JPH07146350A - Method for orienting azimuth of sound source - Google Patents

Method for orienting azimuth of sound source

Info

Publication number
JPH07146350A
JPH07146350A JP18035694A JP18035694A JPH07146350A JP H07146350 A JPH07146350 A JP H07146350A JP 18035694 A JP18035694 A JP 18035694A JP 18035694 A JP18035694 A JP 18035694A JP H07146350 A JPH07146350 A JP H07146350A
Authority
JP
Japan
Prior art keywords
sound source
spatial frequency
spectrum
azimuth
numbers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18035694A
Other languages
Japanese (ja)
Inventor
Masayo Hayashi
昌世 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18035694A priority Critical patent/JPH07146350A/en
Publication of JPH07146350A publication Critical patent/JPH07146350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To orient the azimuth of a sound source with high accuracy by receiving acoustic wave signals by means of multiple receiving elements and spectrum- estimation of the spatial frequency generated by the sequence of numbers of the output signal of each receiving element by the maximum entropy method (MEM). CONSTITUTION:Input signals l, 2, 3{X1(t), X,(t),..., Xm(t)} from linearly arranged receiving elements are converted into digital signals by means of A/D converters 11, 12, and 13. Then the digital signal trains (sequences of numbers formed in accordance with the order of the elements) at the same time ni:DELTAt, namely, sequences of numbers {Xj(ni:DELTAt)}m composed of (m) pieces of data are stored in a memory 14 composed of a RAM, etc. A computing element 15 which performs spectrum-presumption from the sequences of numbers by using the MEM finds a power spectrum composed of pieces of power. A detector 16 which detects the position (LQSP) of a spectral peak from the power spectrum decides the spatial frequency fp having the peak of power. Then an azimuth converter 17 orient the azimuth of a sound source from the spatial frequency fp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単一音源からの信号を同
時刻の複数の受波素子の信号のスペクトル解析から音源
方位を推定する方法に関して、特に、少数な直線状に配
列した受波素子を最大エントロピー法を用いるスペクト
ル推定によって、高い精度で音源方位を推定する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of estimating the direction of a sound source from a signal from a single sound source by spectral analysis of signals from a plurality of wave receiving elements at the same time, and more particularly to a method of receiving a plurality of received waves arranged in a straight line. The present invention relates to a method for estimating a sound source direction with high accuracy by spectral estimation using a maximum entropy method for elements.

【0002】[0002]

【従来の技術】音源方位をスペクトル解析によって、推
定する場合、図2のように、遠方にある音源が直線配列
に平面波として到着するので、図3で模式的に示すよう
に、受波素子の出力信号の数列は、音源方位によって、
空間周波数を持つ。音源方位θと数列が持つ空間周波数
f(cgcle/cm)との間はθ=sin-1(f/f
90)で関係を表わせる。ここでf90は音源の波面が直線
配列に直角になった場合の空間周波数である。従来、空
間周波数は受波信号列をフーリエ変換(或は高速フーリ
エ変換)でパワースペクトルのピーク値によって推定し
ていた。
2. Description of the Related Art When a sound source direction is estimated by spectrum analysis, a sound source at a distant position arrives in a linear array as a plane wave as shown in FIG. 2, and therefore, as schematically shown in FIG. The sequence of output signals is
Has a spatial frequency. Between the sound source direction θ and the spatial frequency f (cgcle / cm) of the sequence, θ = sin −1 (f / f
90) expresses the relationship. Here, f90 is the spatial frequency when the wavefront of the sound source is perpendicular to the linear array. Conventionally, the spatial frequency has been estimated from the peak value of the power spectrum by Fourier transform (or fast Fourier transform) of the received signal sequence.

【0003】[0003]

【発明が解決しようとする課題】上述した従来のフーリ
エ解析を用いてスペクトルを求めて音源方位を推定する
方法は、より高い分解能で空間周波数を求めようとする
と、より多くの受信素子が必要になるという欠点があ
る。本発明は最大エントロピー法を用いてスペクトル推
定することにより受信素子が少なくて済み、かつ、最大
エントロピー法によって、スペクトラルピークのバラツ
キを少なくする方法を提供する。
The above-described conventional method for estimating the sound source direction by obtaining the spectrum by using the Fourier analysis requires more receiving elements when obtaining the spatial frequency with higher resolution. There is a drawback that The present invention provides a method for reducing the number of receiving elements by estimating the spectrum by using the maximum entropy method, and providing a method for reducing the variation of spectral peaks by the maximum entropy method.

【0004】[0004]

【課題を解決するための手段】本発明のスペクトルの推
定は最大エントロピー法を用いるため、受信素子の数が
少なくて済む。又、最大エントロピー法、例えばBur
g法では、スペクトラルピークの位置(Locatio
n of Spectral Peak,LO,SP)
は受波信号列の位相によって、移動するため、一様乱数
を発生させ、任意)な時刻(したがって、任意な位相)
の受波信号列を多数計算して、その平均を取って、方位
推定値の信頼性を高める。上述、受信素子の数(データ
数)が少なくても、スペクトルが推定できる最大エント
ロピー法は具体的には次式で求められる。
Since the spectrum estimation of the present invention uses the maximum entropy method, the number of receiving elements can be small. Also, the maximum entropy method, for example, Bur
In the g method, the position of the spectral peak (Locatio
no of Spectral Peak, LO, SP)
Varies according to the phase of the received signal sequence, so a uniform random number is generated and arbitrary) time (hence arbitrary phase)
A large number of received signal trains are calculated and their averages are taken to improve the reliability of the direction estimation value. The maximum entropy method by which the spectrum can be estimated even if the number of receiving elements (the number of data) is small is specifically obtained by the following equation.

【0005】[0005]

【数1】 [Equation 1]

【0006】ここでP:パワースペクトル、f:空間周
波数、Δt:サンプリング周期、Pm:予測誤差平均、
γmk:線行予測フィルターの係数。(例えば日野幹雄
著、「スペクトル解析」、朝倉書店(1977)pp.
210〜221を参照)。Burg法でのLOSPの移
動とデータの位相の関係はW.Y Chen and
G.R.Stegen “Experiments w
ith maximumentropy power
spectra of sinusoids,”J.G
eophys.Res.,val:79、pp.301
9−3022July,1974を参照。
Here, P: power spectrum, f: spatial frequency, Δt: sampling period, Pm: prediction error average,
γmk: coefficient of line prediction filter. (For example, Mikio Hino, "Spectral Analysis", Asakura Shoten (1977) pp.
210-221). The relationship between the movement of LOSP and the phase of data in the Burg method is described in W. Y Chen and
G. R. Stegen "Experiments w
it maximum power
spectra of sinusoids, "J.G.
eophys. Res. , Val: 79, pp. 301
See 9-3022 July, 1974.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例を示すブロック図である。
図2に示した直線状配列の受波素子からの入力信号1,
2,3(X1(t),X2(t),Xm (t)は、A/D変換器1
1,12,13によってA/D変換され、同一時刻n
i:Δtのディジタル信号列(素子の順番で作られる数
列)、つまり、m個のデータから成る数列{Xj(n
i:Δt}mをRAMなどのメモリに格納する。この数
列は最大エントロピー法でスペクトル推定する演算器1
5によって、M個のパワー{P(N・δf)}M(ここ
で、N=1,2,……M,δfは必要に応じた、パワー
スペクトルの周波数分解能)から成るパワースペクトル
が求められ、このパワースペクトルからスペクトラルピ
ークの位置を検出するLOSP検出器16によって、パ
ワーのピークを持つ空間周波数fpが決められる。fp
から方位変換器17によって、推定方位を求める。(直
線配列の場合、上で述べたように、空間周波数と音源方
位の関係はθp=sin-1(fp/f90)である。)。
さらに、最大エントロピー法は短いデータで高い周波数
分解能でパワースペクトルを推定できる利点があるが、
一方、LOSPはデータ長のデータの位相によって、L
OSPが真の空間周波数からシフトする。
The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention.
Input signals 1 from the linear array receiving elements shown in FIG.
2, 3 (X 1 (t), X 2 (t), X m (t) are A / D converters 1
A / D conversion by 1, 12, 13 and at the same time n
i: A digital signal sequence of Δt (a sequence of numbers created in the order of elements), that is, a sequence of numbers {Xj (n
i: Δt} m is stored in a memory such as a RAM. This sequence is a calculator 1 that estimates the spectrum by the maximum entropy method.
5, a power spectrum composed of M powers {P (N · δf)} M (where N = 1, 2, ... M, δf is the frequency resolution of the power spectrum as necessary) is obtained. The spatial frequency fp having the power peak is determined by the LOSP detector 16 which detects the position of the spectral peak from the power spectrum. fp
The azimuth converter 17 is used to obtain the estimated azimuth. (In the case of the linear array, as described above, the relationship between the spatial frequency and the sound source direction is θp = sin −1 (fp / f90).)
Furthermore, the maximum entropy method has the advantage that the power spectrum can be estimated with high frequency resolution with short data,
On the other hand, LOSP is L depending on the phase of the data of the data length.
The OSP shifts from the true spatial frequency.

【0008】真空の空間周波数値からのずれを小さくす
るにはデータ長をふやしていくか、又はデータ長を固定
して、位相の違う数列で求めたLOSPの平均を取るこ
とによっても達成できる。本発明では時刻ni・Δtの
データを加算器18で、K回(全ての位相を含むのを目
安に)たし合わせ、位相の違うデータを選定するには一
様乱数発生によって選定する演算器20によって選定す
る。K回の演算を経て計算した方位θpが終った判定を
したら(19)乗算器21で、1/Kを乗じて、推定方
位θを出力する。
The deviation from the spatial frequency value of the vacuum can be reduced by increasing the data length, or by fixing the data length and averaging the LOSPs obtained by the sequence having different phases. In the present invention, the data at time ni · Δt is added K times (with reference to the inclusion of all phases) by the adder 18 and data having different phases is selected by uniform random number generation. Select by 20. When it is determined that the azimuth θp calculated through K operations has ended (19), the multiplier 21 multiplies 1 / K to output the estimated azimuth θ.

【0009】最大エントロピー法スペクトル推定演算器
のフローチャートは図4に示す。図4ではBurg法に
よる予測誤差平均PmとM個の平均フィルタ係数γmk
をLevinson アルゴリズムを利用した漸化的に
求めるアルゴリズムを示す。
The flowchart of the maximum entropy method spectrum estimation calculator is shown in FIG. In FIG. 4, the prediction error average Pm by the Burg method and M average filter coefficients γmk
The following is an algorithm for recursively obtaining the Levinson algorithm.

【0010】[0010]

【発明の効果】以上説明したように本発明は、最大エン
トロピー法によって数少ない受波素子の信号のスペクト
ルの推定から、音源方位を推定し、真の空間周波数から
のずれを小さくするために、多数の異なる時刻のデータ
からの推定値の算術平均を取ることによって、高い分解
能で精度のよい方位が推定できる効果がある。
As described above, according to the present invention, in order to reduce the deviation from the true spatial frequency by estimating the sound source direction from the estimation of the spectrum of the signal of the few receiving elements by the maximum entropy method, many By taking the arithmetic mean of the estimated values from the data at different times, there is an effect that the direction can be estimated with high resolution and high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本実施例に用いた直線状配列をした受波素子の
波面に対する幾何学的関係を示す模式図であり、θは音
源方位を示し、λは音波の波長、dは素子の間隔を示
す、但しd<λ/2。
FIG. 2 is a schematic diagram showing a geometrical relationship with respect to a wavefront of a wave receiving element having a linear array used in the present embodiment, where θ is a sound source direction, λ is a wavelength of a sound wave, and d is an interval between elements. , Where d <λ / 2.

【図3】同時刻の受波素子の出力信号からなる数列を模
式的に示す。
FIG. 3 schematically shows a sequence of output signals of the wave receiving element at the same time.

【図4】最大エントロピー法の一つであるBurg法の
アルゴリズムを示すフローチャートである。
FIG. 4 is a flowchart showing an algorithm of the Burg method, which is one of the maximum entropy methods.

【符号の説明】[Explanation of symbols]

1,2,3 素子1,2,mからの入力信号 11,12,13 A/D変換 14 m個データを格納するメモリ 15 最大エントロピー法でスペクトル推定する演算
器 16 パワースペクトルからスペクトラルピーク位置
を検出して、推定した空間周波数を出力する検出器 17 空間周波数から方位を算出する方位変換器 18 加算器 19 演算回数をカウンタして演算回数を判別する装
置 20 一様乱数発生させて時刻を決める装置 21 乗算器
1, 2 and 3 Input signals from elements 1, 2 and m 11, 12, 13 A / D conversion 14 Memory for storing m data 15 Operator for spectrum estimation by maximum entropy method 16 Spectral peak position from power spectrum Detector 17 that detects and outputs the estimated spatial frequency 17 azimuth converter 18 that calculates the azimuth from the spatial frequency 18 adder 19 Device that counts the number of calculations and determines the number of calculations 20 Generates a uniform random number and determines the time Device 21 Multiplier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 遠方の単一音源からの音波信号を空間に
配列された複数の受波素子で受け、同時刻の各受波素子
の出力信号の数列よりできる空間周波数を最大エントロ
ピー法(Maximum Entropy Metho
d,MEM)でスペクトルを推定し、得た空間周波数に
対するパワースペクトルの最大値から音源方位を推定
し、かつ多数の異なる時刻の受波素子出力の数列から推
定した方位の平均を取ることによって音源方位のバラツ
キを減らすことを特徴とする音源方位推定方法。
1. A maximum entropy method (Maximum) is used to obtain a spatial frequency obtained by receiving a sound wave signal from a single distant sound source by a plurality of wave receiving elements arranged in space and using a sequence of output signals of the wave receiving elements at the same time. Entropy Metho
d, MEM) to estimate the spectrum, estimate the direction of the sound source from the maximum value of the power spectrum with respect to the obtained spatial frequency, and take the average of the directions estimated from the sequence of the outputs of the receiving elements at many different times. A sound source direction estimation method characterized by reducing variations in directions.
JP18035694A 1994-08-02 1994-08-02 Method for orienting azimuth of sound source Pending JPH07146350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18035694A JPH07146350A (en) 1994-08-02 1994-08-02 Method for orienting azimuth of sound source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18035694A JPH07146350A (en) 1994-08-02 1994-08-02 Method for orienting azimuth of sound source

Publications (1)

Publication Number Publication Date
JPH07146350A true JPH07146350A (en) 1995-06-06

Family

ID=16081814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18035694A Pending JPH07146350A (en) 1994-08-02 1994-08-02 Method for orienting azimuth of sound source

Country Status (1)

Country Link
JP (1) JPH07146350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030046727A (en) * 2001-12-06 2003-06-18 박규식 Sound localization method and system using subband CPSP algorithm
JP2011137650A (en) * 2009-12-25 2011-07-14 Honda Elesys Co Ltd Electronic scanning radar apparatus, and method and program for estimating direction of received wave

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429114A (en) * 1977-08-08 1979-03-05 Fmc Corp Fluid transferring apparatus
JPS5870182A (en) * 1981-10-21 1983-04-26 Mitsubishi Electric Corp Processor of signal for supressing clutter
JPS58123485A (en) * 1982-01-19 1983-07-22 Mitsubishi Electric Corp Radar

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429114A (en) * 1977-08-08 1979-03-05 Fmc Corp Fluid transferring apparatus
JPS5870182A (en) * 1981-10-21 1983-04-26 Mitsubishi Electric Corp Processor of signal for supressing clutter
JPS58123485A (en) * 1982-01-19 1983-07-22 Mitsubishi Electric Corp Radar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030046727A (en) * 2001-12-06 2003-06-18 박규식 Sound localization method and system using subband CPSP algorithm
JP2011137650A (en) * 2009-12-25 2011-07-14 Honda Elesys Co Ltd Electronic scanning radar apparatus, and method and program for estimating direction of received wave

Similar Documents

Publication Publication Date Title
Host-Madsen et al. Effects of sampling and quantization on single-tone frequency estimation
KR100779409B1 (en) Improved signal localization arrangement
US8194500B2 (en) Method and device for locating a sound source
US6085077A (en) Hardware efficient digital channelized receiver
Ma et al. Ambiguity-function-based techniques to estimate DOA of broadband chirp signals
US7843388B2 (en) Arrival direction estimation apparatus
Fowler et al. Extending the threshold and frequency range for phase-based frequency estimation
JPH05249236A (en) Quaternary product phase difference auto focus
Liang et al. Cramér-Rao bound analysis of underdetermined wideband DOA estimation under the subband model via frequency decomposition
US5557560A (en) Apparatus and method for pulse compression and pulse generation
JP4444150B2 (en) Filter device
US5610612A (en) Method for maximum likelihood estimations of bearings
JPH07146350A (en) Method for orienting azimuth of sound source
JPH09510802A (en) Method and apparatus for determining mask limits
US20090190696A1 (en) Method and system for estimating parameters of a multi-tone signal
Handel Predictive digital filtering of sinusoidal signals
JPS6244620B2 (en)
JP2789600B2 (en) Frequency estimation method
JP2668721B2 (en) Limiter interpolation type DFT operation method
KR20100086616A (en) Device for locating speech source
Prabhu et al. Resolution capability of nonlinear spectral-estimation methods for short data lengths
JPS6390178U (en)
JP2624047B2 (en) Doppler Center Frequency Calculator for Synthetic Aperture Radar
JP3112777B2 (en) Signal incidence angle estimation device
Ibrahim On line splitting in the optimum tapered Burg algorithm

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960813