腸
菌の培養 大腸菌N4830-1[pVP100] を50μg/ml Ampicilinを含むL
B培地2mlで30℃、7時間培養した。次に2L発酵
槽を用いて1LのJAR 培地(0.7% Na2HPO4, 0.3% KH2PO
4, 0.5% (NH4)2SO4, 0.1% クエン酸ナトリウム、 0.02%
MgSO4・7H2O,2.5%グルコース、 0.4% 酵母抽出物、 0.
4% カザミノ酸, 0.4%ヒスチジン, 0.4%イソロイシン,
0.4%バリン, 50μg/mlアンピシリン)で30℃、約16
時間培養した。さらに70L発酵槽を用いてJAR 培地
(40L)で35℃で培養した。O.D.550=5 に達した
時、カザミノ酸を終濃度2%、ヒスチジン、イソロイシン
及びバリンをそれぞれ終濃度0.4%になるように添加した
後、42℃、3時間培養した。
(5) Culturing of Escherichia coli expressing VP-1 and VP-2 antigen E. coli N4830-1 [pVP100] was added to L containing 50 μg / ml Ampicilin.
The cells were cultured in 2 ml of B medium at 30 ° C. for 7 hours. Next, using a 2 L fermentor, 1 L of JAR medium (0.7% Na 2 HPO 4 , 0.3% KH 2 PO
4 , 0.5% (NH 4 ) 2 SO 4 , 0.1% sodium citrate, 0.02%
MgSO 4 · 7H 2 O, 2.5 % glucose, 0.4% yeast extract, 0.
4% casamino acid, 0.4% histidine, 0.4% isoleucine,
0.4% valine, 50 μg / ml ampicillin) at 30 ℃, about 16
Incubated for hours. Further, it was cultivated at 35 ° C. in JAR medium (40 L) using a 70 L fermentor. When OD 550 = 5 was reached, casamino acid was added to a final concentration of 2% and histidine, isoleucine, and valine were added to a final concentration of 0.4%, respectively, and the mixture was cultured at 42 ° C for 3 hours.

【0078】培養液は限外ろ過装置で濃縮後、菌体を5
Lの破砕buffer(50mM Tris-HCl(pH8.0),10mM EDTA, 30
mM NaCl )に懸濁した。Manton Gaulin ホモジナイザー
を用いて菌体を破砕した(7,500PSI × 3回)。次に
5,500gで30分間遠心分離し沈澱を集めた。この沈澱を
2.5LのDetergent buffer(50mM Tris-HCl(pH8.0),
50mM NaCl, 10mM EDTA, 0.5% Triton X-100 )に懸濁、
4℃、30分間攪はんの後、5,500gで15分間遠心分離
し沈澱を集めた。このDetergent bufferによる懸濁−遠
心分離操作を3回行った。得られた沈殿(インクルージ
ョン・ボディ;IBs)は−20℃に保存した。
The culture broth was concentrated with an ultrafiltration device and the bacterial cells were added to 5
L crush buffer (50mM Tris-HCl (pH8.0), 10mM EDTA, 30
Suspended in mM NaCl). The cells were disrupted using a Manton Gaulin homogenizer (7,500 PSI x 3 times). next
The precipitate was collected by centrifugation at 5,500 g for 30 minutes. This precipitate was added to 2.5 L of Detergent buffer (50 mM Tris-HCl (pH8.0),
Suspended in 50 mM NaCl, 10 mM EDTA, 0.5% Triton X-100),
After stirring at 4 ° C for 30 minutes, the precipitate was collected by centrifugation at 5,500g for 15 minutes. The suspension-centrifugation operation with this Detergent buffer was performed 3 times. The obtained precipitate (inclusion body; IBs) was stored at -20 ° C.

【0079】大腸菌N4830-1[pVP200] についても同様に
行い、インクルージョン・ボディを得た。
Escherichia coli N4830-1 [pVP200] was similarly obtained to obtain an inclusion body.

【0080】(6)VP−1及びVP−2抗原の精製 実施例2−(5)で得たVP−1のインクルージョン・
ボディ、湿重量50mgを1ml のIBs 溶解バッファー(8M尿
素,10mM DTT,1mM EDTA,20mM Tris-HCl(pH7.0))に溶解
した。この溶液を1ml のSDS サンプルbuffer(130mM Tr
is-HCl(pH6.8),4% SDS, 15% Ficoll Type400 (Pharmac
ia 社製), 10% β−メルカプトエタノール, 0.002%ブ
ロムフェノール)と混合し、80℃、20分間の熱処理を行
なった。このサンプルからProSieve Gel System (FMC
社製)を用いてVP−1抗原を精製した。使用説明書に
従って、電気泳動を行い分子量ごとにサンプル中のタン
パクを分画し、VP−1抗原を含む部分のみを切り出
し、抽出バッファー(8M尿素, 10mM DTT, 1mM EDTA, 20
mM Tris-HCl(pH7.0))でゲル中より抽出した。なおゲル
板は14.5cm x 16.5cm x 2mm のものを用いた。抽出した
タンパクをPharst System (Pharmacia 社製)を用い電
気泳動を行い銀染色した結果、VP−1抗原の分子量位
置(84、000)にのみバンドを認めた。VP−2抗原につい
ても同様に精製し、VP−2抗原の分子量位置(58、000)
にのみバンドを認めた。
(6) Purification of VP-1 and VP-2 Antigens Inclusion of VP-1 obtained in Example 2- (5)
The body and wet weight of 50 mg were dissolved in 1 ml of IBs lysis buffer (8 M urea, 10 mM DTT, 1 mM EDTA, 20 mM Tris-HCl (pH 7.0)). Add 1 ml of this solution to the SDS sample buffer (130 mM Tr
is-HCl (pH6.8), 4% SDS, 15% Ficoll Type400 (Pharmac
ia), 10% β-mercaptoethanol, 0.002% bromophenol) and heat treated at 80 ° C for 20 minutes. From this sample ProSieve Gel System (FMC
The VP-1 antigen was purified using the product manufactured by K.K. Electrophoresis is performed according to the instruction manual to fractionate the protein in the sample for each molecular weight, and only the portion containing the VP-1 antigen is excised and extracted with an extraction buffer (8M urea, 10 mM DTT, 1 mM EDTA, 20
It was extracted from the gel with mM Tris-HCl (pH 7.0)). The gel plate used had a size of 14.5 cm x 16.5 cm x 2 mm. The extracted protein was electrophoresed using the Pharst System (Pharmacia) and silver-stained. As a result, a band was observed only at the molecular weight position (84,000) of the VP-1 antigen. The VP-2 antigen was similarly purified, and the molecular weight position of the VP-2 antigen (58,000)
Only recognized band.

【0081】実施例3 VP−1抗原誘導体の作製 (1)VP−1抗原誘導体ベクターの作製 本発明の式(2)のVP−1抗原(781アミノ酸)の
N末端側46アミノ酸及びC末端側98アミノ酸欠失さ
せたVP−1抗原誘導体(637アミノ酸)を作製し
た。
Example 3 Preparation of VP-1 Antigen Derivative (1) Preparation of VP-1 Antigen Derivative Vector N-terminal side 46 amino acids and C-terminal side of VP-1 antigen (781 amino acids) of the formula (2) of the present invention A VP-1 antigen derivative (637 amino acids) with 98 amino acids deleted was prepared.

【0082】実施例1−(2)で得たpUC19/F8 20 μg
を制限酵素Ssp I 20単位で37℃、2時間消化後、1%
アガロースゲル電気泳動で約1.9Kb のVP−1DNA断
片を分画し、Geneclean IIでDNAを回収した。
20 μg of pUC19 / F8 obtained in Example 1- (2)
Digested with 20 units of Ssp I restriction enzyme at 37 ℃ for 2 hours, then 1%
A 1.9 Kb VP-1 DNA fragment was fractionated by agarose gel electrophoresis, and the DNA was recovered by Geneclean II.

【0083】次にプラスミドpKK233-2(ファルマシア
製) 5μg を制限酵素Nco I 5単位で37℃、2時間消
化後、末端をBlunting Kit(宝酒造社製)で平滑末端と
した。
Next, 5 μg of the plasmid pKK233-2 (Pharmacia) was digested with 5 units of the restriction enzyme Nco I for 2 hours at 37 ° C., and the ends were made blunt with a Blunting Kit (Takara Shuzo).

【0084】約1.9Kb の断片とベクターをLigation Kit
を用いて結合させ、大腸菌XL1-Blueに導入した。得られ
た形質転換体を適当に10個選択、アルカリ―SDS法
でDNAを精製し、制限酵素PstI及びHindIII によるマ
ッピングにより目的のプラスミドpVP300を取得した(図
15)。
The ligation kit was prepared by using the fragment of about 1.9 Kb and the vector.
Was ligated with E. coli and introduced into E. coli XL1-Blue. The 10 transformants thus obtained were appropriately selected, the DNA was purified by the alkali-SDS method, and the target plasmid pVP300 was obtained by mapping with the restriction enzymes PstI and HindIII (FIG. 15).

【0085】(2)VP−1抗原誘導体の発現 大腸菌XL1-Blue[pVP300]を50μg/mlアンピシリンを含む
LB培地1mlで37℃、16時間培養した。前培養液
1mlを新しいLB培地100mlに接種した。37
℃、約2時間培養後、終濃度1mM IPTGになるように添加
後、37℃でさらに3時間培養した。培養後、実施例2
−(4)で示した方法で発現状況を調べた結果、VP−
1抗原誘導体(VP−1/SspI抗原と命名)もイン
クルージョン・ボディを形成していることが確認され
た。さらにウエスタンブロッティング及び蛍光抗体間接
法により、分子量70,000の位置に反応した。従ってVP
−1/SspI抗原もVP−1、VP−2抗原と同じく
抗原性を有することがわかった。
(2) Expression of VP-1 antigen derivative E. coli XL1-Blue [pVP300] was cultured in 1 ml of LB medium containing 50 μg / ml ampicillin at 37 ° C. for 16 hours. 1 ml of the preculture liquid was inoculated into 100 ml of fresh LB medium. 37
After culturing at ℃ for about 2 hours, the final concentration of 1 mM IPTG was added, and then culturing at 37 ℃ for another 3 hours. After culturing, Example 2
-As a result of examining the expression status by the method shown in (4), VP-
It was confirmed that the 1-antigen derivative (named VP-1 / SspI antigen) also formed an inclusion body. Furthermore, by Western blotting and a fluorescent antibody indirect method, the reaction was performed at the position of the molecular weight of 70,000. Therefore VP
It was found that the −1 / SspI antigen also has the same antigenicity as the VP-1 and VP-2 antigens.

【0086】実施例4 バキュロウイルスを用いたVP
−1及びVP−2抗原の発現 (1)組換え転移ベクターの作製 実施例1−(2)で得たpUC19/F4 20 μg を制限酵素Hi
ndIII 20units で37℃、2時間消化後、1%アガロー
スゲル電気泳動で2.5Kb のVP−1DNA断片を分画
し、Geneclean IIでDNAを回収した。回収したVP−
1断片をBluntingKitで平滑末端とした。
Example 4 VP using baculovirus
-1 and VP-2 antigen expression (1) Preparation of recombinant transfer vector 20 μg of pUC19 / F4 obtained in Example 1- (2) was treated with the restriction enzyme Hi.
After digesting with ndIII 20 units for 2 hours at 37 ° C., a 2.5 Kb VP-1 DNA fragment was fractionated by 1% agarose gel electrophoresis, and the DNA was recovered by Geneclean II. Recovered VP-
One fragment was made blunt-ended with the Blunting Kit.

【0087】同様にpUC19/F8 20 μg を制限酵素HpaII
とSalIでそれぞれ20units で37℃、2時間消化後、1
%アガロースゲル電気泳動で1.8Kb のVP−2DNA断
片を分画し、Geneclean IIでDNAを回収した。VP−
2断片をBlunting Kitで平滑末端とした。
Similarly, 20 μg of pUC19 / F8 was added to the restriction enzyme HpaII.
20 units each with SalI and SalI at 37 ℃ for 2 hours, then 1
A 1.8 Kb VP-2 DNA fragment was fractionated by% agarose gel electrophoresis, and the DNA was recovered by Geneclean II. VP-
The two fragments were made blunt-ended with the Blunting Kit.

【0088】一方転移ベクターpAcYM1[J.Gen.Virol.,6
8:1233(1987)] 5μg を制限酵素BamHI で37℃、2時
間消化後、Blunting Kitで平滑末端とした。さらにアル
カリフォスファターゼ(BRL 社製)で5’末端の脱リン
酸化を行った。
On the other hand, the transfer vector pAcYM1 [J. Gen. Virol., 6
8: 1233 (1987)] 5 μg was digested with a restriction enzyme BamHI at 37 ° C. for 2 hours and then blunted with a Blunting Kit. Further, the 5'end was dephosphorylated with alkaline phosphatase (BRL).

【0089】VP―1及びVP―2断片をそれぞれpAcY
M1を結合させた後、大腸菌XL1-Blueに感染させた。得ら
れた形質転換体を適当に20個選択、アルカリ―SDS
法でDNAを精製し、制限酵素によるマッピングにより
目的のプラスミドpAcVP1、pAcVP2 を取得した(図1
6)。
The VP-1 and VP-2 fragments were respectively transformed into pAcY
After binding M1, E. coli XL1-Blue was infected. 20 transformants obtained are appropriately selected, and alkali-SDS is selected.
DNA was purified by the method and the target plasmids pAcVP1 and pAcVP2 were obtained by mapping with restriction enzymes (Fig. 1
6).

【0090】(2)組換えウイルスの作製 φ35mmディッシュ(住友ベ−クライト社製)を用
い、夜蛾幼虫由来株化細胞:Sf9(Spodopterd frugiperd
a) 細胞は、10% 牛胎児血清(FCS) を含む培地(TC-10
0、またはGrace's 培地)で、夜蛾幼虫由来株化細胞:Tn
5:(Trichoplusia ni)細胞は、無血清培地(TC-100、ま
たはGrace's 培地)で3〜4日培養した。次いで、φ3
5mmディッシュ(住友ベ−クライト社製)を用い、1
×106 /ディッシュ、培地量約1.5ml になる様に前記
述の培養細胞を調整した。この状態で30〜40分静置
した後、無菌的に上記培地を取り去り1.5ml 無血清培地
(EX-CELL 400 またはGrace's 培地)に交換した。
(2) Preparation of recombinant virus Using a φ35 mm dish (manufactured by Sumitomo Bakelite Co., Ltd.), a cell line derived from night moth larvae: Sf9 (Spodopterd frugiperd)
a) Cells are cultured in medium containing 10% fetal calf serum (FCS) (TC-10).
0, or Grace's medium), and cell line: Tn
5: (Trichoplusia ni) cells were cultured in serum-free medium (TC-100 or Grace's medium) for 3 to 4 days. Then φ3
Using a 5 mm dish (Sumitomo Bakelite Co., Ltd.), 1
The cultured cells described above were adjusted so that the amount of the medium was × 10 6 / dish and the amount of the medium was about 1.5 ml. After leaving still for 30 to 40 minutes in this state, the above medium was aseptically removed and replaced with 1.5 ml serum-free medium (EX-CELL 400 or Grace's medium).

【0091】ここにAcNPV (キンウラバ亜科、Autograp
ha californica nuclear polyhedorosis virus)DNA
約20ng/ μl を1 μl 、転移ベクター2-3 μg/μl 濃度
を1μl 、滅菌蒸留水6 μl の計8 μl 及びリポフェク
チン(BRL社製)5 μl 、滅菌蒸留水3 μl の計8 μ
l をエッペンドルフチューブ内でおだやかに混和した
後、上記無血清培地中に1滴ずつ静かに全体に滴下した
(コ・トランスフェクション)。そしてモイスチャーチ
ャンバー内へ収納し、26〜26.5℃で3日間培養し
た。
AcNPV (Kinura subfamily, Autograp
ha californica nuclear polyhedorosis virus) DNA
About 20 ng / μl 1 μl, transfer vector 2-3 μg / μl Concentration 1 μl, sterile distilled water 6 μl total 8 μl and Lipofectin (BRL) 5 μl, sterile distilled water 3 μl total 8 μl
After gently mixing 1 l in an Eppendorf tube, 1 drop was gently added to the whole serum-free medium (co-transfection). Then, it was stored in a moisture chamber and cultured at 26 to 26.5 ° C for 3 days.

【0092】コ・トランスフェクション後、3日目の培
養上清約1ml をチューブに移しそれらの各20μl を用い
て10-1〜10-3まで希釈しそれらの100 μl を1×106
/ディッシュ(φ35mm)に調整した細胞に接種し約1
時間静置して吸着させる。その後、ウイルス液を捨て1
%低融点寒天(Sea Plaque:宝酒造社製)2m
l を重層し、凝固した後更に1ml の培地(Sf9細胞の
場合は10%FCSを含むTC-100またはGrace's 培地を用い、
Tn5細胞の場合はTC-100またはGrace's の無血清培地
を用いる。)を重層し26〜26.5℃で3〜4日培養
後、10mMリン酸緩衝塩溶液(10mM PBS)中0.01%(W/V)ニュ
ートラルレッドを1ml 加えプラークを染色し透明な組換
え体を選択した。
After co-transfection, about 1 ml of the culture supernatant on the 3rd day was transferred to a tube, and 20 μl of each of them was diluted to 10 −1 to 10 −3 , and 100 μl of them was diluted to 1 × 10 6.
Approximately 1 by inoculating cells adjusted to a dish (φ35 mm)
Let stand for a time to allow adsorption. Then, discard the virus solution 1
% Low melting point agar (Sea Plaque: Takara Shuzo) 2m
After layering and coagulation, 1 ml of medium (in the case of Sf9 cells, use TC-100 or Grace's medium containing 10% FCS,
In the case of Tn5 cells, TC-100 or Grace's serum-free medium is used. ) And cultured at 26-26.5 ° C for 3-4 days, 1 ml of 0.01% (W / V) neutral red in 10 mM phosphate buffered saline (10 mM PBS) was added, and plaques were stained to give a transparent recombinant. Was selected.

【0093】プラ−クアッセイによって得た組換え体と
思われるプラークをパスツールピペットによってゲルご
と採取し、それらを細胞培養用培地400 μl に浮遊し十
分攪拌を行った後、約3000rpm、約5分間の条件
でアガロ−スゲルを沈澱させ、上清をプラ−クアッセイ
時同様10-1〜10-3までそれぞれの培地(Sf9細胞の場
合は10%FCSを含むTC-100またはGrace's 培地を用い、T
n5細胞の場合はTC-100またはGrace's の無血清培地を
用いる。)で希釈し、低融点寒天を用いて同様にプラ−
クアッセイを行い組換えウイルスを純化した。
Plaques considered to be recombinants obtained by the plaque assay were collected together with the gel using a Pasteur pipette, suspended in 400 μl of the cell culture medium and sufficiently stirred, and then at about 3000 rpm for about 5 minutes. The agarose gel was precipitated under the conditions described above, and the supernatant was added to each medium up to 10 -1 to 10 -3 as in the plaque assay (TC-100 or Grace's medium containing 10% FCS in the case of Sf9 cells was used).
In the case of n5 cells, TC-100 or Grace's serum-free medium is used. ) With a low melting point agar.
Recombinant virus was purified by performing the assay.

【0094】プラ−ク純化(plaque purif
y)によって得られた組換え体の力価を細胞に感染させ
ることで上昇させた。この時も同様にφ35mmディッシ
ュに約1×106 /ディッシュのSf9細胞及びTn5
細胞を用意し、約30分間静置後培地の大部分を捨てそ
こに得られた組換え体を約100 μl 加え、更に約15分
間隔でおだやかに振盪混和を行い計4回、約1時間にわ
たってこの操作を行った。
Plaque purif
The titer of the recombinant obtained by y) was increased by infecting cells. Also at this time, about 1 × 10 6 Sf9 cells and Tn5 were similarly added to the φ35 mm dish.
Prepare the cells, leave them for about 30 minutes, discard most of the culture medium, add about 100 μl of the obtained recombinants, and gently mix with shaking at about 15 minutes intervals for a total of 4 times for about 1 hour. This operation was performed over.

【0095】次に、Sf9細胞の場合は 10% FCSを含む
培地(TC-100またはGrace's )を、Tn5細胞の場合は
無血清培地(TC-100またはGrace's )を1.5ml 加え、3
〜4日間培養を行う。この時得られた上清を用いて75
cm2 培養ビン2本を用いて、同様に細胞を用意し、既
に1度力価を上げてある組換えウイルス液1ml を接種
し、3〜4日間の培養の後、得られた上清を構造遺伝子
発現用の高力価組換え体とした。
Next, 1.5 ml of medium containing 10% FCS (TC-100 or Grace's) for Sf9 cells and 1.5 ml of serum-free medium (TC-100 or Grace's) for Tn5 cells were added.
Culture for ~ 4 days. 75 using the supernatant obtained at this time
Cells were similarly prepared using 2 cm 2 culture bottles, and 1 ml of the recombinant virus solution whose titer had been increased once was inoculated. After culturing for 3 to 4 days, the resulting supernatant was It was a high titer recombinant for structural gene expression.

【0096】φ35mmディッシュに約1×106 /ディ
ッシュで細胞数を調整し培地の大部分を吸引し、そこに
高力価組換え体(約1x107pfu/ml )をM.0.I.5〜10に
なる様に接種し約15分間隔で穏やかに振盪しながら計
4回、1時間にわたりこの操作を続けた。
The number of cells was adjusted to about 1 × 10 6 / dish in a φ35 mm dish, most of the medium was aspirated, and a high titer recombinant (about 1 × 10 7 pfu / ml) was added to the M.0.I. This operation was continued for 4 hours with a total of 4 inoculations of 5 to 10 and gentle shaking at intervals of about 15 minutes.

【0097】その後、培地(Sf9細胞の場合は10%FCS
を含むTC-100またはGrace's 培地を用い、Tn5細胞の
場合はTC-100またはGrace's の無血清培地を用いる。)
を0.5-1ml 加え3〜4日間、26〜26.5℃で培養し
ヒトパルボウイルス構造遺伝子(VP−1、VP−2及
びVP−1 + VP−2)の発現を行った。
After that, the medium (10% FCS in the case of Sf9 cells was used)
TC-100 or Grace's medium containing Tc5 is used, and in the case of Tn5 cells, TC-100 or Grace's serum-free medium is used. )
0.5-1 ml was added and cultured at 26 to 26.5 ° C. for 3 to 4 days to express human parvovirus structural genes (VP-1, VP-2 and VP-1 + VP-2).

【0098】発現蛋白は、伝染性紅斑患者血清より精製
したヒトパルボウイルス粒子を対照として、10% S
DS−PAGE用い20mAで約2時間電気泳動後、CB
B 染色を行い、その分子量と発現量の確認を行った。そ
の結果、ヒトパルボウイルスのVP−1、VP−2と同
分子量の発現蛋白が確認された。またTn5細胞を用い
た方がSF−9細胞を用いるよりも発現量が多いことが
分かった。
The expressed protein was expressed in 10% S with human parvovirus particles purified from serum of infectious erythema patient as a control.
After electrophoresis for about 2 hours at 20 mA using DS-PAGE, CB
B staining was performed to confirm the molecular weight and expression level. As a result, an expressed protein having the same molecular weight as VP-1 and VP-2 of human parvovirus was confirmed. It was also found that the expression level was higher in Tn5 cells than in SF-9 cells.

【0099】抗原性の確認は、伝染性紅斑患者血清を用
いたウエスタンブロッティング及び蛍光抗体間接法で行
った。その結果、発現蛋白質と特異的に反応するバンド
の存在と蛍光発色が確認され、発現蛋白がヒトパルボウ
イルス構造蛋白質VP−1、VP−2であることを確認
した。
The antigenicity was confirmed by Western blotting using a serum of infectious erythema patient and a fluorescent antibody indirect method. As a result, the presence of a band that specifically reacts with the expressed protein and the presence of fluorescent color were confirmed, and it was confirmed that the expressed proteins were human parvovirus structural proteins VP-1 and VP-2.

【0100】(3)ヒトパルボウイルス発現蛋白質 Emp
ty particle の精製と電子顕微鏡を用いた Empty parti
cle の確認 昆虫細胞Sf9、Tn5等を用いて、好ましくはTn5
細胞を用いて、表面積75cm2 のプラスティック製細
胞培養用ボトル(住友ベ−クライト社製)により大量に
ヒトパルボウイルス構造蛋白質を発現させ精製に供し
た。大量発現させた発現蛋白質(75cm2 プラスティ
ック製細胞培養用ボトル20本分)はピペッティングに
よって細胞培養液を用いて培養細胞ごとハ−ベストし容
量500mlの遠心沈澱用ボトル(日立社製)2本に移
し(約300ml)これらを1000〜3000rpm
,20℃,15分間の遠心条件で細胞成分を沈澱させ
上清は廃棄した。沈澱細胞はPBS(−)(りん酸緩衝
食塩液、日水製薬社製)またはHanks'BSS (ハンクス緩
衝塩類液,自家製)10mlに浮遊させ充分混和した後
−80℃の超低温冷凍庫を用いて2〜3回の凍結融解操
作を行った。次に凍結融解後の細胞浮遊液を5本のプラ
スティック製スピッツ管(栄研器材社製)に各々2ml
分注し100〜500W,0℃,5〜20分間の条件で
超音波処理(オリンパス社製)を合計2〜4回行った。
この際、各細胞浮遊液から約50μlずつ各々採取し、
スライドグラス上に滴下した後カバ−グラスを置き倍率
200倍にて光学顕微鏡(Nikon社製)により観察
し細胞の破砕状態を確認した。ここで細胞浮遊液から細
胞成分を分離する為に約10000rpm,20℃,1
5分間の遠心沈澱を行った。この操作によって得られた
上清約10mlをサンプルとして次の精製操作を行っ
た。まず、超遠心用13PAチュ−ブ(日立工機社製)
に40%シュクロ−ス(W/V )(PBS(-)またはHanks'BS
S に浮遊)(ナカライテスク社製)を2〜3ml分注し
これらシュクロ−ス クッションの上へ上記サンプルを
重層し約35000rpm,20℃,16〜20時間超
遠心を行い微量雑蛋白質を除外すると共にヒトパルボウ
イルス発現蛋白質を沈澱させた。沈澱させたヒトパルボ
ウイルス発現蛋白質は13PAチュ−ブ管底に接着して
いる為PBS(-)各2mlを滴下しピペッティング及び振と
うにより充分混和した。更にこの時肉眼で大分子が確認
されるため100〜500W,0℃,2〜10分間の超
音波処理を行い浮遊溶液とした。次に、予め超純水(mi
li-Q ミリポア社)に密度1.2,1.3,1.4(g
/cm3 )となる様調製したCsCl溶液(ナカライテスク社
製)を密度の大きい順にチュ−ブの管底から2,5,2
ml各々重層しグラジエントをプレフォ−ミングした後
サンプル2mlを2本の超遠心チュ−ブに重層し約35
000rpm,20℃,40〜45時間の条件下で一度
目の超遠心による精製を行った。超遠心後、各サンプル
をおよそ20本のフラクションにペリスタポンプ等を用
いて分離し、抗VP1モルモット抗体(1.5μg/m
l)固相化プレ−ト及び抗VP1モルモットPOD標識
抗体(自家製)を用いて抗原検索を行った。その結果、
横軸にフラクションNO. を縦軸にO.D.492/63
0nmでの測定結果をグラフ化した場合1峰性のカ−ブ
が得られた為ピ−クの存在するフラクションを用いて同
様に二回目の超遠心操作及び抗原検索を行った。この
際、各フラクションに於けるCsClの重量パ−セントを糖
度計(ATAGO 社製)により測定しレファレンスとなる密
度1.2,1.3,1.4(g/cm3 )の各CsCl溶液の重
量パ−セントの値から各フラクション溶液の密度を換算
しグラフ化した。この時、横軸にはフラクションNo. を
縦軸には各フラクションの密度値をとった。その結果、
チュ−ブの管底から管口に向かって密度が低下する関係
が確認された。更にこれらの関係から抗原を含むフラク
ション溶液の密度は、約1.3g/cm3 であることが確認
された。次にこのサンプルを13PAチュ−ブ内でPBS
(-)によって15〜20倍に希釈し約35000rp
m,20℃, 10〜20時間超遠心を行いヒトパルボ
ウイルス精製発現蛋白質を沈澱させた。これらの発現蛋
白質は最終的に1〜2mlPBS(-)に浮遊し発現蛋白質原
液とした。電子顕微鏡による確認は、上記発現蛋白液を
試料とし、4% Uranic acetate により陰性染色を行
い、倍率50000倍にして透過型電子顕微鏡(日立
製)で検鏡した。その結果、図17に示したような約2
3nmの中空円型のウイルス様構造物いわゆる”Empty
particle”の存在を確認した。
(3) Human Parvovirus Expression Protein Emp
Empty parti using ty particle purification and electron microscopy
Confirmation of cle Using insect cells Sf9, Tn5, etc., preferably Tn5
Using the cells, a human parvovirus structural protein was expressed in a large amount in a plastic cell culture bottle (Sumitomo Bakelite Co., Ltd.) having a surface area of 75 cm 2 and used for purification. A large amount of expressed protein (75 cm 2 plastic cell culture bottles for 20 bottles) was harvested together with the cultured cells by pipetting using a cell culture solution, and two 500 ml centrifugal precipitation bottles (Hitachi) were used. (About 300 ml) and transfer them to 1000-3000 rpm
Cell components were precipitated by centrifugation at 20 ° C for 15 minutes, and the supernatant was discarded. The precipitated cells were suspended in 10 ml of PBS (-) (phosphate buffered saline, Nissui Pharmaceutical Co., Ltd.) or Hanks' BSS (Hank's buffered saline, homemade) and mixed well, and then 2 using an ultralow temperature refrigerator at -80 ° C. The freeze-thaw operation was repeated 3 times. Next, freeze-thaw cell suspension was added to 5 plastic Spitz tubes (Eiken Kikai Co., Ltd.) with 2 ml each.
Ultrasonic treatment (manufactured by Olympus Corporation) was performed 2 to 4 times in total under the conditions of 100 to 500 W, 0 ° C., and 5 to 20 minutes.
At this time, about 50 μl each was collected from each cell suspension,
After dripping on a slide glass, a cover glass was placed and observed with an optical microscope (manufactured by Nikon) at a magnification of 200 times to confirm the crushed state of cells. Here, in order to separate the cell components from the cell suspension, about 10000 rpm, 20 ° C, 1
Centrifugal precipitation for 5 minutes was performed. About 10 ml of the supernatant obtained by this operation was used as a sample for the following purification operation. First, 13PA tube for ultracentrifugation (manufactured by Hitachi Koki Co., Ltd.)
40% sucrose (W / V) (PBS (-) or Hanks'BS
2 to 3 ml of (suspended in S) (manufactured by Nacalai Tesque, Inc.) is dispensed and the above sample is layered on these sucrose cushions, and ultracentrifugation is performed at about 35,000 rpm, 20 ° C. for 16 to 20 hours to exclude trace minor proteins. A human parvovirus-expressed protein was also precipitated with. Since the precipitated human parvovirus-expressed protein was adhered to the tube bottom of the 13PA tube, 2 ml each of PBS (-) was added dropwise and mixed well by pipetting and shaking. Further, at this time, since large molecules were visually confirmed, ultrasonic treatment was performed at 100 to 500 W, 0 ° C. for 2 to 10 minutes to prepare a suspension solution. Next, in advance ultrapure water (mi
li-Q Millipore) with a density of 1.2, 1.3, 1.4 (g
/ Cm 3) it becomes as prepared CsCl solution (Ju Nacalai Tesque) in descending order of density - 2,5,2 from the tube bottom of the probe
After overlaying each with 1 ml and preforming the gradient, 2 ml of the sample was overlaid on 2 ultracentrifugation tubes to obtain about 35
Purification by the first ultracentrifugation was performed under the conditions of 000 rpm, 20 ° C., and 40 to 45 hours. After ultracentrifugation, each sample was separated into about 20 fractions using a perista pump or the like, and the anti-VP1 guinea pig antibody (1.5 μg / m
l) An antigen search was performed using a solid-phased plate and an anti-VP1 guinea pig POD-labeled antibody (homemade). as a result,
The horizontal axis is fraction NO. And the vertical axis is O.F. D. 492/63
When the measurement results at 0 nm were graphed, a single-peaked curve was obtained, and thus the second ultracentrifugation operation and antigen retrieval were similarly performed using the peak-containing fraction. At this time, the weight percentage of CsCl in each fraction was measured by a saccharimeter (made by ATAGO), and each CsCl solution with a density of 1.2, 1.3, 1.4 (g / cm 3 ) serving as a reference. The density of each fraction solution was converted from the value of the weight percent of the above and converted into a graph. At this time, the horizontal axis was the fraction No. and the vertical axis was the density value of each fraction. as a result,
It was confirmed that the density decreased from the tube bottom of the tube toward the tube mouth. Further, from these relationships, it was confirmed that the density of the fraction solution containing the antigen was about 1.3 g / cm 3 . Next, this sample was PBS in a 13PA tube.
Diluted 15 to 20 times with (-) and about 35,000 rp
Ultracentrifugation was performed at 20 ° C. for 10 to 20 hours to precipitate the purified expressed protein of human parvovirus. These expressed proteins were finally suspended in 1 to 2 ml of PBS (-) to prepare an expressed protein stock solution. For confirmation by an electron microscope, using the expressed protein solution as a sample, negative staining was performed with 4% Uranic acetate, and a microscope was performed with a transmission electron microscope (manufactured by Hitachi) at a magnification of 50,000 times. As a result, about 2 as shown in FIG.
3nm hollow circular virus-like structure called "Empty"
We confirmed the existence of "particles".

【0101】実施例5 大腸菌発現抗原VP−1、VP
−2抗原を用いた抗ヒトパルボウイルスIgG抗体検出 (1)VP−1、VP−2抗原固相プレートの作製 実施例2−(6)に記載の大腸菌で発現されたVP−
1、VP−2抗原を50mM炭酸バッファー(pH9.5) で各々
1-10μg/ml濃度に希釈し、ポリスチレン平型マイクロプ
レート(ヌンク社製)に100 μl/ウェルで分注し、4℃
で一晩静置した。18時間以上静置したマイクロプレー
トを最終濃度0.05% Tween20 を含むPBS200 μl/ウェル
で3〜4回洗浄後、最終濃度0.05% 牛血清アルブミン(B
SA) と0.05% Tween20 を含む10mM PBS 200μl/ウェル加
えて4℃一晩静置し、VP−1、VP−2固相マイクロ
プレートを作製した。
Example 5 Escherichia coli expressed antigens VP-1, VP
-Human parvovirus IgG antibody detection using -2 antigen (1) Preparation of VP-1, VP-2 antigen solid phase plate VP-expressed in Escherichia coli described in Example 2- (6)
1. VP-2 antigen with 50 mM carbonate buffer (pH 9.5)
Dilute to a concentration of 1-10 μg / ml, dispense into polystyrene flat microplates (Nunc) at 100 μl / well, 4 ° C.
I left it overnight. The microplate, which had been left standing for 18 hours or more, was washed 3 to 4 times with 200 μl / well of PBS containing 0.05% Tween20 at the final concentration.
SA) and 200 μl / well of 10 mM PBS containing 0.05% Tween 20 were added and left to stand overnight at 4 ° C. to prepare VP-1 and VP-2 solid phase microplates.

【0102】(2)伝染性紅斑患者血清を用いた抗ヒト
パルボウイルスIgG抗体検出 前記述の抗原固相マイクロプレートウエル中のプレート
保存液を除いた後、伝染性紅斑患者血清を0.05% BSA と
0.05% Tween20 を含む10mM PBSで200倍に希釈し、そ
の100 μl を抗原固相マイクロプレートのウエルに加
え、室温(15℃〜25℃)で約1時間反応させた。反
応後、0.05% Tween20 含む5mM PBS 200 μl/ウェルで3
〜4回洗浄した。ついで、0.05% Tween20 含む5mM PBS
で約40000倍に希釈した抗ヒトIgGヤギパーオキ
シダーゼ標識抗体(MBL社)を100 μl/ウェル加え、
室温で約1時間反応させた。反応後、0.05% Tween20 含
む5mM PBS 200 μl/ウェルで3〜4回洗浄した。洗浄
後、3.3mg/ml O−フェニレンジアミン含む0.1M
クエン酸−リン酸緩衝液(pH 5.0)に、0.02% 過酸化水素
水を加えた基質液を100 μl/ウェル加えて室温で約30
分間反応させた。反応後、1.5N硫酸を100 μl/ウェ
ル加えて反応を停止させ、マイクロプレート用比色計を
用いて 主波長492nm、副波長630nmで各ウエ
ルのO. D. 値を測定した(表5)。
(2) Detection of anti-human parvovirus IgG antibody using serum of infectious erythema patients After removing the plate preservation solution in the antigen solid phase microplate well described above, the serum of infectious erythema patients was supplemented with 0.05% BSA.
It was diluted 200 times with 10 mM PBS containing 0.05% Tween20, and 100 μl of the diluted solution was added to the wells of the antigen solid phase microplate, and the mixture was reacted at room temperature (15 ° C to 25 ° C) for about 1 hour. After the reaction, add 3% with 200 μl / well of 5 mM PBS containing 0.05% Tween20.
Washed ~ 4 times. Then, 5 mM PBS containing 0.05% Tween20
100 μl / well of anti-human IgG goat peroxidase-labeled antibody (MBL) diluted approximately 40,000 times with
The reaction was carried out at room temperature for about 1 hour. After the reaction, the cells were washed 3 to 4 times with 200 μl / well of 5 mM PBS containing 0.05% Tween20. After washing, 0.1M containing 3.3mg / ml O-phenylenediamine
Add 100 μl / well of substrate solution containing 0.02% hydrogen peroxide solution to citric acid-phosphate buffer (pH 5.0), and add about 30 at room temperature.
Let react for minutes. After the reaction, 100 μl / well of 1.5 N sulfuric acid was added to stop the reaction, and the OD value of each well was measured at a main wavelength of 492 nm and a sub wavelength of 630 nm using a colorimeter for a microplate (Table 5). ).

【0103】[0103]

【表5】 ウイルス粒子は患者血清より精製。[Table 5] Viral particles are purified from patient serum.

【0104】この結果より完全長ヒトパルボウイルス構
造タンパク質VP−1を用いたエンザイムイムノアッセ
イの方が完全長ヒトパルボウイルス構造タンパク質VP
−2を用いたエンザイムイムノアッセイよりもIgG抗
体検出率が高かった。
From these results, the enzyme immunoassay using the full-length human parvovirus structural protein VP-1 was found to be better than the full-length human parvovirus structural protein VP.
The IgG antibody detection rate was higher than that of the enzyme immunoassay using -2.

【0105】しかし、完全長ヒトパルボウイルス構造タ
ンパク質VP−1に対する反応性よりも、完全長ヒトパ
ルボウイルス構造タンパク質VP−2に対する反応性の
強い血清が存在することが分かったので、ヒトパルボウ
イルス構造タンパク質VP−1のみでなくヒトパルボウ
イルス構造タンパク質VP−2を至適濃度に加え、好ま
しくはVP−1を1 〜10μg/ml、VP−2を1 〜20μg/
ml加え、実施例5−(1)の方法でELISA用マイク
ロプレートに固相した。そこで、VP−1抗原を用いた
エンザイムイムノアッセイでは陰性、VP−2抗原を用
いたエンザイムイムノアッセイでは陽性になる血清を用
い、VP−1とVP−2抗原を混合固相したマイクロプ
レートを用いたIgG抗体検出を行った(表6)。
However, since it was found that there was serum having a higher reactivity to the full-length human parvovirus structural protein VP-2 than to the full-length human parvovirus structural protein VP-1, it was found that the human parvovirus structural Not only the protein VP-1, but also the human parvovirus structural protein VP-2 is added to the optimum concentration, preferably 1-10 μg / ml of VP-1 and 1-20 μg / ml of VP-2.
ml was added and solid-phased on an ELISA microplate by the method of Example 5- (1). Therefore, using serum that becomes negative in the enzyme immunoassay using the VP-1 antigen and positive in the enzyme immunoassay using the VP-2 antigen, IgG using a microplate in which VP-1 and the VP-2 antigen are mixed and solid-phased is used. Antibody detection was performed (Table 6).

【0106】[0106]

【表6】 その結果、VP−1またはVP−2抗原のどちらか一方
にしか強く反応しない血清も効率よく検出することが出
来た。即ちVP−1(またはVP−2)抗原を用いたエ
ンザイムイムノアッセイは陽性で、完全長ヒトパルボウ
イルス構造タンパク質VP−2(またはVP−1)抗原
を用いたエンザイムイムノアッセイは陰性であった血清
が、VP−1とVP−2抗原を混合したエンザイムイム
ノアッセイでは、すべて陽性になることが判明した。
[Table 6] As a result, it was possible to efficiently detect serum that strongly reacts with either the VP-1 or VP-2 antigen. That is, the serum immunoassay using the VP-1 (or VP-2) antigen was positive, and the serum immunoassay using the full-length human parvovirus structural protein VP-2 (or VP-1) antigen was negative, In the enzyme immunoassay in which VP-1 and VP-2 antigens were mixed, all were found to be positive.

【0107】(3)VP−1抗原誘導体を用いた抗パル
ボウイルスIgG抗体検出 実施例3−(2)に記載の大腸菌で発現されたVP−1
抗原誘導体を50mM炭酸バッファー(pH9.5) で各々1-10μ
g/ml濃度に希釈し、ポリスチレン平型マイクロプレート
(ヌンク社製)に100 μl/wellで分注し、4℃で一晩静
置した。18時間以上静置したマイクロプレートを最終
濃度0.05% Tween20 を含むPBS 200μl/wellで3〜4回
洗浄後、最終濃度0.05% 牛血清アルブミン(BSA) と0.05
% Tween20 を含む10mM PBS 200μl/well加えて4℃一晩
静置し、VP−1抗原誘導体固相マイクロプレートを作
製した。
(3) Detection of anti-parvovirus IgG antibody using VP-1 antigen derivative VP-1 expressed in Escherichia coli as described in Example 3- (2)
Antigen derivative with 50 mM carbonate buffer (pH 9.5) 1-10 μ each
It was diluted to a concentration of g / ml, dispensed at 100 µl / well on a polystyrene flat microplate (manufactured by Nunc), and left at 4 ° C overnight. The microplate that had been left standing for 18 hours or more was washed 3 to 4 times with 200 μl / well of PBS containing Tween20 at a final concentration of 0.05%, and then the final concentration of 0.05% bovine serum albumin (BSA) and 0.05 were added.
200 μl / well of 10 mM PBS containing 10% Tween 20 was added and left at 4 ° C. overnight to prepare a VP-1 antigen derivative solid phase microplate.

【0108】次いで伝染性紅斑流行時の血清を用い、前
記マイクロプレートによる抗パルボウイルスIgG抗体
検出を行った。はじめにVP−1抗原誘導体固相マイク
ロプレートウエル中のプレート保存液を除き、その後伝
染性紅斑患者血清を0.05% BSA と0.05% Tween20 を含む
10mM PBSで200倍に希釈し、その100 μl を抗原固相
マイクロプレートのウエルに加え、室温(15℃〜25
℃)で約1時間反応させた。反応後、0.05% Tween20 含
む5mM PBS 200 μl/wellで3〜4回洗浄した。ついで、
0.05% Tween20 含む5mM PBS で約40000倍に希釈し
た抗ヒトIgGヤギパーオキシダーゼ標識抗体(MBL
社)を100 μl/well加え、室温で約1時間反応させた。
反応後、0.05% Tween20 含む5mM PBS 200 μl/wellで3
〜4回洗浄した。洗浄後、3.3mg/ml O−フェニレンジ
アミン含む0.1M クエン酸−リン酸緩衝液(pH 5.0)
に、0.02% 過酸化水素水を加えた基質液を100 μl/well
加えて室温で約30分間反応させた。反応後、1.5N
硫酸を100 μl/well加えて反応を停止させ、マイクロプ
レート用比色計を用いて 主波長492nm、副波長6
30nmで各ウエルのO. D. 値を測定した(表4)。
[0108] Next, anti-parvovirus IgG antibody was detected by the above-mentioned microplate using the serum at the time of infectious erythema epidemic. First, the plate preservation solution in the VP-1 antigen derivative solid phase microplate well was removed, and then the serum of infectious erythema patient was added with 0.05% BSA and 0.05% Tween20.
Dilute 200-fold with 10 mM PBS, add 100 μl to the wells of the solid phase microplate of the antigen, and mix at room temperature (15 ° C-25 ° C).
The reaction was carried out at (° C.) for about 1 hour. After the reaction, the wells were washed 3 to 4 times with 200 μl / well of 5 mM PBS containing 0.05% Tween20. Then,
Anti-human IgG goat peroxidase-labeled antibody (MBL) diluted approximately 40,000 times with 5 mM PBS containing 0.05% Tween20.
100 μl / well) and reacted at room temperature for about 1 hour.
After the reaction, add 3% with 5 mM PBS containing 0.05% Tween20 (200 μl / well).
Washed ~ 4 times. After washing, 0.1M citric acid-phosphate buffer (pH 5.0) containing 3.3 mg / ml O-phenylenediamine
Substrate solution containing 0.02% hydrogen peroxide in 100 μl / well
In addition, the reaction was carried out at room temperature for about 30 minutes. After reaction, 1.5N
The reaction was stopped by adding 100 μl / well of sulfuric acid, and the main wavelength was 492 nm and the sub wavelength was 6 using a microplate colorimeter.
The OD value of each well was measured at 30 nm (Table 4).

【0109】[0109]

【表4】 ウイルス粒子は患者血清より精製。[Table 4] Viral particles are purified from patient serum.

【0110】この結果よりウイルス粒子を用いたエンザ
イムイムノアッセイよりも抗ヒトパルボウイルスIgG
抗体検出率がかなり低いことが分かった。また、実施例
5−(2)の結果から、完全長ヒトパルボウイルス構造
タンパク質VP−1を用いたエンザイムイムノアッセイ
の方が部分発現であるVP−1抗原誘導体を用いたエン
ザイムイムノアッセイより抗ヒトパルボウイルスIgG
抗体検出率が高く、かつウイルス粒子を用いたエンザイ
ムイムノアッセイとの一致率も高いことが分かった。こ
のことは同じ発現抗原、例えばVP−1抗原とVP−1
抗原誘導体の場合、抗原部位の数及び立体構造が抗ヒト
パルボウイルスIgG抗体検出率の差の原因であると思
われた。よって、エンザイムイムノアッセイに用いる発
現抗原としては、抗原部位の数及び立体構造がウイルス
粒子の抗原部位の数及び立体構造に近いという条件が重
要となる。従って、同じ発現抗原でも部分発現抗原よ
り、完全長発現抗原の方が前記条件を満たしていると思
われた。
From this result, anti-human parvovirus IgG was detected rather than enzyme immunoassay using virus particles.
The antibody detection rate was found to be quite low. In addition, from the results of Example 5- (2), the enzyme immunoassay using the full-length human parvovirus structural protein VP-1 is more partially expressed than the enzyme immunoassay using the VP-1 antigen derivative. IgG
It was found that the antibody detection rate was high and the agreement rate with the enzyme immunoassay using virus particles was also high. This means that the same expressed antigen, eg VP-1 antigen and VP-1
In the case of the antigen derivative, the number and the three-dimensional structure of the antigen site seemed to be the cause of the difference in the detection rate of the anti-human parvovirus IgG antibody. Therefore, it is important for the expressed antigen used for the enzyme immunoassay that the number and the three-dimensional structure of the antigen site are close to the number and the three-dimensional structure of the antigen site of the virus particle. Therefore, even with the same expressed antigen, the full-length expressed antigen was considered to satisfy the above condition more than the partially expressed antigen.

【0111】(4)伝染性紅斑患者血清を用いた抗ヒト
パルボウイルスIgG抗体の経時的変化の検討 実施例5−(1)記載の抗原固相マイクロプレートを用
い、実施例5−(2)記載のエンザイムイムノアッセイ
法で、伝染性紅斑患者血清の抗ヒトパルボウイルスIg
G抗体の経時的変化を調べた(図18)。なお、VP−
1は5μg/mlで、VP−2は10μg/mlで、M
ixはVP−1を5μg/ml、VP−2を10μg/
mlで固相した。
(4) Examination of time course change of anti-human parvovirus IgG antibody using serum of infectious erythema patients Using the antigen solid phase microplate described in Example 5- (1), Example 5- (2). Anti-human parvovirus Ig in serum of an infectious erythema patient according to the described enzyme immunoassay method
The change in G antibody over time was examined (FIG. 18). In addition, VP-
1 was 5 μg / ml, VP-2 was 10 μg / ml, M
ix is 5 μg / ml for VP-1 and 10 μg / ml for VP-2.
It was solid-phased in ml.

【0112】その結果、VP−1、VP−2抗原に対す
るIgG抗体は共に出現するが、VP−1抗原に対する
IgG抗体の方が、VP−2抗原に対するIgG抗体よ
り抗体量の持続性は長いことが分かった。
As a result, IgG antibodies against the VP-1 and VP-2 antigens both appear, but the IgG antibody against the VP-1 antigen has a longer lasting antibody amount than the IgG antibody against the VP-2 antigen. I understood.

【0113】ところで、VP−2抗原のタンパク質のコ
ード領域は、VP−1抗原のC末端部分に完全に含まれ
ている。そこで、以前よりヒトパルボウイルスの抗体検
出には、VP−1抗原のみで十分可能であると思われて
いた。しかし、VP−1とVP−2抗原は免疫学的な反
応性に違いがあることが分かり、かつIgG抗体量の持
続性にも違いがあることが分かり、ヒトパルボウイルス
のより確実な診断には、VP−1抗原のみを用いたエン
ザイムイムノアッセイではなく、VP−2抗原も加えた
エンザイムイムノアッセイが必要であることが分かっ
た。即ちVP−1及びVP−2抗原混合系の方がVP−
1またはVP−2抗原単独系よりもヒトパルボウイルス
に対するIgG抗体の検出率は高くなることが判明し
た。
By the way, the coding region of the protein of VP-2 antigen is completely contained in the C-terminal portion of VP-1 antigen. Therefore, it has long been considered that the VP-1 antigen alone is sufficient for detecting human parvovirus antibodies. However, it was found that the VP-1 and VP-2 antigens had a difference in immunological reactivity and a difference in the persistence of IgG antibody amount, and thus a more reliable diagnosis of human parvovirus was made. Found that an enzyme immunoassay in which VP-2 antigen was added was required, not an enzyme immunoassay in which only VP-1 antigen was used. That is, the VP-1 and VP-2 antigen mixed system is more VP-
It was found that the detection rate of IgG antibody against human parvovirus was higher than that of the 1 or VP-2 antigen alone system.

【0114】実施例6 大腸菌発現抗原VP−1、VP
−2抗原を用いた抗ヒトパルボウイルスIgM抗体検出 (1)抗ヒトパルボウイルス構造タンパク質VP−1、
VP−2抗体に対するパーオキシダーゼ標識 実施例2−(6)に記載の大腸菌で発現されたVP−
1、VP−2抗原各々200 μg/ml 1mlと完全アジュバン
ト(Difco社製)1ml を等量混合し、エマルジョン
を作製して、モルモットに免疫した。ついで不完全アジ
ュバント(Difco社製)1ml を前述の抗原溶液と等
量混合しエマルジョンを作製して2回追加免疫した。追
加免疫した後、モルモットを全採血した。その血液を血
清分離し、硫安分画後、50mM Tris-HCl(pH7.6)で4℃、
一晩透析した。次ぎに50mM Tris-HCl(pH7.6)で平衡化し
たDEAEセファロースクロマトグラフィーにかけ、U
V波長280nmでモニタリングし、O. D. のピーク
を集めて、DEAE精製IgG抗体画分とした。
Example 6 Escherichia coli expressed antigens VP-1, VP
-2 anti-human parvovirus IgM antibody detection using antigen-2 (1) anti-human parvovirus structural protein VP-1,
Peroxidase labeling against VP-2 antibody VP-expressed in E. coli as described in Example 2- (6)
1. 200 μg / ml of VP-2 antigen (1 ml each) and 1 ml of a complete adjuvant (manufactured by Difco) were mixed in equal amounts to prepare an emulsion and immunize a guinea pig. Then, 1 ml of incomplete adjuvant (manufactured by Difco) was mixed with the above-mentioned antigen solution in an equal amount to prepare an emulsion, and booster immunization was performed twice. After boosting, the guinea pigs were exsanguinated. The blood was serum-separated, and after ammonium sulfate fractionation, it was treated with 50 mM Tris-HCl (pH 7.6) at 4 ° C.
It was dialyzed overnight. Next, it was subjected to DEAE Sepharose chromatography equilibrated with 50 mM Tris-HCl (pH 7.6), and U
The V wavelength was monitored at 280 nm, and the OD peak was collected to be a DEAE-purified IgG antibody fraction.

【0115】このIgG抗体画分を過ヨーソ酸改良法
〔酵素免疫測定法,2:91(1982)〕でパーオキシダーゼ標
識した。即ちパーオキシダーゼ4mg/mlになるようによう
に蒸留水で溶解した。ついで、0.1M 過ヨーソ酸ナトリ
ウム 0.2mlを加え、室温で約20分反応させ、1mM 酢酸
ナトリウム緩衝液(pH4.0) で一晩透析した。透析後、0.
2M 炭酸ナトリウム緩衝液(pH9.5) を0.02ml加え、pH9-
9.5 にすると同時に前記述で精製したIgG抗体を8mg
加えた。
This IgG antibody fraction was labeled with peroxidase by the periodoic acid modification method [enzyme immunoassay method, 2:91 (1982)]. That is, the peroxidase was dissolved in distilled water so as to have a concentration of 4 mg / ml. Then, 0.2 ml of 0.1 M sodium periodate was added, the mixture was reacted at room temperature for about 20 minutes, and dialyzed against 1 mM sodium acetate buffer (pH 4.0) overnight. After dialysis, 0.
Add 0.02 ml of 2M sodium carbonate buffer (pH 9.5) to adjust the pH to 9-
At the same time as 9.5, add 8 mg of the IgG antibody purified as described above.
added.

【0116】室温で約2時間反応させ、4mg/ml 水酸化
ホウ素ナトリウムを0.1ml 加え、4℃で約2時間反応さ
せた。反応後、10mM リン酸バッファーを用いてセファ
クリルS−200によるゲル濾過を行い、UV波長28
0nmでモニタリングしてパーオキシダーゼ標識抗体画
分を集めた。
The reaction was carried out at room temperature for about 2 hours, 0.1 ml of 4 mg / ml sodium borohydride was added, and the reaction was carried out at 4 ° C. for about 2 hours. After the reaction, gel filtration with Sephacryl S-200 was performed using 10 mM phosphate buffer, and UV wavelength was 28
The peroxidase-labeled antibody fraction was collected by monitoring at 0 nm.

【0117】(2)伝染性紅斑流行時の血清88検体を
用いた抗ヒトパルボウイルスIgM抗体検出 抗ヒトIgMモノクローナル抗体(MILS社製)を50
mM 炭酸バッファー(pH9.5) で500〜1000倍に希
釈し、ヌンク社製ポリスチレン平型分割マイクロプレー
ト(高結合タイプ)に100 μl/ウェル 分注し、4℃、
18時間以上静置した。静置後、マイクロプレートを0.
05% Tween20 含む5mM PBS 200 μl/ウェルで3〜4回洗
浄後、0.5% BSAと0.05% Tween20 含む5mM PBS 200 μl/
ウェル加えて4℃、一晩静置し、抗ヒトIgMモノクロ
ーナル固相マイクロプレートを作製した。ついで、この
抗ヒトIgMモノクローナル抗体固相マイクロプレート
を用いて、抗ヒトパルボウイルスIgM抗体検出試薬を
試作した。
(2) Detection of anti-human parvovirus IgM antibody using 88 samples of serum at the time of epidemic of erythema infectio Anti-human IgM monoclonal antibody (manufactured by MILS) was used.
Dilute 500-1000 times with mM carbonate buffer (pH 9.5) and dispense 100 μl / well to Nunc polystyrene flat plate split microplate (high binding type) at 4 ° C.
Let stand for 18 hours or more. After standing, place the microplate at 0.
After washing 3 to 4 times with 200 μl of 5 mM PBS containing 05% Tween20, 200 μl of 5 mM PBS containing 0.5% BSA and 0.05% Tween20
The wells were added and left at 4 ° C. overnight to prepare an anti-human IgM monoclonal solid phase microplate. Next, an anti-human parvovirus IgM antibody detection reagent was experimentally produced using this anti-human IgM monoclonal antibody solid phase microplate.

【0118】次に、この試作した抗ヒトパルボウイルス
IgM抗体検出試薬を用いて、伝染性紅斑流行時の血清
88検体を用いた抗ヒトパルボウイルスIgM抗体検出
を行った。前記述の抗原固相マイクロプレートウエル中
のプレート保存液を除き、ついで、伝染性紅斑患者血清
を0.2% BSAと0.05% Tween20 含む10mM PBSで200倍に
希釈し、その100 μl を前記述の抗ヒトIgMモノクロ
ーナル抗体固相マイクロプレートに100 μl/ウェル加
え、室温(15℃〜25℃)で約1時間反応させた。反応
後、0.05% Tween20 含む5mM PBS 200 μl/ウェルで3〜
4回洗浄した。ついで、前記述で精製した完全長のヒト
パルボウイルス構造タンパク質VP−1、VP−2を0.
5% BSAと0.05% Tween20 を含む5mM PBS で5 μg/ml濃度
に希釈し100μl/ウェル加え、室温で約1時間反応させ
た。反応後、0.05% Tween20 を含む5mM PBS 200 μl/ウ
ェルで3〜4回洗浄した。0.5% BSAと0.05% Tween20 を
含む5mM PBS で2000〜5000倍に希釈した前記
述、実施例5−(1)のVP−1、VP−2抗原に対す
るパーオキシダーゼ標識モルモット抗体を100 μl/ウェ
ル加え、室温で約1時間反応させた。反応後、0.05% Tw
een20 を含む5mM PBS 200μl/ウェルで3〜4回洗浄し
た。洗浄後、3.3mg/ml O−フェニレンジアミンを含む
0.1M クエン酸−リン酸緩衝液(pH5.0) に、終濃度0.02
% の過酸化水素水を加えた基質液を100 μl/ウェル加え
て室温で約30分間反応させた。反応後、1.5N硫酸を10
0 μl/ウェル加えて反応を停止させ、マイクロプレート
用比色計で主波長492nm、副波長630nmを用い
て各ウエルのO. D. 値を測定した(表7)。
Next, the anti-human parvovirus IgM antibody detection was carried out using 88 samples of serum at the time of epidemic of infectious erythema using the trial-produced anti-human parvovirus IgM antibody detection reagent. The plate stock solution in the antigen solid phase microplate wells described above was removed, and then the serum of infectious erythema erythema was diluted 200-fold with 10 mM PBS containing 0.2% BSA and 0.05% Tween20, and 100 μl of the diluted solution was used. 100 μl / well was added to a human IgM monoclonal antibody solid phase microplate and reacted at room temperature (15 ° C. to 25 ° C.) for about 1 hour. After the reaction, add 3% with 200 μl / well of 5 mM PBS containing 0.05% Tween20.
Washed 4 times. Then, the full-length human parvovirus structural proteins VP-1 and VP-2 purified as described above were added to 0.2%.
The mixture was diluted with 5 mM PBS containing 5% BSA and 0.05% Tween 20 to a concentration of 5 μg / ml, added 100 μl / well, and reacted at room temperature for about 1 hour. After the reaction, the wells were washed 3 to 4 times with 200 μl / well of 5 mM PBS containing 0.05% Tween20. 100 μl / well of peroxidase-labeled guinea pig antibodies against the VP-1 and VP-2 antigens of the above description, Example 5- (1), which had been diluted 2000 to 5000 times with 5 mM PBS containing 0.5% BSA and 0.05% Tween 20, were added. The reaction was carried out at room temperature for about 1 hour. After reaction, 0.05% Tw
Washed 3-4 times with 200 μl / well of 5 mM PBS containing een20. After washing, contains 3.3mg / ml O-phenylenediamine
0.1M citric acid-phosphate buffer (pH 5.0), final concentration 0.02
Substrate solution containing 100% hydrogen peroxide was added at 100 μl / well and reacted at room temperature for about 30 minutes. After the reaction, add 1.5N sulfuric acid to 10
The reaction was stopped by adding 0 μl / well, and the OD value of each well was measured with a colorimeter for a microplate using a main wavelength of 492 nm and a sub wavelength of 630 nm (Table 7).

【0119】[0119]

【表7】 [Table 7]

【0120】その結果、伝染性紅斑患者血清より精製し
たヒトパルボウイルス粒子を用いた抗ヒトパルボウイル
スIgM抗体検出エンザイムイムノアッセイと比較した
ところ、検出感度がやや低いものの特異性は高かった。
As a result, when compared with the enzyme immunoassay for detecting an anti-human parvovirus IgM antibody using human parvovirus particles purified from the serum of an infectious erythema patient, the detection sensitivity was slightly low but the specificity was high.

【0121】従って、本発明である大腸菌で発現させた
構造タンパク質は、抗ヒトパルボウイルスIgM抗体検
出に有用である事が分かった。
Therefore, it was found that the structural protein expressed in Escherichia coli of the present invention is useful for detecting anti-human parvovirus IgM antibody.

【0122】実施例7 バキュロウイルス発現蛋白 Emp
ty particle を用いた抗ヒトパルボウイルスIgG抗体
検出 (1)バキュロウイルス発現蛋白 Empty particle 固相
プレートの作製 実施例4−(3)に記載のバキュロウイルス発現蛋白 E
mpty particle を10mMPBS(pH7.2)で各々
0.1〜10μg/ml濃度に希釈し、ポリスチレン平
型マイクロプレート(ヌンク社製)に100μg/ウェ
ルで分注し、4℃で1〜2日間静置した。1〜2日間静
置したマイクロプレートを最終濃度0.05%Twee
n20 を含むPBS 200μl/ウェルで3〜4回
洗浄後、最終濃度0.05% 牛血清アルブミン(BS
A)と0.05%Tween20を含む10mMPBS
200μl/ウェル加えて4℃一晩静置し、バキュロ
ウイルス発現抗原Empty particles 固相マイクロプレー
トを作製した。
Example 7 Baculovirus Expressed Protein Emp
Detection of anti-human parvovirus IgG antibody using ty particles (1) Preparation of baculovirus-expressed protein Empty particle solid phase plate Baculovirus-expressed protein E described in Example 4- (3)
The mpty particles were each diluted with 10 mM PBS (pH 7.2) to a concentration of 0.1 to 10 μg / ml, dispensed at 100 μg / well on polystyrene flat microplates (Nunc), and allowed to stand at 4 ° C. for 1 to 2 days. I put it. The microplate left to stand for 1 to 2 days had a final concentration of 0.05% Tween.
After washing 3 to 4 times with 200 μl / well of PBS containing n20, bovine serum albumin (BS
A) and 10 mM PBS containing 0.05% Tween 20
200 μl / well was added and left at 4 ° C. overnight to prepare a baculovirus-expressing antigen Empty particles solid phase microplate.

【0123】(2)伝染性紅斑患者血清88検体を用い
た抗ヒトパルボウイルスIgG抗体検出 前記述の抗原固相マイクロプレートウエル中のプレート
保存液を除いた後、伝染性紅斑患者血清を0.5%BS
Aと0.05%Tween20を含む10mMPBS
(pH7.2)で200倍に希釈し、その100μlを
抗原固相マイクロプレートのウエルに加え、室温(15
℃〜25℃)で約1時間反応させた。反応後、0.05
%Tween20を含む5mMPBS 200μl/ウ
ェルで3〜4回洗浄した。ついで、0.05%Twee
n20を含む5mMPBSで約20000〜40000
倍に希釈した抗ヒトIgGヤギパーオキシダーゼ標識抗
体(MBL社)を100μl/ウェル加え、室温で約1
時間反応させた。反応後、0.05%Tween20を
含む5mMPBS 200μl/ウェルで3〜4回洗浄
した。洗浄後、3.3mg/mlの O−フェニレンジ
アミン含む0.1Mクエン酸−リン酸緩衝液(pH5.
0)に、0.02%過酸化水素水を加えた基質液を10
0μl/ウェル加えて室温で約30分間反応させた。反
応後、1.5N硫酸を100μl/ウェル加えて反応を
停止させ、マイクロプレート用比色計を用いて 主波長
492nm、副波長630nmで各ウエルのO. D. 値
を測定した(表8)。
(2) Detection of anti-human parvovirus IgG antibody using 88 specimens of erythema infectious erythema patient After removing the plate stock solution in the antigen solid phase microplate well described above, the serum of infectious erythema patient was adjusted to 0. 5% BS
10 mM PBS containing A and 0.05% Tween 20
Dilute 200-fold with (pH 7.2), add 100 μl thereof to the well of the antigen solid phase microplate, and add at room temperature (15
The reaction was performed at about 1 to 25 ° C for about 1 hour. After reaction, 0.05
Washed 3-4 times with 200 μl / well of 5 mM PBS containing% Tween20. Then, 0.05% Twee
Approximately 20,000 to 40,000 with 5 mM PBS containing n20
100 μl / well of anti-human IgG goat peroxidase-labeled antibody (MBL) diluted 1-fold was added, and the mixture was diluted to about 1 at room temperature.
Reacted for hours. After the reaction, the wells were washed 3 to 4 times with 200 μl / well of 5 mM PBS containing 0.05% Tween20. After washing, 0.1 M citrate-phosphate buffer (pH 5.3) containing 3.3 mg / ml O-phenylenediamine.
0) substrate solution containing 0.02% hydrogen peroxide solution added to 10)
0 μl / well was added and reacted at room temperature for about 30 minutes. After the reaction, 1.5 N sulfuric acid was added in an amount of 100 μl / well to stop the reaction, and the OD value of each well was measured at a main wavelength of 492 nm and a sub wavelength of 630 nm using a colorimeter for a microplate (Table 8). .

【0124】[0124]

【表8】 [Table 8]

【0125】この結果より、伝染性紅斑患者血清中より
精製したヒトパルボウイルス粒子を用いたIgG抗体検
出エンザイムイムノアッセイとバキュロウイルス発現蛋
白Empty particle を用いたIgG抗体検出エンザイム
イムノアッセイの成績を比較したところ、陽性一致率が
100%で陰性一致率も100%であった。以上より、
バキュロウイルス発現蛋白 Empty particle を用いたI
gG抗体検出エンザイムイムノアッセイは、検出感度及
び特異性ともに、文献など他のヒトパルボウイルスIg
G抗体検出エンザイムイムノアッセイよりも高いので、
より確実なIgG抗体検出が可能と成った。
From these results, when the results of the IgG antibody detection enzyme immunoassay using human parvovirus particles purified from the serum of infectious erythema patients and the IgG antibody detection enzyme immunoassay using baculovirus expressed protein Empty particles were compared, The positive match rate was 100% and the negative match rate was 100%. From the above,
Baculovirus expressed protein Empty particle I
The enzyme immunoassay for detecting gG antibody is used for the detection of specificity and specificity of other human parvovirus Ig.
Since it is higher than the G antibody detection enzyme immunoassay,
More reliable IgG antibody detection is now possible.

【0126】実施例8 バキュロウイルス発現蛋白 Emp
ty particles を用いた抗ヒトパルボウイルスIgM抗
体検出 (1)抗バキュロウイルス発現蛋白 Empty particles
抗体に対するパーオキシダーゼ標識 実施例4−(3)に記載のバキュロウイルス発現蛋白 E
mpty particles 各々10〜500μg/mlを1ml
と完全アジュバント(Difco社製)1mlを等量混
合し、エマルジョンを作製して、モルモットに免疫し
た。ついで不完全アジュバント(Difco社製)1ml
を前述の抗原溶液と等量混合しエマルジョンを作製して
2回追加免疫した。追加免疫した後、モルモットを全採
血した。その血液を血清分離し、硫安分画後、50mM
Tris−HCl(pH7.6)で4℃、一晩透析し
た。次に50mM Tris−HCl(pH7.6)で
平衡化したDEAEセファロースクロマトグラフィーに
かけ、UV波長280nmでモニタリングし、O. D.
のピークを集めて、DEAE精製IgG抗体画分とし
た。
Example 8 Baculovirus Expressed Protein Emp
Detection of anti-human parvovirus IgM antibody using ty particles (1) Anti-baculovirus expressed protein Empty particles
Peroxidase labeling of antibody Baculovirus-expressed protein E described in Example 4- (3)
mpty particles 1 to 10-500 μg / ml each
And 1 ml of complete adjuvant (manufactured by Difco) were mixed to prepare an emulsion, and the guinea pig was immunized. Then incomplete adjuvant (Difco) 1 ml
Was mixed with the above-mentioned antigen solution in an equal amount to prepare an emulsion, and booster immunization was performed twice. After boosting, the guinea pigs were exsanguinated. The blood is serum-separated, and after ammonium sulfate fractionation, 50 mM
It was dialyzed against Tris-HCl (pH 7.6) at 4 ° C overnight. It was then subjected to DEAE Sepharose chromatography equilibrated with 50 mM Tris-HCl (pH 7.6), monitored at UV wavelength of 280 nm and OD.
Was collected and used as a DEAE-purified IgG antibody fraction.

【0127】このIgG抗体画分を過ヨーソ酸改良法
〔酵素免疫測定法,2:91(1982)〕でパーオキシダーゼ標
識した。即ちパーオキシダーゼ4mg/mlになるよう
にように蒸留水で溶解した。ついで、0.1M 過ヨー
ソ酸ナトリウム 0.2mlを加え、室温で約20分反
応させ、1mM 酢酸ナトリウム緩衝液(pH4.0)
で一晩透析した。透析後、0.2M 炭酸ナトリウム緩
衝液(pH9.5)を0.02ml加え、pH9〜9.
5にすると同時に前記述で精製したIgG抗体を8mg
加えた。
This IgG antibody fraction was labeled with peroxidase by the periodoic acid modification method [enzyme immunoassay, 2:91 (1982)]. That is, the peroxidase was dissolved in distilled water so as to have a concentration of 4 mg / ml. Next, 0.2 ml of 0.1 M sodium periodate was added, and the mixture was reacted at room temperature for about 20 minutes, and 1 mM sodium acetate buffer (pH 4.0) was added.
Dialyzed overnight. After dialysis, 0.02 ml of 0.2 M sodium carbonate buffer solution (pH 9.5) was added, and the pH was adjusted to 9 to 9.
5 mg and 8 mg of IgG antibody purified as described above
added.

【0128】室温で約2時間反応させ、4mg/ml水
酸化ホウ素ナトリウムを0.1ml加え、4℃で約2時
間反応させた。反応後、10mM リン酸バッファーを
用いてセファクリルS−200によるゲル濾過を行い、
UV波長280nmでモニタリングしてパーオキシダー
ゼ標識抗体画分を集めた。
After reacting at room temperature for about 2 hours, 0.1 ml of 4 mg / ml sodium borohydride was added and reacted at 4 ° C. for about 2 hours. After the reaction, gel filtration with Sephacryl S-200 was performed using 10 mM phosphate buffer,
The peroxidase-labeled antibody fraction was collected by monitoring at UV wavelength of 280 nm.

【0129】(2)伝染性紅斑流行時の血清88検体を
用いた抗ヒトパルボウイルスIgM抗体検出 抗ヒトIgMモノクローナル抗体(MILS社製)を5
0mM炭酸バッファー(pH9.5)で500〜100
0倍に希釈し、ヌンク社製ポリスチレン平型分割マイク
ロプレート(高結合タイプ)に100μl/ウェル分注
し、4℃、18時間以上静置した。静置後、マイクロプ
レートを0.05%Tween20含む5mMPBS
200μl/ウェルで3〜4回洗浄後、0.5%BSA
と0.05%Tween20含む5mMPBS 200
μl/ウェル加えて4℃、一晩静置し、抗ヒトIgMモ
ノクローナル固相マイクロプレートを作製した。つい
で、この抗ヒトIgMモノクローナル抗体固相マイクロ
プレートを用いて、抗ヒトパルボウイルスIgM抗体検
出試薬を試作した。
(2) Detection of anti-human parvovirus IgM antibody using 88 serum samples at the time of epidemic erythema infestation Anti-human IgM monoclonal antibody (manufactured by MILS) was used as 5
500-100 with 0 mM carbonate buffer (pH 9.5)
It was diluted 0 times, and 100 μl / well was dispensed to a polystyrene flat type split microplate (high binding type) manufactured by Nunc Co., Ltd., and left still at 4 ° C. for 18 hours or more. After standing, the microplate contains 5 mM PBS containing 0.05% Tween 20.
After washing 3 to 4 times with 200 μl / well, 0.5% BSA
And 5 mM PBS 200 containing 0.05% Tween 20
μl / well was added and left overnight at 4 ° C. to prepare an anti-human IgM monoclonal solid phase microplate. Next, an anti-human parvovirus IgM antibody detection reagent was experimentally produced using this anti-human IgM monoclonal antibody solid phase microplate.

【0130】次に、この試作した抗ヒトパルボウイルス
IgM抗体検出試薬を用いて、伝染性紅斑流行時の血清
88検体を用いた抗ヒトパルボウイルスIgM抗体検出
を行った。はじめに、前記述の抗ヒトIgMモノクロー
ナル抗体固相マイクロプレートウエル中のプレート保存
液を除いた。ついで、伝染性紅斑患者血清を0.2%B
SAと0.05%Tween20含む10mM PBS
で200倍に希釈し、前記述の抗ヒトIgMモノクロー
ナル抗体固相マイクロプレートに100μl/ウェル加
え、室温(15℃〜25℃)で約1時間反応させた。反
応後、0.05%Tween20含む5mMPBS 2
00μl/ウェルで3〜4回洗浄した。ついで、前記述
で精製したバキュロウイルス発現抗原 Empty particles
を0.5%BSAと0.05%Tween20含む5m
MPBSで0.05〜5.0μg/ml濃度に希釈し、
それを100μl/ウェル加え、室温で約1時間反応さ
せた。反応後、0.05%Tween20を含む5mM
PBS 200μl/ウェルで3〜4回洗浄した。0.
5%BSAと0.05%Tween20を含む5mMP
BSで2000〜20000倍に希釈した前記述、実施
例8−(1)のバキュロウイルス発現抗原 Empty parti
cle に対するパーオキシダーゼ標識モルモット抗体を1
00μl/ウェル加え、室温で約1時間反応させた。反
応後、0.05%Tween20を含む5mMPBS
200μl/ウェルで3〜4回洗浄した。洗浄後、3.
3mg/ml O−フェニレンジアミンを含む0.1M
クエン酸−リン酸緩衝液(pH5.0)に、終濃度
0.02%の過酸化水素水を加えた基質液を100μl
/ウェル加えて室温で約30分間反応させた。反応後、
1.5N硫酸を100μl/ウェル加えて反応を停止さ
せ、マイクロプレート用比色計で主波長492nm、副
波長630nm を用いて各ウエルのO. D. 値を測定
した(表9)。
Next, using this prototype anti-human parvovirus IgM antibody detection reagent, anti-human parvovirus IgM antibody detection was performed using 88 serum samples from the epidemic of infectious erythema. First, the plate stock solution in the anti-human IgM monoclonal antibody solid phase microplate well described above was removed. Then, 0.2% B of infectious erythema patient serum was added.
10 mM PBS containing SA and 0.05% Tween 20
200-fold, and 100 μl / well was added to the anti-human IgM monoclonal antibody solid phase microplate described above, and the mixture was reacted at room temperature (15 ° C to 25 ° C) for about 1 hour. After the reaction, 5 mM PBS 2 containing 0.05% Tween 20
Wash 3-4 times with 00 μl / well. Then, the baculovirus-expressed antigen Empty particles purified as described above
5m containing 0.5% BSA and 0.05% Tween 20
Dilute to 0.05-5.0 μg / ml concentration with MPBS,
It was added at 100 μl / well and reacted at room temperature for about 1 hour. After the reaction, 5 mM containing 0.05% Tween 20
Washed with PBS 200 μl / well 3-4 times. 0.
5mMP containing 5% BSA and 0.05% Tween 20
Baculovirus-expressing antigen Empty parti of the above-mentioned Example 8- (1), which was diluted 2000 to 20000 times with BS.
1 peroxidase-labeled guinea pig antibody against cle
00 μl / well was added and reacted at room temperature for about 1 hour. After the reaction, 5 mM PBS containing 0.05% Tween 20
Washed 3-4 times with 200 μl / well. After washing, 3.
0.1 M containing 3 mg / ml O-phenylenediamine
100 μl of a substrate solution obtained by adding hydrogen peroxide solution having a final concentration of 0.02% to a citric acid-phosphate buffer solution (pH 5.0)
/ Well was added and reacted at room temperature for about 30 minutes. After the reaction
The reaction was stopped by adding 100 μl / well of 1.5 N sulfuric acid, and the OD value of each well was measured using a microplate colorimeter with a main wavelength of 492 nm and a sub wavelength of 630 nm (Table 9).

【0131】[0131]

【表9】 [Table 9]

【0132】この結果より、伝染性紅斑患者血清中より
精製したヒトパルボウイルス粒子を用いたIgM抗体検
出エンザイムイムノアッセイとバキュロウイルス発現蛋
白Empty particle を用いたIgM抗体検出エンザイム
イムノアッセイの成績を比較したところ、陽性一致率が
100%で陰性一致率も100%であった。
From these results, the results of the IgM antibody detection enzyme immunoassay using human parvovirus particles purified from the serum of infectious erythema patients and the IgM antibody detection enzyme immunoassay using baculovirus-expressed protein empty particles were compared. The positive match rate was 100% and the negative match rate was 100%.

【0133】以上より、バキュロウイルス発現蛋白 Emp
ty particle を用いたIgM抗体検出エンザイムイムノ
アッセイは、検出感度及び特異性ともに、文献などのヒ
トパルボウイルス抗体検出エンザイムイムノアッセイよ
りも高いので、より確実な抗体検出が可能となった。
Based on the above, the baculovirus-expressed protein Emp
Since the IgM antibody detection enzyme immunoassay using ty particles has higher detection sensitivity and specificity than the human parvovirus antibody detection enzyme immunoassay such as literature, more reliable antibody detection became possible.

【0134】実施例9 ヒトパルボウイルス抗原検出 (1)VP−1、VP−2抗原に対する抗体固相マイク
ロプレートの作製 実施例6−(1)記載の抗ヒトパルボウイルスモルモッ
ト抗体を50mM 炭酸バッファー(pH9.5)で、
0.1〜5.0μl/mlに希釈した。希釈後、ポリス
チレン平型マイクロプレート(ヌンク社製)に100μ
l/ウェル分注し、4℃で18時間以上静置した。静置
後、マイクロプレートを0.05%Tween20を含
む5mMPBS 200μl/ウェルで3〜4回洗浄
後、0.5%BSAと0.05% Tween20を含
む5mMPBSを200μl/ウェル加えて4℃一晩静
置し、抗体固相マイクロプレートを作製した。
Example 9 Human Parvovirus Antigen Detection (1) Preparation of Antibody Solid Phase Microplate Against VP-1 and VP-2 Antigens The anti-human parvovirus guinea pig antibody described in Example 6- (1) was added to a 50 mM carbonate buffer ( at pH 9.5),
Diluted to 0.1-5.0 μl / ml. After dilution, add 100μ to a polystyrene flat microplate (Nunc)
1 / well was dispensed, and the mixture was allowed to stand at 4 ° C for 18 hours or more. After standing, the microplate was washed 3 to 4 times with 5 mM PBS containing 0.05% Tween 20 at 200 μl / well, and 200 μl / well of 5 mM PBS containing 0.5% BSA and 0.05% Tween 20 was added at 4 ° C. overnight. The plate was left to stand to prepare an antibody solid phase microplate.

【0135】(2)伝染性紅斑流行時の血清を用いたヒ
トパルボウイルス抗原検出 次に、抗体固相プレートを用いて、伝染性紅斑流行時の
血清によるヒトパルボウイルス抗原検出を行った。前記
述の抗体固相マイクロプレートウエル中のプレート保存
液を除き、ついで、伝染性紅斑流行時の血清を0.2%
BSAと0.05%Tween20含む10mMPBS
で200倍に希釈し、前記述の抗ヒトパルボウイルス抗
体固相マイクロプレートに100μl/ウェル加え、室
温(15℃〜25℃)で約1時間反応させた。反応後、
0.05%Tween20を含む5mMPBS 200
μl/ウェルで3〜4回洗浄した。
(2) Human Parvovirus Antigen Detection Using Serum During Infectious Erythema Epidemic Next, human parvovirus antigen was detected using serum during the infectious erythema epidemic. The plate preservation solution in the antibody solid phase microplate well described above was removed, and then 0.2% of serum at the time of epidemic erythema infestation was removed.
10 mM PBS containing BSA and 0.05% Tween 20
Was diluted 200-fold with 100 μl / well to the anti-human parvovirus antibody solid phase microplate described above, and reacted at room temperature (15 ° C to 25 ° C) for about 1 hour. After the reaction
5 mM PBS 200 containing 0.05% Tween 20
Wash 3-4 times with μl / well.

【0136】0.05%BSAと0.05%Tween
20を含む5mMPBSで2000〜5000倍に希釈
したVP−1、VP−2抗原に対するパーオキシダーゼ
標識モルモット抗体を100μl/ウェル加え、室温で
約1時間反応させた。反応後、0.05%Tween2
0 含む5mMPBS 200μl/ウェルで3〜4回
洗浄した。
0.05% BSA and 0.05% Tween
100 μl / well of peroxidase-labeled guinea pig antibody against VP-1 and VP-2 antigens diluted 2000-5000 times with 5 mM PBS containing 20 was added and reacted at room temperature for about 1 hour. After the reaction, 0.05% Tween2
The cells were washed 3 to 4 times with 200 μl of 5 mM PBS containing 0 / well.

【0137】洗浄後、3.3mg/ml O−フェニレンジア
ミンを含む0.1M クエン酸−リン酸緩衝液(pH
5.0)に、終濃度0.02%の過酸化水素水を加えた
基質液を100μl/ウェル加えて室温で約30分間反
応させた。反応後、1.5N硫酸を100μl/ウェル
加えて反応を停止させ、マイクロプレート用比色計で主
波長492nm、副波長630nm を用いて各ウエル
のO. D. 値を測定した(表10)。
After washing, 0.1 M citric acid-phosphate buffer solution (pH: 3.3 mg / ml O-phenylenediamine)
To 5.0), 100 μl / well of a substrate solution containing a final concentration of 0.02% hydrogen peroxide solution was added and reacted at room temperature for about 30 minutes. After the reaction, 100 μl / well of 1.5N sulfuric acid was added to stop the reaction, and the OD value of each well was measured using a microplate colorimeter with a main wavelength of 492 nm and a sub wavelength of 630 nm (Table 10). .

【0138】[0138]

【表10】 [Table 10]

【0139】抗ヒトパルボウイルスモノクローナル抗体
固相マイクロプレートを用いたエンザイムイムノアッセ
イ〔第37回日本ウイルス学会総会抄録(1989)〕を陽性
コントロールとした。
An enzyme immunoassay using the anti-human parvovirus monoclonal antibody solid phase microplate [37th Annual Meeting of the Virology Society of Japan (1989)] was used as a positive control.

【0140】その結果、VP−1、VP−2抗原で免疫
した抗ヒトパルボウイルス抗体を用いたヒトパルボウイ
ルス抗原検出は有用であることが分かった。
As a result, it was found that human parvovirus antigen detection using an anti-human parvovirus antibody immunized with the VP-1 and VP-2 antigens was useful.

【0141】実施例10 PCR法によるヒトパルボウ
イルス遺伝子の検出 伝染性紅斑流行時の血清を用い、実施例1−(1)記載
の方法によりヒトパルボウイルスDNAを抽出した。次
に下記のDNAプライマー群1及びDNAプライマー群
2の中からヒトパルボウイルスのPCR増幅プライマー
DNA対(D-4とU-2 及びD-1 とU-4 )を用いて実施例
1−(2)記載の方法に従い、ヒトパルボウイルス遺伝
子領域を増幅した。なお図1に4種類のプライマーの位
置を示す。
Example 10 Detection of Human Parvovirus Gene by PCR Method Human parvovirus DNA was extracted by the method described in Example 1- (1) using serum at the time of epidemic of infectious erythema. Next, from among the following DNA primer group 1 and DNA primer group 2, the human parvovirus PCR amplification primer DNA pairs (D-4 and U-2 and D-1 and U-4) were used in Example 1- ( 2) The human parvovirus gene region was amplified according to the method described. The positions of four types of primers are shown in FIG.

【0142】DNAプライマー群1 D-1: GCTGCCATGTGGGAGCTTCTAATC D-4: TTCCCGCCTTATGCAAATGGGCAGC DNAプライマー群2 U-2: GTGTTAGGCTGTCTTATAGGTACA U-4: CTTGTATTCATGGTCTACTAAC D-4 とU-2 のプライマーで増幅させた場合、4.6Kb の増
幅断片が得られ、一方、D-1 とU-4 のプライマーで増幅
させた場合、2.6Kb の増幅断片が得られた(表11)。
DNA primer group 1 D-1: GCTGCCATGTGGGAGCTTCTAATC D-4: TTCCCGCCTTATGCAAATGGGCAGC DNA primer group 2 U-2: GTGTTAGGCTGTCTTATAGGTACA U-4: CTTGTATTCATGGTCTACTAAC Amplification of 4.6 Kb when amplified with D-4 and U-2 primers A fragment was obtained, while a 2.6 Kb amplified fragment was obtained when amplified with the D-1 and U-4 primers (Table 11).

【0143】[0143]

【表11】 [Table 11]

【0144】表11の結果より、ヒトパルボウイルスD
NA断片の増幅と実施例9−(2)のエンザイムイムノ
アッセイ抗原検出の結果が一致していた事により、ヒト
パルボウイルス遺伝子の塩基配列をもとに、DNAプラ
イマーを作製し、PCR法で増幅させたDNA断片を検
出することで、ヒトパルボウイルス遺伝子の検出が出来
ることを見いだした。
From the results of Table 11, human parvovirus D
Since the amplification of the NA fragment and the result of the enzyme immunoassay antigen detection of Example 9- (2) were in agreement, a DNA primer was prepared based on the base sequence of the human parvovirus gene and amplified by the PCR method. It was found that the human parvovirus gene can be detected by detecting the DNA fragment.

【0145】以下に明細書及び図中のポリペプチド及び
塩基配列等の符号及び記号は以下の通りであるほか、慣
用的に当該分野で用いられるものである。
The symbols and symbols of the polypeptides and base sequences in the specification and the figures below are as follows, and are commonly used in the art.

【0146】[0146]

【表12】 [Table 12]

【0147】[0147]

【表13】 [Table 13]

【0148】HPV :ヒトパルボウイルス DNA :デオキシリボ核酸 RNA :リボ核酸 EDTA:エチレンジアミン四酢酸 SDS :ドデシル硫酸ナトリウム IPTG:イソプロピルβ- D- ガラクトシド Xgal:5- ブロモ−4- クロロ−3- インドリル−
β- D- ガラクトシド PCR :ポリメラーゼ・チェーン・リアクション Apr :アンピシリン耐性遺伝子 LacZ:β- ガラクトシダーゼ遺伝子 VP−1:ヒトパルボウイルス構造タンパク質遺伝子V
P−1 VP−2:ヒトパルボウイルス構造タンパク質遺伝子V
P−2 NS :ヒトパルボウイルス非構造遺伝子 N’ :Nタンパク質のN末端の33個のアミノ酸に
対応するλファージNタンパク質遺伝子 Ptac :Tacプロモーター PL :PL プロモーター
HPV: Human parvovirus DNA: Deoxyribonucleic acid RNA: Ribonucleic acid EDTA: Ethylenediaminetetraacetic acid SDS: Sodium dodecyl sulfate IPTG: Isopropyl β-D-galactoside Xgal: 5-Bromo-4-chloro-3-indolyl-
β-D-galactoside PCR: Polymerase chain reaction Ap r : Ampicillin resistance gene LacZ: β-galactosidase gene VP-1: Human parvovirus structural protein gene V
P-1 VP-2: Human parvovirus structural protein gene V
P-2 NS: human parvovirus nonstructural gene N ': lambda phage N protein gene corresponding to 33 amino acids at the N-terminus of N protein Ptac: Tac promoter PL: PL promoter

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の遺伝子のクローニング領域を示した概
略図である。
FIG. 1 is a schematic diagram showing a cloning region of a gene of the present invention.

【図2】本発明の遺伝子の塩基配列及びその遺伝子がコ
ードするポリペプチドのアミノ酸配列の最初の部分を示
したものである。
FIG. 2 shows the base sequence of the gene of the present invention and the first part of the amino acid sequence of the polypeptide encoded by the gene.

【図3】図2の続きの配列を示す図である。FIG. 3 is a diagram showing a continuation of FIG. 2;

【図4】図3の続きの配列を示す図である。FIG. 4 is a diagram showing a sequence subsequent to that of FIG. 3;

【図5】図4の続きの配列を示す図である。FIG. 5 is a diagram showing a continuation of FIG. 4;

【図6】図5の続きの配列を示す図である。FIG. 6 is a diagram showing a sequence subsequent to that of FIG. 5;

【図7】図6の続きの配列を示す図である。FIG. 7 is a diagram showing a sequence subsequent to that of FIG. 6;

【図8】図7の続きの配列を示す図である。FIG. 8 is a diagram showing a sequence subsequent to that of FIG. 7;

【図9】図8の続きの配列を示す図である。FIG. 9 is a diagram showing a sequence subsequent to that of FIG. 8;

【図10】図9の続きの配列を示す図である。FIG. 10 is a view showing a sequence subsequent to that of FIG. 9;

【図11】プラスミドpPLN-MCSの構築の模式図である。FIG. 11 is a schematic diagram of the construction of plasmid pPLN-MCS.

【図12】プラスミドpVP200の構築の模式図である。FIG. 12 is a schematic diagram of the construction of plasmid pVP200.

【図13】VP−1発現ベクター作製時の部位特異的変
異を示した模式図である。
FIG. 13 is a schematic diagram showing site-specific mutations at the time of producing a VP-1 expression vector.

【図14】プラスミドpVP100の構築の模式図である。FIG. 14 is a schematic diagram of the construction of plasmid pVP100.

【図15】プラスミドpVP300の構築の模式図である。FIG. 15 is a schematic diagram of the construction of plasmid pVP300.

【図16】プラスミドpAcVP1、pAcVP2 の構築の模式図
である。
FIG. 16 is a schematic diagram of the construction of plasmids pAcVP1 and pAcVP2.

【図17】バキュロウイルスによって産生されたウイル
ス粒子様構造物の電子顕微鏡写真である。
FIG. 17 is an electron micrograph of virus particle-like structures produced by baculovirus.

【図18】伝染性紅斑患者のVP−1、VP−2に対す
るIgG抗体の経時変化を示す図である。
FIG. 18 is a diagram showing a time course of IgG antibodies against VP-1 and VP-2 in patients with erythema infectiousum.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12N 5/10 C12P 21/02 9282−4B C12Q 1/68 A 9453−4B 1/70 9453−4B G01N 33/53 D 33/569 L //(C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91) (C12Q 1/68 C12R 1:91) (72)発明者 松浦 善治 埼玉県上福岡市福岡1−3−5−406 (72)発明者 小川 博之 東京都町田市森野5−25−18 電気化学町 田寮 (72)発明者 清水 英晴 東京都町田市玉川学園4−16−44 (72)発明者 鎌田 公仁夫 新潟県五泉市南本町1丁目2番2号 デン カ生研株式会社新潟工場内 (72)発明者 黒沢 大介 新潟県五泉市南本町1丁目2番2号 デン カ生研株式会社新潟工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C12N 5/10 C12P 21/02 9282-4B C12Q 1/68 A 9453-4B 1/70 9453-4B G01N 33/53 D 33/569 L // (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91) (C12Q 1/68 C12R 1:91) (72) Inventor Zenji Matsuura Saitama Prefecture Kamifukuoka City 1-3-5-406 (72) Inventor Hiroyuki Ogawa 5-25-18 Morino, Machida-shi, Tokyo Denrakucho Town Dormitory (72) Hideharu Shimizu 4-16 Tamagawa Gakuen, Machida-shi, Tokyo 44 (72) Kimio Kamata, Inventor 1-2-2 Minamihonmachi, Gosen, Niigata Denka Seiken Co., Ltd. Niigata Plant (72) Daisuke Kurosawa 1-2-2 Minamihonmachi, Gosen, Niigata Denka Seiken Co., Ltd. Niigata Factory

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 下記式(1)で表されるヒトパルボウイ
ルス遺伝子。 【化1】 式(1) 10 20 30 40 50 60 TTCCCGCCTT ATGCAAATGG GCAGCCATTT TAAGTGTTTT ACTATAATTT TATTGGTCAG 70 80 90 100 110 120 TTTTGTAACG GTTAAAATGG GCGGAGCGTA GGCGGGGACT ACAGTATATA TAGCACGGCA 130 140 150 160 170 180 CTGCCGCAGC TCTTTCTTTC TGGGCTGCTT TTTCCTGGAC TTTCTTGCTG TTTTTTGTGA 190 200 210 220 230 240 GCTAACTAAC AGGTATTTAT ACTACTTGTT AACATACTAA CATGGAGCTA TTTAGAGGGG 250 260 270 280 290 300 TTCTTCAAGT TTCTTCTAAT GTTCTGGACT GTGCTAACGA TAATTGGTGG TGCTCTTTAC 310 320 330 340 350 360 TGGATTTAGA CACTTCTGAC TGGGAACCAC TAACTCATAC TAACAGACTA ATGGCAATAT 370 380 390 400 410 420 ACTTAAGCAG TGTGGCTTCT AAGCTTGACT TTACCGGGGG GCCACTAGCA GGGTGCTTGT 430 440 450 460 470 480 ACTTTTTTCA AGTAGAATGT AACAAATTTG AAGAAGGCTA TCATATTCAT GTGGTTATTG 490 500 510 520 530 540 GGGGGCCAGG GTTAAATCCC AGAAACCTCA CTGTGTGTGT AGAGGGGTTA TTTAATAATG 550 560 570 580 590 600 TACTTTATCA CCTTGTAACT GAAAATGTGA AGCTAAAATT TTTGCCAGGM ATGACTACAA 610 620 630 640 650 660 AAGGCAAATA CTTTAGAGAT GGAGAGCAGT TTATAGAAAA CTATTTAATG AAAAAAATAC 670 680 690 700 710 720 CTTTAAATGT TGTATGGTGT GTTACTAATA TTGATGGATA TATAGATACC TGTATTTCTG 730 740 750 760 770 780 CTACTTTTAG AAGGGGAGCT TGCCATGCCA AGAAACCCCG CATTACCACA GCCATAAATG 790 800 810 820 830 840 ATACTAGTAG TGATGCTGGG GAGTCTAGCG GCACAGGGGC AGAGGTTGTG CCATTTAATG 850 860 870 880 890 900 GGAAAGGAAC TAAGGCTAGC ATAAAGTTTC AAACTATGGT AAACTGGCTG TGTGAAAACA 910 920 930 940 950 960 GAGTGTTTAC AGAGGATAAG TGGAAACTAG TTGACTTTAA CCAGTACACT TTACTAAGCA 970 980 990 1000 1010 1020 GTAGTCACAG TGGAAGTTTT CAAATTCAAA GTGCACTAAA ACTAGCAATT TATAAAGCAA 1030 1040 1050 1060 1070 1080 CTAATTTAGT GCCTACTAGC ACATTTTTAT TGCATACAGA CTTTGAGCAG GTTATGTGTA 1090 1100 1110 1120 1130 1140 TTAAAGACAA TAAAATTGTT AAATTGTTAC TTTGTCAAAA CTATGACCCC CTATTGGTGG 1150 1160 1170 1180 1190 1200 GGCAGCATGT GTTAAAGTGG ATTGATAAAA AATGTGGCAA AAAAAATACA CTGTGGTTTT 1210 1220 1230 1240 1250 1260 ATGGGCCGCC AAGTACAGGA AAAACAAACT TGGCAATGGC CATTGCTAAA AGTGTTCCAG 1270 1280 1290 1300 1310 1320 TATATGGCAT GGTTAACTGG AATAATGAAA ACTTTCCATT TAATGATGTA GCAGGGAAAA 1330 1340 1350 1360 1370 1380 GCTTGGTGGT CTGGGATGAA GGTATTATTA AGTCTACAAT TGTAGAAGCT GCAAAAGCCA 1390 1400 1410 1420 1430 1440 TTTTAGGCGG GCAACCTACC AGGGTAGATC AAAAAATGCG TGGAAGTGTA GCTGTGCCTG 1450 1460 1470 1480 1490 1500 GAGTACCTGT GGTTATAACC AGCAATGGTG ATATTACTTT TGTTGTAAGC GGGAACACTA 1510 1520 1530 1540 1550 1560 CAACAACTGT ACATGCTAAA GCCTTAAAAG AGCGCATGGT AAAGTTAAAC TTTACTGTAA 1570 1580 1590 1600 1610 1620 GATGCAGCCC TGACATGGGG TTACTAACAG AGGCTGATGT ACAACAGTGG CTTACATGGT 1630 1640 1650 1660 1670 1680 GTAATGCACA AAGCTGGGAC CACTATGAAA ACTGGGCAAT AAACTACACT TTTGATTTCC 1690 1700 1710 1720 1730 1740 CTGGAATTAA TGCAGATGCC CTCCACCCAG ACCTCCAAAC CACCCCAATT GTCACAGACA 1750 1760 1770 1780 1790 1800 CCAGTATCAG CAGCAGTGGT GGTGAAAGCT CTGAAGAACT CAGTGAAAGC AGCTTTTTTA 1810 1820 1830 1840 1850 1860 ACCTCATCAC CCCAGGCGCC TGGAACACTG AAACCCCGCG CTCTAGTACG CCCATCCCCG 1870 1880 1890 1900 1910 1920 GGACCAGTTC AGGAGAATCA TTTGTCGGAA GCCCAGTTTC CTCCGAAGTT GTAGCTGCAT 1930 1940 1950 1960 1970 1980 CGTGGGAAGA AGCCTTCTAC ACACCTTTGG CAGACCAGTT TCGTGAACTG TTAGTTGGGG 1990 2000 2010 2020 2030 2040 TTGATTATGT GTGGGACGGT GTAAGGGGTT TACCTGTGTG TTGTGTGCAA CATATTAACA 2050 2060 2070 2080 2090 2100 ATAGTGGGGG AGGCTTGGGA CTTTGTCCCC ATTGCATTAA TGTAGGGGCT TGGTATAATG 2110 2120 2130 2140 2150 2160 GATGGAAATT TCGAGAATTT ACCCCAGATT TGGTGCGGTG TAGCTGCCAT GTGGGAGCTT 2170 2180 2190 2200 2210 2220 CTAATCCCTT TTCTGTGCTA ACCTGCAAAA AATGTGCTTA CCTGTCTGGA TTGCAAAGCT 2230 2240 2250 2260 2270 2280 TTGTAGATTA TGAGTAAAGA AAGTGGCAAA TGGTGGGAAA GTGATGATAA ATTTGCTAAA 2290 2300 2310 2320 2330 2340 GCTGKGTATC AGCAATTTGT GGAATTTTAT GAAAAGGTTA CTGGWACAGA CTTAGAGCTT 2350 2360 2370 2380 2390 2400 ATTCAAATAT TAAAAGATCA TTATAATATT TCTTTAGATA ATCCCCTAGA AAACCCATCC 2410 2420 2430 2440 2450 2460 TCTCTGTTTR ACTTAGTTGC TCGTATTAAA AATAACCTTA AAAACTCTCC AGACTTATAT 2470 2480 2490 2500 2510 2520 AGTCATCATT TTCAAAGTCA TGGACAGTTA TCTGACCACC CCCATGCCTT ATCATCCAGT 2530 2540 2550 2560 2570 2580 AGCAGTAATG CAGAACCTAG AGGAGAAAAT GCAGTATTAT CTAGTGAAGA CTTACACAAG 2590 2600 2610 2620 2630 2640 CCTGGGCAAG TTAGCGTACA ACTACCCGGT ACTAACTATG TTGGGCCTGG TAATGAGTTA 2650 2660 2670 2680 2690 2700 CAAGCTGGGC CCCCGCAAAG TGCTGTTGAC AGTGCTGCAA GGATTCATGA CTTTAGGTAT 2710 2720 2730 2740 2750 2760 AGCCAACTGG CTAAGTTGGG AATAAATCCA TATACTCATT GGACTGTAGC AGATGAAGAG 2770 2780 2790 2800 2810 2820 CTTTTAAAAA ATATAAAAAA TGAAACTGGG TTTCAAGCAC AAGTAGTAAA AGACTACTTT 2830 2840 2850 2860 2870 2880 ACTTTAAAAG GTGCAGCTGC CCCTGTGGCC CATTTTCAAG GAAGTTTGCC GGAAGTTCCC 2890 2900 2910 2920 2930 2940 GCTTACMACG CCTCAGAAAA ATACCCAAGC ATGACTTCAG TTAATTCTGC AGAAGCCAGC 2950 2960 2970 2980 2990 3000 ACTGGTGCAG GAGGGGGGGG CAGTAATCCT GTCAAAAGCA TGTGGAGTGA GGGGGCCACT 3010 3020 3030 3040 3050 3060 TTTAGTGCCA ACTCTGTAAC TTGTACATTT TCCAGACAGT TTTTAATTCC ATATGACCCA 3070 3080 3090 3100 3110 3120 GAGCACCATT ATAARGTGTT TTCTCCCGCA GCAAGTAGCT GCCACAATGC CAGTGGAAAA 3130 3140 3150 3160 3170 3180 GAGGCAAAGG TTTGCACCAT TAGTCCCATA ATGGGATACT CAACCCCATG GAGATATTTA 3190 3200 3210 3220 3230 3240 GATTTTAATG CTTTAAATTT ATTTTTTTCA CCTTTAGAGT TTCAGCACTT AATTGAAAAT 3250 3260 3270 3280 3290 3300 TATGGAAGCA TAGCTCCTGA TGCTTTAACT GTAACCATAT CAGAAATTGC TGTTAAGGAT 3310 3320 3330 3340 3350 3360 GTTACAGACA AAACTGGAGG GGGGGTACAG GTTACTGACA GCACTACAGG GCGCCTATGC 3370 3380 3390 3400 3410 3420 ATGTTAGTAG ACCATGAATA CAAGTACCCA TATGTGTTAG GGCAAGGTCA GGATACTTTA 3430 3440 3450 3460 3470 3480 GCCCCAGAAC TTCCTATTTG GGTATACTTT CCCCCTCAAT ATGCTTACTT AACAGTAGGA 3490 3500 3510 3520 3530 3540 GATGTTAACA CACAAGGAAT TTCTGGAGAC AGCAAAAAAT TAGCAAGTGA AGAATCAGCA 3550 3560 3570 3580 3590 3600 TTTTATGTTT TGGAACACAG TTCYTTTCAG CTTTTAGGTA CAGGAGGTAC AGCAACTATG 3610 3620 3630 3640 3650 3660 TCTTATAAGT TTCCTCCAGT GCCCCCAGAA AATTTAGAGG GCTGCAGTCA ACACTTTTAT 3670 3680 3690 3700 3710 3720 GAAATGTACA ATCCCTTATA CGGATCCCGC TTAGGGGTCC CTGACACATT AGGAGGTGAC 3730 3740 3750 3760 3770 3780 CCAAAATTTA GATCTTTAAC ACATGAAGAC CATGCAATTC AGCCCCAAAA CTTCATGCCA 3790 3800 3810 3820 3830 3840 GGGCCACTAG TAAACTCAGT GTCTACAAAG GAGGGAGACA GCTCTAATAC TGGAGCTGGA 3850 3860 3870 3880 3890 3900 AAAGCCTTAA CAGGCCTTAG CACAGGTACC TCGCAAAACA CTAGAATATC CTTACGSCCT 3910 3920 3930 3940 3950 3960 GGGCCAGTGT CTCAGCCATA CCACCACTGG GACACAGATA AATATGTCAC AGGAATAAAT 3970 3980 3990 4000 4010 4020 GCCATTTCTC ATGGTCAGAC CACTTATGGT AACGCTGAAG ACAAAGAGTA TCAGCAAGGA 4030 4040 4050 4060 4070 4080 GTGGGTAGAT TTCCAAATGA AAAAGAACAG CTAAAACAGT TACAGGGTTT AAACATGCAC 4090 4100 4110 4120 4130 4140 ACCTATTTYC CCAATAAAGG AACCCAGCAA TATACAGATC AAATTGAGCG CCCCCTAATG 4150 4160 4170 4180 4190 4200 GTGGGTTCTG TATGGAACAG AAGAGCCCTT CACTATGAAA GCCAGCTGTG GAGTAAAATT 4210 4220 4230 4240 4250 4260 CCAAATTTAG ATGACAGTTT TAAAACTCAG TTTGCAGCCT TAGGAGGATG GGGTTTGCAT 4270 4280 4290 4300 4310 4320 CAGCCACCTC CTCAAATATT TTTAAAAATA TTACCACAAA GTGGGCCAAT TGGAGGTATT 4330 4340 4350 4360 4370 4380 AAATCAATGG GAATTACTAC CTTAGTTCAG TATGCTGTGG GAATTATGAC AGTAACTATG 4390 4400 4410 4420 4430 4440 ACATTTAAAT TGGGGCCCCG TAAAGCTACG GGACGGTGGA ATCCTCAACC TGGAGTATAT 4450 4460 4470 4480 4490 4500 CCCCCGCACG CAGCAGGTCA TTTACCATAT GTACTATATG ACCCCACAGC TATAGATGCA 4510 4520 4530 4540 4550 4560 AAACAACACC ACAGACATGG ATATGAAAAG CCTGAAGAGT TGTGGACAGC CAAAAGCCGT 4570 4580 4590 4600 4610 4620 GTGCGCCCAT TGTAAACACT CCCCACCGTG CCCTCAGCCA GGATGCGTAA CTAAACGCCC 4630 4640 4650 4660 4670 4680 ACCAGTACCA CCCAGACTGT ACCTGCCCCC TCCTGTACCT ATAAGACAGC CTAACAC (ただし、式中、M は A または C、R は A または
G、W は A または T、S は C または G、Y は C ま
たは T、K は G または T の塩基を示す。)
1. A human parvovirus gene represented by the following formula (1). ## EQU1 ## Formula (1) 10 20 30 40 50 60 TTCCCGCCTT ATGCAAATGG GCAGCCATTT TAAGTGTTTT ACTATAATTT TATTGGTCAG 70 80 90 100 110 120 TTTTGTAACG GTTAAAATGG GCGGAGCGTA GGCGGGGACT ACAGTATGC TTGACTTCTT TTGATCTTCTGCTTTCAGTTCTTTTTACTAG GCTAACTAAC AGGTATTTAT ACTACTTGTT AACATACTAA CATGGAGCTA TTTAGAGGGG 250 260 270 280 290 300 TTCTTCAAGT TTCTTCTAAT GTTCTGGACT GTGCTAACGA TAATTGGTGG TGCTCTTTAC 310 320 330 340 350 360 TGGATTTAGA CACTTCTGAC TGGGAACCAC TAACTCATAC TAACAGACTA ATGGCAATAT 370 380 390 400 410 420 ACTTAAGCAG TGTGGCTTCT AAGCTTGACT TTACCGGGGG GCCACTAGCA GGGTGCTTGT 430 440 450 460 470 480 ACTTTTTTCA AGTAGAATGT AACAAATTTG AAGAAGGCTA TCATATTCAT GTGGTTATTG 490 500 510 520 530 540 GGGGGCCAGG GTTAAATCCC AGAAACCTCA CTGTGTGTGT AGAGGGGTTA TT ATA TAG 610 CAT 609 CAT ACT CAT ACT CAT ACT CAT ACT AAATAC 670 680 690 700 710 720 CTTTAAATGT TGTATGGTGT GTTACTAATA TTGATGGATA TATAGATACC TGTATTTCTG 730 740 750 760 770 780 CTACTTTTAG AAGGGGAGCT TGCCATGCCA AGAAACCCCG CATTACCACA GCCATAAATG 790 800 810 820 830 840 ATACTAGTAG TGATGCTGGG GAGTCTAGCG GCACAGGGGC AGAGGTTGTG CCATTTAATG 850 860 870 880 890 900 GGAAAGGAAC TAAGGCTAGC ATAAAGTTTC AAACTATGGT AAACTGGCTG TGTGAAAACA 910 920 930 940 950 960 GAGTGTTTAC AGAGGATAAG TGGAAACTAG TTGACTTTAA CCAGTACACT TTACTAAGCA 970 980 990 1000 1010 1020 GTAGTCACAG TGGAAGTTTT CAAATTCAAA GTGCACTAAA ACTAGCAATT TATAAAGCAA 1030 1040 1050 1060 1070 1080 CTAATTTAGT GCCTACTAGC ACATTTTTAT TGCATACAGA CTTTGAGCAG GTTATGTGTA 1090 1100 1110 1120 1130 1140 TTAAAGACAA TAAAATTGTT AAATTGTTAC TTTGTCAAAA CTATGACCCC CTATTGGTGG 1150 1160 1170 1180 1190 1200 GGCAGCATGT GTTAAAGTGG ATTGATAAAA AATGTGGCAA AAAAAATACA CTGTGGTTTT 1210 1220 1230 1240 1250 1260 ATGGGCCGCC AAGTACAGGA AAAACAAACT TGGCAATGGC CATTGCTAAA AGTGTTCCAG 1270 1280 1290 1300 1310 1320 TATAGGACATGAGTTA TTCCATT TAATGATGTA GCAGGGAAAA 1330 1340 1350 1360 1370 1380 GCTTGGTGGT CTGGGATGAA GGTATTATTA AGTCTACAAT TGTAGAAGCT GCAAAAGCCA 1390 1400 1410 1420 1430 1440 TTTTAGGCGG GCAACCTACC AGGGTAGATC AAAAAATGCG TGGAAGTGTA GCTGTGCCTG 1450 1460 1470 1480 1490 1500 GAGTACCTGT GGTTATAACC AGCAATGGTG ATATTACTTT TGTTGTAAGC GGGAACACTA 1510 1520 1530 1540 1550 1560 CAACAACTGT ACATGCTAAA GCCTTAAAAG AGCGCATGGT AAAGTTAAAC TTTACTGTAA 1570 1580 1590 1600 1610 1620 GATGCAGCCC TGACATGGGG TTACTAACAG AGGCTGATGT ACAACAGTGG CTTACATGGT 1630 1640 1650 1660 1670 1680 GTAATGCACA AAGCTGGGAC CACTATGAAA ACTGGGCAAT AAACTACACT TTTGATTTCC 1690 1700 1710 1720 1730 1740 CTGGAATTAA TGCAGATGCC CTCCACCCAG ACCTCCAAAC CACCCCAATT GTCACAGACA 1750 1760 1770 1780 1790 1800 CCAGTATCAG CAGCAGTGGT GGTGAAAGCT CTGAAGAACT CAGTGAAAGC AGCTTTTTTA 1810 1820 1830 1840 1850 1860 ACCTCATCAC CCCAGGCGCC TGGAACACTG AAACCCCGCG CTCTAGTACG CCCATCCCCG 1870 1880 1890 1900 1910 1920 GGACCAGTTC AGGAGAATCA TTTGTCGGAA GCCCAGTTTC CTCCGAAGTT GTAGCTGCAT 1930 1940 1950 1960 1970 1980 CGTGGGAAGA AGCCTTCTAC ACACCTTTGG CAGACCAGTT TCGTGAACTG TTAGTTGGGG 1990 2000 2010 2020 2030 2040 TTGATTATGT GTGGGACGGT GTAAGGGGTT TACCTGTGTG TTGTGTGCAA CATATTAACA 2050 2060 2070 2080 2090 2100 ATAGTGGGGG AGGCTTGGGA CTTTGTCCCC ATTGCATTAA TGTAGGGGCT TGGTATAATG 2110 2120 2130 2140 2150 2160 GATGGAAATT TCGAGAATTT ACCCCAGATT TGGTGCGGTG TAGCTGCCAT GTGGGAGCTT 2170 2180 2190 2200 2210 2220 CTAATCCCTT TTCTGTGCTA ACCTGCAAAA AATGTGCTTA CCTGTCTGGA TTGCAAAGCT 2230 2240 2250 2260 2270 2280 TTGTAGATTA TGAGTAAAGA AAGTGGCAAA TGGTGGGAAA GTGATGATAA ATTTGCTAAA 2290 2300 2310 2320 2330 2340 GCTGKGTATC AGCAATTTGT GGAATTTTAT GAAAAGGTTA CTGGWACAGA CTTAGAGCTT 2350 2360 2370 2380 2390 2400 ATTCAAATAT TAAAAGATCA TTATAATATT TCTTTAGATA ATCCCCTAGA AAACCCATCC 2410 2420 2430 2440 2450 2460 TCTCTGTTTR ACTTAGTTGC TCGTATTAAA AATAACCTTA AAAACTCTCC AGACTTATAT 2470 2480 2490 2500 2510 2520 AGTCATCATT TTCAAAGTCA TGGACAGTTA TCTGACCACC CCCATGCCTT ATCATCCAGT 2530 2540 2550 2560 2570 2580 AGCAGTAATG CAGAACCTA G AGGAGAAAAT GCAGTATTAT CTAGTGAAGA CTTACACAAG 2590 2600 2610 2620 2630 2640 CCTGGGCAAG TTAGCGTACA ACTACCCGGT ACTAACTATG TTGGGCCTGG TAATGAGTTA 2650 2660 2670 2680 2690 2700 CAAGCTGGGC CCCCGCAAAG TGCTGTTGAC AGTGCTGCAA GGATTCATGA CTTTAGGTAT 2710 2720 2730 2740 2750 2760 AGCCAACTGG CTAAGTTGGG AATAAATCCA TATACTCATT GGACTGTAGC AGATGAAGAG 2770 2780 2790 2800 2810 2820 CTTTTAAAAA ATATAAAAAA TGAAACTGGG TTTCAAGCAC AAGTAGTAAA AGACTACTTT 2830 2840 2850 2860 2870 2880 ACTTTAAAAG GTGCAGCTGC CCCTGTGGCC CATTTTCAAG GAAGTTTGCC GGAAGTTCCC 2890 2900 2910 2920 2930 2940 GCTTACMACG CCTCAGAAAA ATACCCAAGC ATGACTTCAG TTAATTCTGC AGAAGCCAGC 2950 2960 2970 2980 2990 3000 ACTGGTGCAG GAGGGGGGGG CAGTAATCCT GTCAAAAGCA TGTGGAGTGA GGGGGCCACT 3010 3020 3030 3040 3050 3060 TTTAGTGCCA ACTCTGTAAC TTGTACATTT TCCAGACAGT TTTTAATTCC ATATGACCCA 3070 3080 3090 3100 3110 3120 GAGCACCATT ATAARGTGTT TTCTCCCGCA GCAAGTAGCT GCCACAATGC CAGTGGAAAA 3130 3140 3150 3160 3170 3180 GAGGCAAAGG TTTGCACCAT TAGTCCCATA ATGGGATACT CAACCCCATG GAGAT ATTTA 3190 3200 3210 3220 3230 3240 GATTTTAATG CTTTAAATTT ATTTTTTTCA CCTTTAGAGT TTCAGCACTT AATTGAAAAT 3250 3260 3270 3280 3290 3300 TATGGAAGCA TAGCTCCTGA TGCTTTAACT GTAACCATAT CAGAAATTGC TGTTAAGGAT 3310 3320 3330 3340 3350 3360 GTTACAGACA AAACTGGAGG GGGGGTACAG GTTACTGACA GCACTACAGG GCGCCTATGC 3370 3380 3390 3400 3410 3420 ATGTTAGTAG ACCATGAATA CAAGTACCCA TATGTGTTAG GGCAAGGTCA GGATACTTTA 3430 3440 3450 3460 3470 3480 GCCCCAGAAC TTCCTATTTG GGTATACTTT CCCCCTCAAT ATGCTTACTT AACAGTAGGA 3490 3500 3510 3520 3530 3540 GATGTTAACA CACAAGGAAT TTCTGGAGAC AGCAAAAAAT TAGCAAGTGA AGAATCAGCA 3550 3560 3570 3580 3590 3600 TTTTATGTTT TGGAACACAG TTCYTTTCAG CTTTTAGGTA CAGGAGGTAC AGCAACTATG 3610 3620 3630 3640 3650 3660 TCTTATAAGT TTCCTCCAGT GCCCCCAGAA AATTTAGAGG GCTGCAGTCA ACACTTTTAT 3670 3680 3690 3700 3710 3720 GAAATGTACA ATCCCTTATA CGGATCCCGC TTAGGGGTCC CTGACACATT AGGAGGTGAC 3730 3740 3750 3760 3770 3780 CCAAAATTTA GATCTTTAAC ACATGAAGAC CATGCAATTC AGCCCCAAAA CTTCATGCCA 3790 3800 3810 3820 3830 3840 GGGC CACTAG TAAACTCAGT GTCTACAAAG GAGGGAGACA GCTCTAATAC TGGAGCTGGA 3850 3860 3870 3880 3890 3900 AAAGCCTTAA CAGGCCTTAG CACAGGTACC TCGCAAAACA CTAGAATATC CTTACGSCCT 3910 3920 3930 3940 3950 3960 GGGCCAGTGT CTCAGCCATA CCACCACTGG GACACAGATA AATATGTCAC AGGAATAAAT 3970 3980 3990 4000 4010 4020 GCCATTTCTC ATGGTCAGAC CACTTATGGT AACGCTGAAG ACAAAGAGTA TCAGCAAGGA 4030 4040 4050 4060 4070 4080 GTGGGTAGAT TTCCAAATGA AAAAGAACAG CTAAAACAGT TACAGGGTTT AAACATGCAC 4090 4100 4110 4120 4130 4140 ACCTATTTYC CCAATAAAGG AACCCAGCAA TATACAGATC AAATTGAGCG CCCCCTAATG 4150 4160 4170 4180 4190 4200 GTGGGTTCTG TATGGAACAG AAGAGCCCTT CACTATGAAA GCCAGCTGTG GAGTAAAATT 4210 4220 4230 4240 4250 4260 CCAAATTTAG ATGACAGTTT TAAAACTCAG TTTGCAGCCT TAGGAGGATG GGGTTTGCAT 4270 4280 4290 4300 4310 4320 CAGCCACCTC CTCAAATATT TTTAAAAATA TTACCACAAA GTGGGCCAAT TGGAGGTATT 4330 4340 4350 4360 4370 4380 AAATCAATGG GAATTACTAC CTTAGTTCAG TATGCTGTGG GAATTATGAC AGTAACTATG 4390 4400 4410 4420 4430 4440 ACATTTAAAT TGGGGCCCCG TAAAGCTACG GGACGGTGGA ATCCTCAACC TGGAGTATAT 4450 4460 4470 4480 4490 4500 CCCCCGCACG CAGCAGGTCA TTTACCATAT GTACTATATG ACCCCACAGC TATAGATGCA 4510 4520 4530 4540 4550 4560 AAACAACACC ACAGACATGG ATATGAAAAG CCTGAAGAGT TGTGGACAGC CAAAAGCCGT 4570 4580 4590 4600 4610 4620 GTGCGCCCAT TGTAAACACT CCCCACCGTG CCCTCAGCCA GGATGCGTAA CTAAACGCCC 4630 4640 4650 4660 4670 4680 ACCAGTACCA CCCAGACTGT ACCTGCCCCC TCCTGTACCT ATAAGACAGC CTAACAC (Where M is A or C and R is A or
G and W are A or T, S is C or G, Y is C or T, and K is G or T base. )
【請求項2】 下記式(2)のアミノ酸配列をコードす
るヒトパルボウイルスVP―1構造遺伝子。 【化2】 式(2) 1 10 Met Ser Lys Glu Ser Gly Lys Trp Trp Glu Ser Asp Asp Lys Phe 20 30 Ala Lys Ala X1 Tyr Gln Gln Phe Val Glu Phe Tyr Glu Lys Val 40 Thr Gly Thr Asp Leu Glu Leu Ile Gln Ile Leu Lys Asp His Tyr 50 60 Asn Ile Ser Leu Asp Asn Pro Leu Glu Asn Pro Ser Ser Leu Phe 70 X2 Leu Val Ala Arg Ile Lys Asn Asn Leu Lys Asn Ser Pro Asp 80 90 Leu Tyr Ser His His Phe Gln Ser His Gly Gln Leu Ser Asp His 100 Pro His Ala Leu Ser Ser Ser Ser Ser Asn Ala Glu Pro Arg Gly 110 120 Glu Asn Ala Val Leu Ser Ser Glu Asp Leu His Lys Pro Gly Gln 130 Val Ser Val Gln Leu Pro Gly Thr Asn Tyr Val Gly Pro Gly Asn 140 150 Glu Leu Gln Ala Gly Pro Pro Gln Ser Ala Val Asp Ser Ala Ala 160 Arg Ile His Asp Phe Arg Tyr Ser Gln Leu Ala Lys Leu Gly Ile 170 180 Asn Pro Tyr Thr His Trp Thr Val Ala Asp Glu Glu Leu Leu Lys 190 Asn Ile Lys Asn Glu Thr Gly Phe Gln Ala Gln Val Val Lys Asp 200 210 Tyr Phe Thr Leu Lys Gly Ala Ala Ala Pro Val Ala His Phe Gln 220 Gly Ser Leu Pro Glu Val Pro Ala Tyr X3 Ala Ser Glu Lys Tyr 230 240 Pro Ser Met Thr Ser Val Asn Ser Ala Glu Ala Ser Thr Gly Ala 250 Gly Gly Gly Gly Ser Asn Pro Val Lys Ser Met Trp Ser Glu Gly 260 270 Ala Thr Phe Ser Ala Asn Ser Val Thr Cys Thr Phe Ser Arg Gln 280 Phe Leu Ile Pro Tyr Asp Pro Glu His His Tyr Lys Val Phe Ser 290 300 Pro Ala Ala Ser Ser Cys His Asn Ala Ser Gly Lys Glu Ala Lys 310 Val Cys Thr Ile Ser Pro Ile Met Gly Tyr Ser Thr Pro Trp Arg 320 330 Tyr Leu Asp Phe Asn Ala Leu Asn Leu Phe Phe Ser Pro Leu Glu 340 Phe Gln His Leu Ile Glu Asn Tyr Gly Ser Ile Ala Pro Asp Ala 350 360 Leu Thr Val Thr Ile Ser Glu Ile Ala Val Lys Asp Val Thr Asp 370 Lys Thr Gly Gly Gly Val Gln Val Thr Asp Ser Thr Thr Gly Arg 380 390 Leu Cys Met Leu Val Asp His Glu Tyr Lys Tyr Pro Tyr Val Leu 400 Gly Gln Gly Gln Asp Thr Leu Ala Pro Glu Leu Pro Ile Trp Val 410 420 Tyr Phe Pro Pro Gln Tyr Ala Tyr Leu Thr Val Gly Asp Val Asn 430 Thr Gln Gly Ile Ser Gly Asp Ser Lys Lys Leu Ala Ser Glu Glu 440 450 Ser Ala Phe Tyr Val Leu Glu His Ser Ser Phe Gln Leu Leu Gly 460 Thr Gly Gly Thr Ala Thr Met Ser Tyr Lys Phe Pro Pro Val Pro 470 480 Pro Glu Asn Leu Glu Gly Cys Ser Gln His Phe Tyr Glu Met Tyr 490 Asn Pro Leu Tyr Gly Ser Arg Leu Gly Val Pro Asp Thr Leu Gly 500 510 Gly Asp Pro Lys Phe Arg Ser Leu Thr His Glu Asp His Ala Ile 520 Gln Pro Gln Asn Phe Met Pro Gly Pro Leu Val Asn Ser Val Ser 530 540 Thr Lys Glu Gly Asp Ser Ser Asn Thr Gly Ala Gly Lys Ala Leu 550 Thr Gly Leu Ser Thr Gly Thr Ser Gln Asn Thr Arg Ile Ser Leu 560 570 Arg Pro Gly Pro Val Ser Gln Pro Tyr His His Trp Asp Thr Asp 580 Lys Tyr Val Thr Gly Ile Asn Ala Ile Ser His Gly Gln Thr Thr 590 600 Tyr Gly Asn Ala Glu Asp Lys Glu Tyr Gln Gln Gly Val Gly Arg 610 Phe Pro Asn Glu Lys Glu Gln Leu Lys Gln Leu Gln Gly Leu Asn 620 630 Met His Thr Tyr Phe Pro Asn Lys Gly Thr Gln Gln Tyr Thr Asp 640 Gln Ile Glu Arg Pro Leu Met Val Gly Ser Val Trp Asn Arg Arg 650 660 Ala Leu His Tyr Glu Ser Gln Leu Trp Ser Lys Ile Pro Asn Leu 670 Asp Asp Ser Phe Lys Thr Gln Phe Ala Ala Leu Gly Gly Trp Gly 680 690 Leu His Gln Pro Pro Pro Gln Ile Phe Leu Lys Ile Leu Pro Gln 700 Ser Gly Pro Ile Gly Gly Ile Lys Ser Met Gly Ile Thr Thr Leu 710 720 Val Gln Tyr Ala Val Gly Ile Met Thr Val Thr Met Thr Phe Lys 730 Leu Gly Pro Arg Lys Ala Thr Gly Arg Trp Asn Pro Gln Pro Gly 740 750 Val Tyr Pro Pro His Ala Ala Gly His Leu Pro Tyr Val Leu Tyr 760 Asp Pro Thr Ala Ile Asp Ala Lys Gln His His Arg His Gly Tyr 770 780 Glu Lys Pro Glu Glu Leu Trp Thr Ala Lys Ser Arg Val Arg Pro 781 Leu (ただし、式中、X1は Gly または Val、X2は Asn ま
たは Asp、X3は His または Asn を示す。
2. A human parvovirus VP-1 structural gene encoding the amino acid sequence of the following formula (2). Embedded image Formula (2) 1 10 Met Ser Lys Glu Ser Gly Lys Trp Trp Glu Ser Asp Asp Lys Phe 20 30 Ala Lys Ala X 1 Tyr Gln Gln Phe Val Glu Phe Tyr Glu Lys Val 40 Thr Gly Thr Asp Leu Glu Leu Ile Gln Ile Leu Lys Asp His Tyr 50 60 Asn Ile Ser Leu Asp Asn Pro Leu Glu Asn Pro Ser Ser Leu Phe 70 X 2 Leu Val Ala Arg Ile Lys Asn Asn Leu Lys Asn Ser Pro Asp 80 90 Leu Tyr Ser His His Phe Gln Ser His Gly Gln Leu Ser Asp His 100 Pro His Ala Leu Ser Ser Ser Ser Ser Asn Ala Glu Pro Arg Gly 110 120 Glu Asn Ala Val Leu Ser Ser Glu Asp Leu His Lys Pro Gly Gln 130 Val Ser Val Gln Leu Pro Gly Thr Asn Tyr Val Gly Pro Gly Asn 140 150 Glu Leu Gln Ala Gly Pro Pro Gln Ser Ala Val Asp Ser Ala Ala 160 Arg Ile His Asp Phe Arg Tyr Ser Gln Leu Ala Lys Leu Gly Ile 170 180 Asn Pro Tyr Thr His Trp Thr Val Ala Asp Glu Glu Leu Leu Lys 190 Asn Ile Lys Asn Glu Thr Gly Phe Gln Ala Gln Val Val Lys Asp 200 210 Tyr Phe Thr Leu Lys Gly Ala Ala Ala Pro Val Ala His Phe Gln 220 Gly Ser Leu Pro Glu Val Pro Ala Tyr X 3 Ala Ser Glu L ys Tyr 230 240 Pro Ser Met Thr Ser Val Asn Ser Ala Glu Ala Ser Thr Gly Ala 250 Gly Gly Gly Gly Ser Asn Pro Val Lys Ser Met Trp Ser Glu Gly 260 270 Ala Thr Phe Ser Ala Asn Ser Val Thr Cys Thr Phe Ser Arg Gln 280 Phe Leu Ile Pro Tyr Asp Pro Glu His His Tyr Lys Val Phe Ser 290 300 Pro Ala Ala Ser Ser Cys His Asn Ala Ser Gly Lys Glu Ala Lys 310 Val Cys Thr Ile Ser Pro Ile Met Gly Tyr Ser Thr Pro Trp Arg 320 330 Tyr Leu Asp Phe Asn Ala Leu Asn Leu Phe Phe Ser Pro Leu Glu 340 Phe Gln His Leu Ile Glu Asn Tyr Gly Ser Ile Ala Pro Asp Ala 350 360 Leu Thr Val Thr Ile Ser Glu Ile Ala Val Lys Asp Val Thr Asp 370 Lys Thr Gly Gly Gly Val Gln Val Thr Asp Ser Thr Thr Gly Arg 380 390 Leu Cys Met Leu Val Asp His Glu Tyr Lys Tyr Pro Tyr Val Leu 400 Gly Gln Gly Gln Asp Thr Leu Ala Pro Glu Leu Pro Ile Trp Val 410 420 Tyr Phe Pro Pro Gln Tyr Ala Tyr Leu Thr Val Gly Asp Val Asn 430 Thr Gln Gly Ile Ser Gly Asp Ser Lys Lys Leu Ala Ser Glu Glu 440 450 Ser Ala Phe Tyr Val Leu Glu His Ser Ser Phe Gln Leu Leu Gly Four 60 Thr Gly Gly Thr Ala Thr Met Ser Tyr Lys Phe Pro Pro Val Pro 470 480 Pro Glu Asn Leu Glu Gly Cys Ser Gln His Phe Tyr Glu Met Tyr 490 Asn Pro Leu Tyr Gly Ser Arg Leu Gly Val Pro Asp Thr Leu Gly 500 510 Gly Asp Pro Lys Phe Arg Ser Leu Thr His Glu Asp His Ala Ile 520 Gln Pro Gln Asn Phe Met Pro Gly Pro Leu Val Asn Ser Val Ser 530 540 Thr Lys Glu Gly Asp Ser Ser Asn Thr Gly Ala Gly Lys Ala Leu 550 Thr Gly Leu Ser Thr Gly Thr Ser Gln Asn Thr Arg Ile Ser Leu 560 570 Arg Pro Gly Pro Val Ser Gln Pro Tyr His His Trp Asp Thr Asp 580 Lys Tyr Val Thr Gly Ile Asn Ala Ile Ser His Gly Gln Thr Thr 590 600 Tyr Gly Asn Ala Glu Asp Lys Glu Tyr Gln Gln Gly Val Gly Arg 610 Phe Pro Asn Glu Lys Glu Gln Leu Lys Gln Leu Gln Gly Leu Asn 620 630 Met His Thr Tyr Phe Pro Asn Lys Gly Thr Gln Gln Tyr Thr Asp 640 Gln Ile Glu Arg Pro Leu Met Val Gly Ser Val Trp Asn Arg Arg 650 660 Ala Leu His Tyr Glu Ser Gln Leu Trp Ser Lys Ile Pro Asn Leu 670 Asp Asp Ser Phe Lys Thr Gln Phe Ala Ala Leu Gly Gly Trp Gly 680 690 Leu H is Gln Pro Pro Pro Gln Ile Phe Leu Lys Ile Leu Pro Gln 700 Ser Gly Pro Ile Gly Gly Ile Lys Ser Met Gly Ile Thr Thr Leu 710 720 Val Gln Tyr Ala Val Gly Ile Met Thr Val Thr Met Thr Phe Lys 730 Leu Gly Pro Arg Lys Ala Thr Gly Arg Trp Asn Pro Gln Pro Gly 740 750 Val Tyr Pro Pro His Ala Ala Gly His Leu Pro Tyr Val Leu Tyr 760 Asp Pro Thr Ala Ile Asp Ala Lys Gln His His Arg His Gly Tyr 770 780 Glu Lys Pro Glu Glu Leu Trp Thr Ala Lys Ser Arg Val Arg Pro 781 Leu (wherein X 1 is Gly or Val, X 2 is Asn or Asp, and X 3 is His or Asn.
【請求項3】 下記式(3)のアミノ酸配列をコードす
るヒトパルボウイルスVP―2構造遺伝子。 【化3】 式(3) 1 10 Met Thr Ser Val Asn Ser Ala Glu Ala Ser Thr Gly Ala Gly Gly 20 30 Gly Gly Ser Asn Pro Val Lys Ser Met Trp Ser Glu Gly Ala Thr 40 Phe Ser Ala Asn Ser Val Thr Cys Thr Phe Ser Arg Gln Phe Leu 50 60 Ile Pro Tyr Asp Pro Glu His His Tyr Lys Val Phe Ser Pro Ala 70 Ala Ser Ser Cys His Asn Ala Ser Gly Lys Glu Ala Lys Val Cys 80 90 Thr Ile Ser Pro Ile Met Gly Tyr Ser Thr Pro Trp Arg Tyr Leu 100 Asp Phe Asn Ala Leu Asn Leu Phe Phe Ser Pro Leu Glu Phe Gln 110 120 His Leu Ile Glu Asn Tyr Gly Ser Ile Ala Pro Asp Ala Leu Thr 130 Val Thr Ile Ser Glu Ile Ala Val Lys Asp Val Thr Asp Lys Thr 140 150 Gly Gly Gly Val Gln Val Thr Asp Ser Thr Thr Gly Arg Leu Cys 160 Met Leu Val Asp His Glu Tyr Lys Tyr Pro Tyr Val Leu Gly Gln 170 180 Gly Gln Asp Thr Leu Ala Pro Glu Leu Pro Ile Trp Val Tyr Phe 190 Pro Pro Gln Tyr Ala Tyr Leu Thr Val Gly Asp Val Asn Thr Gln 200 210 Gly Ile Ser Gly Asp Ser Lys Lys Leu Ala Ser Glu Glu Ser Ala 220 Phe Tyr Val Leu Glu His Ser Ser Phe Gln Leu Leu Gly Thr Gly 230 240 Gly Thr Ala Thr Met Ser Tyr Lys Phe Pro Pro Val Pro Pro Glu 250 Asn Leu Glu Gly Cys Ser Gln His Phe Tyr Glu Met Tyr Asn Pro 260 270 Leu Tyr Gly Ser Arg Leu Gly Val Pro Asp Thr Leu Gly Gly Asp 280 Pro Lys Phe Arg Ser Leu Thr His Glu Asp His Ala Ile Gln Pro 290 300 Gln Asn Phe Met Pro Gly Pro Leu Val Asn Ser Val Ser Thr Lys 310 Glu Gly Asp Ser Ser Asn Thr Gly Ala Gly Lys Ala Leu Thr Gly 320 330 Leu Ser Thr Gly Thr Ser Gln Asn Thr Arg Ile Ser Leu Arg Pro 340 Gly Pro Val Ser Gln Pro Tyr His His Trp Asp Thr Asp Lys Tyr 350 360 Val Thr Gly Ile Asn Ala Ile Ser His Gly Gln Thr Thr Tyr Gly 370 Asn Ala Glu Asp Lys Glu Tyr Gln Gln Gly Val Gly Arg Phe Pro 380 390 Asn Glu Lys Glu Gln Leu Lys Gln Leu Gln Gly Leu Asn Met His 400 Thr Tyr Phe Pro Asn Lys Gly Thr Gln Gln Tyr Thr Asp Gln Ile 410 420 Glu Arg Pro Leu Met Val Gly Ser Val Trp Asn Arg Arg Ala Leu 430 His Tyr Glu Ser Gln Leu Trp Ser Lys Ile Pro Asn Leu Asp Asp 440 450 Ser Phe Lys Thr Gln Phe Ala Ala Leu Gly Gly Trp Gly Leu His 460 Gln Pro Pro Pro Gln Ile Phe Leu Lys Ile Leu Pro Gln Ser Gly 470 480 Pro Ile Gly Gly Ile Lys Ser Met Gly Ile Thr Thr Leu Val Gln 490 Tyr Ala Val Gly Ile Met Thr Val Thr Met Thr Phe Lys Leu Gly 500 510 Pro Arg Lys Ala Thr Gly Arg Trp Asn Pro Gln Pro Gly Val Tyr 520 Pro Pro His Ala Ala Gly His Leu Pro Tyr Val Leu Tyr Asp Pro 530 540 Thr Ala Ile Asp Ala Lys Gln His His Arg His Gly Tyr Glu Lys 550 554 Pro Glu Glu Leu Trp Thr Ala Lys Ser Arg Val Arg Pro Leu
3. A human parvovirus VP-2 structural gene encoding the amino acid sequence of the following formula (3). [Formula 3] 1 10 Met Thr Ser Val Asn Ser Ala Glu Ala Ser Thr Gly Ala Gly Gly 20 30 Gly Gly Ser Asn Pro Val Lys Ser Met Trp Ser Glu Gly Ala Thr 40 Phe Ser Ala Asn Ser Val Thr Cys Thr Phe Ser Arg Gln Phe Leu 50 60 Ile Pro Tyr Asp Pro Glu His His Tyr Lys Val Phe Ser Pro Ala 70 Ala Ser Ser Cys His Asn Ala Ser Gly Lys Glu Ala Lys Val Cys 80 90 Thr Ile Ser Pro Ile Met Gly Tyr Ser Thr Pro Trp Arg Tyr Leu 100 Asp Phe Asn Ala Leu Asn Leu Phe Phe Ser Pro Leu Glu Phe Gln 110 120 His Leu Ile Glu Asn Tyr Gly Ser Ile Ala Pro Asp Ala Leu Thr 130 Val Thr Ile Ser Glu Ile Ala Val Lys Asp Val Thr Asp Lys Thr 140 150 Gly Gly Gly Val Gln Val Thr Asp Ser Thr Thr Gly Arg Leu Cys 160 Met Leu Val Asp His Glu Tyr Lys Tyr Pro Tyr Val Leu Gly Gln 170 180 Gly Gln Asp Thr Leu Ala Pro Glu Leu Pro Ile Trp Val Tyr Phe 190 Pro Pro Gln Tyr Ala Tyr Leu Thr Val Gly Asp Val Asn Thr Gln 200 210 Gly Ile Ser Gly Asp Ser Lys Lys Leu Ala Ser Glu Glu Ser Ala 220 Phe Tyr Val Leu Glu His Ser Ser Phe Gln Leu Leu Gly T hr Gly 230 240 Gly Thr Ala Thr Met Ser Tyr Lys Phe Pro Pro Val Pro Pro Glu 250 Asn Leu Glu Gly Cys Ser Gln His Phe Tyr Glu Met Tyr Asn Pro 260 270 Leu Tyr Gly Ser Arg Leu Gly Val Pro Asp Thr Leu Gly Gly Asp 280 Pro Lys Phe Arg Ser Leu Thr His Glu Asp His Ala Ile Gln Pro 290 300 Gln Asn Phe Met Pro Gly Pro Leu Val Asn Ser Val Ser Thr Lys 310 Glu Gly Asp Ser Ser Asn Thr Gly Ala Gly Lys Ala Leu Thr Gly 320 330 Leu Ser Thr Gly Thr Ser Gln Asn Thr Arg Ile Ser Leu Arg Pro 340 Gly Pro Val Ser Gln Pro Tyr His His Trp Asp Thr Asp Lys Tyr 350 360 Val Thr Gly Ile Asn Ala Ile Ser His Gly Gln Thr Thr Tyr Gly 370 Asn Ala Glu Asp Lys Glu Tyr Gln Gln Gly Val Gly Arg Phe Pro 380 390 Asn Glu Lys Glu Gln Leu Lys Gln Leu Gln Gly Leu Asn Met His 400 Thr Tyr Phe Pro Asn Lys Gly Thr Gln Gln Tyr Thr Asp Gln Ile 410 420 Glu Arg Pro Leu Met Val Gly Ser Val Trp Asn Arg Arg Ala Leu 430 His Tyr Glu Ser Gln Leu Trp Ser Lys Ile Pro Asn Leu Asp Asp 440 450 Ser Phe Lys Thr Gln Phe Ala Ala Leu Gly Gly Trp Gly Leu His Four 60 Gln Pro Pro Pro Gln Ile Phe Leu Lys Ile Leu Pro Gln Ser Gly 470 480 Pro Ile Gly Gly Ile Lys Ser Met Gly Ile Thr Thr Leu Val Gln 490 Tyr Ala Val Gly Ile Met Thr Val Thr Met Thr Phe Lys Leu Gly 500 510 Pro Arg Lys Ala Thr Gly Arg Trp Asn Pro Gln Pro Gly Val Tyr 520 Pro Pro His Ala Ala Gly His Leu Pro Tyr Val Leu Tyr Asp Pro 530 540 Thr Ala Ile Asp Ala Lys Gln His His Arg His Gly Tyr Glu Lys 550 554 Pro Glu Glu Leu Trp Thr Ala Lys Ser Arg Val Arg Pro Leu
【請求項4】 下記式(4)のアミノ酸配列をコードす
るヒトパルボウイルス非構造(NS)遺伝子。 【化4】 式(4) 1 10 Met Glu Leu Phe Arg Gly Val Leu Gln Val Ser Ser Asn Val Leu 20 30 Asp Cys Ala Asn Asp Asn Trp Trp Cys Ser Leu Leu Asp Leu Asp 40 Thr Ser Asp Trp Glu Pro Leu Thr His Thr Asn Arg Leu Met Ala 50 60 Ile Tyr Leu Ser Ser Val Ala Ser Lys Leu Asp Phe Thr Gly Gly 70 Pro Leu Ala Gly Cys Leu Tyr Phe Phe Gln Val Glu Cys Asn Lys 80 90 Phe Glu Glu Gly Tyr His Ile His Val Val Ile Gly Gly Pro Gly 100 Leu Asn Pro Arg Asn Leu Thr Val Cys Val Glu Gly Leu Phe Asn 110 120 Asn Val Leu Tyr His Leu Val Thr Glu Asn Val Lys Leu Lys Phe 130 Leu Pro Gly Met Thr Thr Lys Gly Lys Tyr Phe Arg Asp Gly Glu 140 150 Gln Phe Ile Glu Asn Tyr Leu Met Lys Lys Ile Pro Leu Asn Val 160 Val Trp Cys Val Thr Asn Ile Asp Gly Tyr Ile Asp Thr Cys Ile 170 180 Ser Ala Thr Phe Arg Arg Gly Ala Cys His Ala Lys Lys Pro Arg 190 Ile Thr Thr Ala Ile Asn Asp Thr Ser Ser Asp Ala Gly Glu Ser 200 210 Ser Gly Thr Gly Ala Glu Val Val Pro Phe Asn Gly Lys Gly Thr 220 Lys Ala Ser Ile Lys Phe Gln Thr Met Val Asn Trp Leu Cys Glu 230 240 Asn Arg Val Phe Thr Glu Asp Lys Trp Lys Leu Val Asp Phe Asn 250 Gln Tyr Thr Leu Leu Ser Ser Ser His Ser Gly Ser Phe Gln Ile 260 270 Gln Ser Ala Leu Lys Leu Ala Ile Tyr Lys Ala Thr Asn Leu Val 280 Pro Thr Ser Thr Phe Leu Leu His Thr Asp Phe Glu Gln Val Met 290 300 Cys Ile Lys Asp Asn Lys Ile Val Lys Leu Leu Leu Cys Gln Asn 310 Tyr Asp Pro Leu Leu Val Gly Gln His Val Leu Lys Trp Ile Asp 320 330 Lys Lys Cys Gly Lys Lys Asn Thr Leu Trp Phe Tyr Gly Pro Pro 340 Ser Thr Gly Lys Thr Asn Leu Ala Met Ala Ile Ala Lys Ser Val 350 360 Pro Val Tyr Gly Met Val Asn Trp Asn Asn Glu Asn Phe Pro Phe 370 Asn Asp Val Ala Gly Lys Ser Leu Val Val Trp Asp Glu Gly Ile 380 390 Ile Lys Ser Thr Ile Val Glu Ala Ala Lys Ala Ile Leu Gly Gly 400 Gln Pro Thr Arg Val Asp Gln Lys Met Arg Gly Ser Val Ala Val 410 420 Pro Gly Val Pro Val Val Ile Thr Ser Asn Gly Asp Ile Thr Phe 430 Val Val Ser Gly Asn Thr Thr Thr Thr Val His Ala Lys Ala Leu 440 450 Lys Glu Arg Met Val Lys Leu Asn Phe Thr Val Arg Cys Ser Pro 460 Asp Met Gly Leu Leu Thr Glu Ala Asp Val Gln Gln Trp Leu Thr 470 480 Trp Cys Asn Ala Gln Ser Trp Asp His Tyr Glu Asn Trp Ala Ile 490 Asn Tyr Thr Phe Asp Phe Pro Gly Ile Asn Ala Asp Ala Leu His 500 510 Pro Asp Leu Gln Thr Thr Pro Ile Val Thr Asp Thr Ser Ile Ser 520 Ser Ser Gly Gly Glu Ser Ser Glu Glu Leu Ser Glu Ser Ser Phe 530 540 Phe Asn Leu Ile Thr Pro Gly Ala Trp Asn Thr Glu Thr Pro Arg 550 Ser Ser Thr Pro Ile Pro Gly Thr Ser Ser Gly Glu Ser Phe Val 560 570 Gly Ser Pro Val Ser Ser Glu Val Val Ala Ala Ser Trp Glu Glu 580 Ala Phe Tyr Thr Pro Leu Ala Asp Gln Phe Arg Glu Leu Leu Val 590 600 Gly Val Asp Tyr Val Trp Asp Gly Val Arg Gly Leu Pro Val Cys 610 Cys Val Gln His Ile Asn Asn Ser Gly Gly Gly Leu Gly Leu Cys 620 630 Pro His Cys Ile Asn Val Gly Ala Trp Tyr Asn Gly Trp Lys Phe 640 Arg Glu Phe Thr Pro Asp Leu Val Arg Cys Ser Cys His Val Gly 650 660 Ala Ser Asn Pro Phe Ser Val Leu Thr Cys Lys Lys Cys Ala Tyr 670 671 Leu Ser Gly Leu Gln Ser Phe Val Asp Tyr Glu
4. A human parvovirus nonstructural (NS) gene encoding the amino acid sequence of the following formula (4). Formula (4) 1 10 Met Glu Leu Phe Arg Gly Val Leu Gln Val Ser Ser Asn Val Leu 20 30 Asp Cys Ala Asn Asp Asn Trp Trp Cys Ser Leu Leu Asp Leu Asp 40 Thr Ser Asp Trp Glu Pro Leu Thr His Thr Asn Arg Leu Met Ala 50 60 Ile Tyr Leu Ser Ser Val Ala Ser Lys Leu Asp Phe Thr Gly Gly 70 Pro Leu Ala Gly Cys Leu Tyr Phe Phe Gln Val Glu Cys Asn Lys 80 90 Phe Glu Glu Gly Tyr His Ile His Val Val Ile Gly Gly Pro Gly 100 Leu Asn Pro Arg Asn Leu Thr Val Cys Val Glu Gly Leu Phe Asn 110 120 Asn Val Leu Tyr His Leu Val Thr Glu Asn Val Lys Leu Lys Phe 130 Leu Pro Gly Met Thr Thr Lys Gly Lys Tyr Phe Arg Asp Gly Glu 140 150 Gln Phe Ile Glu Asn Tyr Leu Met Lys Lys Ile Pro Leu Asn Val 160 Val Trp Cys Val Thr Asn Ile Asp Gly Tyr Ile Asp Thr Cys Ile 170 180 Ser Ala Thr Phe Arg Arg Gly Ala Cys His Ala Lys Lys Pro Arg 190 Ile Thr Thr Ala Ile Asn Asp Thr Ser Ser Asp Ala Gly Glu Ser 200 210 Ser Gly Thr Gly Ala Glu Val Val Pro Phe Asn Gly Lys Gly Thr 220 Lys Ala Ser Ile Lys Phe Gln Thr Met Val Asn Trp Leu C ys Glu 230 240 Asn Arg Val Phe Thr Glu Asp Lys Trp Lys Leu Val Asp Phe Asn 250 Gln Tyr Thr Leu Leu Ser Ser Ser His Ser Gly Ser Phe Gln Ile 260 270 Gln Ser Ala Leu Lys Leu Ala Ile Tyr Lys Ala Thr Asn Leu Val 280 Pro Thr Ser Thr Phe Leu Leu His Thr Asp Phe Glu Gln Val Met 290 300 Cys Ile Lys Asp Asn Lys Ile Val Lys Leu Leu Leu Cys Gln Asn 310 Tyr Asp Pro Leu Leu Val Gly Gln His Val Leu Lys Trp Ile Asp 320 330 Lys Lys Cys Gly Lys Lys Asn Thr Leu Trp Phe Tyr Gly Pro Pro 340 Ser Thr Gly Lys Thr Asn Leu Ala Met Ala Ile Ala Lys Ser Val 350 360 Pro Val Tyr Gly Met Val Asn Trp Asn Asn Glu Asn Phe Pro Phe 370 Asn Asp Val Ala Gly Lys Ser Leu Val Val Trp Asp Glu Gly Ile 380 390 Ile Lys Ser Thr Ile Val Glu Ala Ala Lys Ala Ile Leu Gly Gly 400 Gln Pro Thr Arg Val Asp Gln Lys Met Arg Gly Ser Val Ala Val 410 420 Pro Gly Val Pro Val Val Ile Thr Ser Asn Gly Asp Ile Thr Phe 430 Val Val Ser Gly Asn Thr Thr Thr Thr Val His Ala Lys Ala Leu 440 450 Lys Glu Arg Met Val Lys Leu Asn Phe Thr Val Arg Cys Ser Pro Four 60 Asp Met Gly Leu Leu Thr Glu Ala Asp Val Gln Gln Trp Leu Thr 470 480 Trp Cys Asn Ala Gln Ser Trp Asp His Tyr Glu Asn Trp Ala Ile 490 Asn Tyr Thr Phe Asp Phe Pro Gly Ile Asn Ala Asp Ala Leu His 500 510 Pro Asp Leu Gln Thr Thr Pro Ile Val Thr Asp Thr Ser Ile Ser 520 Ser Ser Gly Gly Glu Ser Ser Glu Glu Leu Ser Glu Ser Ser Phe 530 540 Phe Asn Leu Ile Thr Pro Gly Ala Trp Asn Thr Glu Thr Pro Arg 550 Ser Ser Thr Pro Ile Pro Gly Thr Ser Ser Gly Glu Ser Phe Val 560 570 Gly Ser Pro Val Ser Ser Glu Val Val Ala Ala Ser Trp Glu Glu 580 Ala Phe Tyr Thr Pro Leu Ala Asp Gln Phe Arg Glu Leu Leu Val 590 600 Gly Val Asp Tyr Val Trp Asp Gly Val Arg Gly Leu Pro Val Cys 610 Cys Val Gln His Ile Asn Asn Ser Gly Gly Gly Leu Gly Leu Cys 620 630 Pro His Cys Ile Asn Val Gly Ala Trp Tyr Asn Gly Trp Lys Phe 640 Arg Glu Phe Thr Pro Asp Leu Val Arg Cys Ser Cys His Val Gly 650 660 Ala Ser Asn Pro Phe Ser Val Leu Thr Cys Lys Lys Cys Ala Tyr 670 671 Leu Ser Gly Leu Gln Ser Phe Val Asp Tyr Glu
【請求項5】 請求項1ないし4のいずれか1項に記載
の遺伝子を含み、宿主細胞内で該遺伝子を発現すること
ができる組換えベクター。
5. A recombinant vector containing the gene according to any one of claims 1 to 4 and capable of expressing the gene in a host cell.
【請求項6】 前記遺伝子が、バキュロウイルスベクタ
ー中に挿入されて成る請求項5記載の組換えベクター。
6. The recombinant vector according to claim 5, wherein the gene is inserted into a baculovirus vector.
【請求項7】 請求項5記載の組換えベクターにより形
質転換された形質転換体。
7. A transformant transformed with the recombinant vector according to claim 5.
【請求項8】 前記形質転換体の宿主が大腸菌である請
求項7記載の形質転換体。
8. The transformant according to claim 7, wherein the host of the transformant is Escherichia coli.
【請求項9】 前記形質転換体の宿主が昆虫細胞である
請求項7記載の形質転換体。
9. The transformant according to claim 7, wherein the host of the transformant is an insect cell.
【請求項10】 前記組換えベクターが請求項6記載の
組換えベクターであり、前記形質転換体の宿主が昆虫細
胞である請求項7記載の形質転換体。
10. The transformant according to claim 7, wherein the recombinant vector is the recombinant vector according to claim 6, and the host of the transformant is an insect cell.
【請求項11】 前記昆虫細胞がTn5細胞である請求
項10記載の形質転換体。
11. The transformant according to claim 10, wherein the insect cells are Tn5 cells.
【請求項12】 前記式(2)で示されるアミノ酸配列
を有するポリペプチド。
12. A polypeptide having the amino acid sequence represented by the formula (2).
【請求項13】 前記式(3)で示されるアミノ酸配列
を有するポリペプチド。
13. A polypeptide having the amino acid sequence represented by the formula (3).
【請求項14】 上記式(4)で示されるアミノ酸配列
を有するポリペプチド。
14. A polypeptide having an amino acid sequence represented by the above formula (4).
【請求項15】 請求項13のポリペプチド単独又は請
求項12のポリペプチドと請求項13のポリペプチドと
から構成されるヒトパルボウイルスのウイルス粒子様構
造物。
15. A virus particle-like structure of human parvovirus, which is composed of the polypeptide of claim 13 alone or the polypeptide of claim 12 and the polypeptide of claim 13.
【請求項16】 請求項12又は13に記載のポリペプ
チド又は請求項15記載のウイルス粒子様構造物を抗原
として用い、免疫測定法により検体中の抗ヒトパルボウ
イルス抗体を検出する方法。
16. A method for detecting an anti-human parvovirus antibody in a sample by an immunoassay using the polypeptide according to claim 12 or 13 or the virus particle-like structure according to claim 15 as an antigen.
【請求項17】 請求項12に記載のポリペプチドと請
求項13に記載のポリペプチドとの混合物を抗原として
用いる請求項16記載の方法。
17. The method according to claim 16, wherein a mixture of the polypeptide according to claim 12 and the polypeptide according to claim 13 is used as an antigen.
【請求項18】 前記2種類のポリペプチドの混合比率
が1:10ないし10:1である請求項17記載の方
法。
18. The method according to claim 17, wherein the mixing ratio of the two kinds of polypeptides is 1:10 to 10: 1.
【請求項19】 請求項12又は13に記載のポリペプ
チド又は請求項15記載のウイルス粒子様構造物を免疫
原として用いて抗体を作製し、該抗体を用いる免疫測定
により検体中のヒトパルボウイルスを検出する方法。
19. A human parvovirus in a sample is prepared by preparing an antibody using the polypeptide according to claim 12 or 13 or the virus particle-like structure according to claim 15 as an immunogen, and performing immunoassay using the antibody. How to detect.
【請求項20】 請求項1記載の遺伝子の一部とそれぞ
れハイブリダイズする1対のオリゴヌクレオチドを用い
てPCR法により請求項1記載の遺伝子又はその一部を
増幅し、該増幅された遺伝子又はその一部を検出するこ
とから成る、検体中のヒトパルボウイルスの検出方法。
20. A gene according to claim 1 or a part thereof is amplified by PCR using a pair of oligonucleotides that hybridize with a part of the gene according to claim 1, respectively, and the amplified gene or A method for detecting human parvovirus in a sample, which comprises detecting a part thereof.
【請求項21】 前記オリゴヌクレオチドは、下記のD
NAプライマー群1及びDNAプライマー群2の中から
それぞれ少なくとも1種ずつ選ばれる請求項18記載の
検出方法。 DNAプライマー群1 D-1: GCTGCCATGTGGGAGCTTCTAATC D-4: TTCCCGCCTTATGCAAATGGGCAGC DNAプライマー群2 U-2: GTGTTAGGCTGTCTTATAGGTACA U-4: CTTGTATTCATGGTCTACTAAC
21. The oligonucleotide has the following D:
19. The detection method according to claim 18, wherein at least one type is selected from each of the NA primer group 1 and the DNA primer group 2. DNA primer group 1 D-1: GCTGCCATGTGGGAGCTTCTAATC D-4: TTCCCGCCTTATGCAAATGGGCAGC DNA primer group 2 U-2: GTGTTAGGCTGTCTTATAGGTACA U-4: CTTGTATTCATGGTCTACTAAC
JP4281017A 1992-09-24 1992-09-24 Human parvovirus gene, polypeptide coded with the same and use Pending JPH07147986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4281017A JPH07147986A (en) 1992-09-24 1992-09-24 Human parvovirus gene, polypeptide coded with the same and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4281017A JPH07147986A (en) 1992-09-24 1992-09-24 Human parvovirus gene, polypeptide coded with the same and use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004015495A Division JP2004187687A (en) 2004-01-23 2004-01-23 Method for detecting human parvovirus, and primer therefor

Publications (1)

Publication Number Publication Date
JPH07147986A true JPH07147986A (en) 1995-06-13

Family

ID=17633130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4281017A Pending JPH07147986A (en) 1992-09-24 1992-09-24 Human parvovirus gene, polypeptide coded with the same and use

Country Status (1)

Country Link
JP (1) JPH07147986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009391A3 (en) * 1994-09-22 1996-08-29 Hans Wolf Dna sequence and protein of the non-structural reading frame i of the human parvovirus b19
FR2771751A1 (en) * 1997-12-03 1999-06-04 Assist Publ Hopitaux De Paris ERYTHROVIRUS AND ITS APPLICATIONS
JP2013529894A (en) * 2010-04-07 2013-07-25 ノバルティス アーゲー Method for generating parvovirus B19 virus-like particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009391A3 (en) * 1994-09-22 1996-08-29 Hans Wolf Dna sequence and protein of the non-structural reading frame i of the human parvovirus b19
FR2771751A1 (en) * 1997-12-03 1999-06-04 Assist Publ Hopitaux De Paris ERYTHROVIRUS AND ITS APPLICATIONS
WO1999028439A3 (en) * 1997-12-03 1999-07-22 Assist Publ Hopitaux De Paris Erythrovirus and its applications
US7291452B1 (en) 1997-12-03 2007-11-06 Assistance Publique Hopitaux De Paris Erythrovirus and its applications
US8105610B2 (en) 1997-12-03 2012-01-31 Assistance Publique Hospitaux De Paris Method of making novel erythrovirus V9 VP2 capsid polypeptides
JP2013529894A (en) * 2010-04-07 2013-07-25 ノバルティス アーゲー Method for generating parvovirus B19 virus-like particles
US9744228B2 (en) 2010-04-07 2017-08-29 Norvartis Ag Method for generating a parvovirus B19 virus-like particle

Similar Documents

Publication Publication Date Title
Rosenfeld et al. Unique region of the minor capsid protein of human parvovirus B19 is exposed on the virion surface.
AU2004203609B2 (en) Self-assembling recombinant papillomavirus capsid proteins
AU2016219738B2 (en) Designer peptide-based PCV2 vaccine
Li et al. Characterization of self-assembled virus-like particles of human polyomavirus BK generated by recombinant baculoviruses
Anderson et al. Peptides derived from the unique region of B19 parvovirus minor capsid protein elicitneutralizing antibodies in rabbits
CN112724208A (en) SADS-CoV recombinant S protein extracellular segment and preparation method and application thereof
JPH04505964A (en) Screening method
CN111154778B (en) Novel genetic engineering subunit vaccine of avian newcastle disease virus
US20220194991A1 (en) Recombinant canine parvovirus 2a vp2 and 2b vp2 antigen protein, and use thereof
JP3061196B2 (en) Immunologically active peptides or polypeptides of parvovirus B19
NL8902301A (en) HUMAN PARVOVIRUS B19 PROTEINS, THEIR PRODUCTION AND THEIR USE IN DIAGNOSTIC ASSAYS AND VACCINES.
JP7213507B2 (en) Recombinant porcine parvovirus antigen protein and use thereof
US6001371A (en) Parvovirus capsids
AU770809B2 (en) Synthetic virus-like particles with heterologous epitopes
Seto et al. Expression and characterization of a soluble rubella virus E1 envelope protein
Yoda et al. Expression of recombinant Norwalk‐like virus capsid proteins using a bacterial system and the development of its immunologic detection
JPH07147986A (en) Human parvovirus gene, polypeptide coded with the same and use
CN113061167B (en) Rabbit hemorrhagic disease virus recombinant antigen and application thereof
US7033797B2 (en) Synthetic virus-like particles with heterologous epitopes
JP2000501285A (en) Synthetic HPV11 virus-like particles
CN109030830B (en) Adhesin albumin A pd and its preparing the application in haemophilus parasuis indirect ELISA antibody assay kit
US5922588A (en) Synthetic HPV16 virus-like particles
US20040234542A1 (en) Recombinant orf2 proteins of the swine hepatitis e virus and their use as a vaccine and as a diagnostic reagent for medical and veterinary applications
JP2004187687A (en) Method for detecting human parvovirus, and primer therefor
US20020168372A1 (en) Dna sequence encoding a papillomavirus l1 protein capable of efficiently forming virus-like particles

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040311

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040618

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070911