JPH07146192A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH07146192A
JPH07146192A JP5294833A JP29483393A JPH07146192A JP H07146192 A JPH07146192 A JP H07146192A JP 5294833 A JP5294833 A JP 5294833A JP 29483393 A JP29483393 A JP 29483393A JP H07146192 A JPH07146192 A JP H07146192A
Authority
JP
Japan
Prior art keywords
resistor
dimensional
electrodes
pressure
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5294833A
Other languages
Japanese (ja)
Inventor
Akihiko Yoshida
昭彦 吉田
Masaki Ikeda
正樹 池田
Haruhiko Handa
晴彦 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5294833A priority Critical patent/JPH07146192A/en
Publication of JPH07146192A publication Critical patent/JPH07146192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To measure line pressure and face pressure with a high resolution and a high accuracy by arranging a plurality of distortion-sensing elements consisting of a distortion-sensing resistor and a pair of electrodes in one- dimensional or in two-dimensional matrix on a flexible insulation base. CONSTITUTION:A glass powder layer with a specific composition is formed and calcined on a metal plate 1 to form a crystallization glass layer 2. Gold paste is screen-printed and calcined on a base 3 consisting of the metal plate 1 and the glass layer 2, thus forming a pair of electrodes 4, 4 and a pair of lead parts 5, 5. A resistor paste is screen-printed and calcined between the electrodes 4, 4 to form a resistor 6. In this manner, a distortion-sensing element consisting of the electrodes 4, 4 and the resistor 6 is arranged in a matrix on the flexible base 3, thus measuring the pressure distribution on a one- dimensional line or that on a two-dimensional plane with a high resolution and a high accuracy by a simple method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1次元線上または2次
元平面上の圧力分布を簡易に測定するための圧力センサ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor for easily measuring a pressure distribution on a one-dimensional line or a two-dimensional plane.

【0002】[0002]

【従来の技術】従来、産業界で用いられている圧力セン
サ、特にアナログリニア圧力計測用としてのセンサは、
Si半導体式センサが主流である。このセンサは、例え
ば図4に示すように、厚さ10μmのSi基板20に窒
素などをドーピングして抵抗層21を形成し、これに一
対の電極22を形成して感歪素子とし、これを樹脂層2
3で本体24に接合して構成されている。これに矢印2
5のように圧力が加わると、Si基板20が変形して抵
抗層21がひずみ、この結果、圧力変化に対応して抵抗
値が変化し出力する。また、図5に示すセンサは、ポリ
イミド樹脂基板30にコンスタンタン抵抗層31を形成
したもので、これを被検知対象物に接着剤で張り付け、
加圧によるポリイミド樹脂基板30の変形に対応した抵
抗層31の抵抗値変化を電極32を通して検出するもの
である。
2. Description of the Related Art Conventionally, pressure sensors used in industry, especially sensors for analog linear pressure measurement,
Si semiconductor type sensors are the mainstream. In this sensor, for example, as shown in FIG. 4, a resistance layer 21 is formed by doping a Si substrate 20 having a thickness of 10 μm with nitrogen or the like, and a pair of electrodes 22 is formed on the resistance layer 21 to form a strain sensitive element. Resin layer 2
3 is joined to the main body 24. Arrow 2 on this
When a pressure is applied as in No. 5, the Si substrate 20 is deformed and the resistance layer 21 is distorted, and as a result, the resistance value changes according to the pressure change and outputs. In the sensor shown in FIG. 5, a constantan resistance layer 31 is formed on a polyimide resin substrate 30, which is attached to an object to be detected with an adhesive.
The resistance value change of the resistance layer 31 corresponding to the deformation of the polyimide resin substrate 30 due to the pressure is detected through the electrode 32.

【0003】[0003]

【発明が解決しようとする課題】従来の圧力センサによ
り1次元線上や2次元面上の圧力分布を測定するために
は、複数個のセンサをマトリクス状に配列し、その抵抗
値変化の分布を計測しなければならない。前記のSi半
導体式圧力センサは、形状が大きく、構造が複雑で、電
気回路も複雑になり、従って、寸法も必然的に大きくな
る。一方、ポリイミド樹脂基板を用いたものは、これを
被対象物面に接着せねばならず、長期の信頼性に問題が
ある。いずれの場合もマトリクス状の抵抗体からの信号
取り出しのための配線が複雑になり、これら従来のセン
サを用いて1次元または2次元の圧力分布を測定するこ
とは事実上不可能である。
In order to measure the pressure distribution on a one-dimensional line or a two-dimensional surface with a conventional pressure sensor, a plurality of sensors are arranged in a matrix and the distribution of change in resistance value is measured. You have to measure. The Si semiconductor pressure sensor described above has a large shape, a complicated structure, and a complicated electric circuit. Therefore, the size is inevitably large. On the other hand, the one using a polyimide resin substrate has a problem in long-term reliability because it has to be adhered to the object surface. In either case, the wiring for extracting the signal from the matrix-shaped resistors becomes complicated, and it is virtually impossible to measure the one-dimensional or two-dimensional pressure distribution using these conventional sensors.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するもので、可撓性の絶縁性基材の上に、感歪抵抗体
とその一対の電極とからなる感歪素子の複数個を1次元
または2次元マトリクス状に配列したことを特徴とする
圧力センサである。ここで、前記の絶縁性基材として
は、金属板とその表面に形成したガラス層から構成され
るものが好ましい。また、前記の感歪抵抗体は、ルテニ
ウムの酸化物とガラスの混合層からなるものが好まし
い。
DISCLOSURE OF THE INVENTION The present invention is to solve the above problems and provides a plurality of strain sensitive elements each including a strain sensitive resistor and a pair of electrodes on a flexible insulating substrate. The pressure sensor is characterized by arranging the pieces in a one-dimensional or two-dimensional matrix. Here, the insulating base material is preferably a metal plate and a glass layer formed on the surface thereof. Further, the strain sensitive resistor is preferably composed of a mixed layer of ruthenium oxide and glass.

【0005】ことに前記ガラスが、ホウケイ酸ガラスか
らなる非晶質ガラス層と、非晶質ガラス層中に析出させ
たCa−Mg−O系の部分結晶層からなる結晶化ガラス
が好ましい。この結晶化ガラスは、900℃以上の耐熱
温度を有するから、焼成温度が900℃程度までの抵抗
ペーストを用いて印刷または描画とこれに続く焼成によ
って、ガラス層上に容易に形成することができる。
In particular, the glass is preferably a crystallized glass composed of an amorphous glass layer made of borosilicate glass and a Ca—Mg—O type partial crystal layer deposited in the amorphous glass layer. Since this crystallized glass has a heat resistance temperature of 900 ° C. or higher, it can be easily formed on the glass layer by printing or drawing using a resistance paste with a firing temperature up to about 900 ° C. and subsequent firing. .

【0006】また、上記ガラス層を形成する金属板とし
ては、ガラス層の熱膨張率と整合する熱膨張率(100
〜140)×10-7/℃のステンレス鋼が好適である。
抵抗体の電極およびそのリード部は、銀ペーストや白金
ペスートのような導電性ペーストの印刷または描画とこ
れに続く焼成により、上記ガラス層上に容易に形成する
ことができる。
Further, the metal plate forming the glass layer has a coefficient of thermal expansion (100
˜140) × 10 −7 / ° C. stainless steel is preferred.
The electrode of the resistor and the lead portion thereof can be easily formed on the glass layer by printing or drawing a conductive paste such as silver paste or platinum pesto and subsequent firing.

【0007】[0007]

【作用】本発明によれば、1次元線上の圧力分布や2次
元平面上の圧力分布を簡易な方法で、高解像度、かつ信
頼性高く測定することができる。
According to the present invention, the pressure distribution on the one-dimensional line and the pressure distribution on the two-dimensional plane can be measured with high resolution and high reliability by a simple method.

【0008】[0008]

【実施例】以下、本発明の実施例を説明する。図1に示
すように、厚さ200μmのステンレス鋼SUS304
からなる基板1の上に、電気泳動電着により表1に示す
組成のガラス粉末層を形成し、引続き900℃で焼成し
て厚さ約70μmの結晶化ガラス層を形成する。
EXAMPLES Examples of the present invention will be described below. As shown in FIG. 1, 200 μm thick stainless steel SUS304
A glass powder layer having the composition shown in Table 1 is formed by electrophoretic electrodeposition on the substrate 1 made of, and subsequently baked at 900 ° C. to form a crystallized glass layer having a thickness of about 70 μm.

【0009】[0009]

【表1】 [Table 1]

【0010】上記の金属板1と結晶化ガラス層2からな
る基材3の上に、金ペーストをスクリーン印刷し、88
0℃で焼成することにより、電極4、4の対と、それら
のリード部分5、5を形成する。続いて、電極4、4間
に抵抗体6を形成する。この抵抗体6は、ルテニウム酸
化物とガラス粉末よりなる抵抗体ペーストをスクリーン
印刷し、続いて850℃で焼成して形成したものであ
る。こうして、図2に示すように、可撓性の基材3上
に、電極4、4と抵抗体6からなる感歪素子がマトリク
ス状に配列される。なお、図2ではリード部5は単に線
で表している。さらに、全体の表面をフッ素樹脂よりな
る厚さ約10μmのオーバーコート層7で被覆する。
A gold paste is screen-printed on the base material 3 consisting of the metal plate 1 and the crystallized glass layer 2 as described above.
By firing at 0 ° C., the pair of electrodes 4, 4 and their lead portions 5, 5 are formed. Then, the resistor 6 is formed between the electrodes 4 and 4. The resistor 6 is formed by screen-printing a resistor paste made of ruthenium oxide and glass powder and subsequently firing at 850 ° C. In this way, as shown in FIG. 2, strain sensitive elements including the electrodes 4 and 4 and the resistor 6 are arranged in a matrix on the flexible base material 3. Note that, in FIG. 2, the lead portion 5 is simply represented by a line. Further, the entire surface is covered with an overcoat layer 7 made of a fluororesin and having a thickness of about 10 μm.

【0011】この実施例では、大きさ20cm×20c
mの基材上に横10列、縦10列の合計100個の感歪
素子のマトリクスが形成されている。この圧力センサの
上に例えば人間の手を置いたとき、100個の感歪素子
に加えられる圧力は手の形状に依存する。この結果、マ
トリクス状の感歪素子の抵抗値の分布が人間の手の形状
を表すことになる。
In this embodiment, the size is 20 cm × 20 c.
A matrix of 100 strain sensitive elements in total of 10 rows in the horizontal direction and 10 columns in the vertical direction is formed on the base material of m. When, for example, a human hand is placed on this pressure sensor, the pressure applied to the 100 strain sensitive elements depends on the shape of the hand. As a result, the distribution of the resistance values of the matrix-shaped strain sensitive element represents the shape of a human hand.

【0012】図3は、実施例1と同じ材料を用いて、帯
状の基材上に感歪素子を1次元に配列したセンサ10を
ベッドの床部11に配置した例を示す。この上に横にな
る人間の、寝返り状態、就寝状態は、常に圧力分布でモ
ニターすることができ、これをアクティブにフィードバ
ックすることによって、例えば老人や病人の床ずれ防止
のためのデータを得ることができる。
FIG. 3 shows an example in which a sensor 10 in which strain sensitive elements are one-dimensionally arranged on a strip-shaped base material is arranged on the floor portion 11 of the bed by using the same material as that of the first embodiment. The overturned state and sleeping state of the person lying on this can be constantly monitored by the pressure distribution, and by actively feeding back this, it is possible to obtain data for prevention of bedsores of the elderly and the sick, for example. it can.

【0013】上記実施例のセンサは、感歪素子のリード
部を含めてその構成が非常に簡易であって、計測精度±
5%程度のものを容易に得ることができる。また、抵抗
体を抵抗ペーストの描画および焼成によるときは、計測
精度を±1%程度に上げることができる。実施例では、
基材として金属板とガラス層から構成したものを、抵抗
体としてルテニウム酸化物系のものをそれぞれ用いた
が、例えば可撓性セラミック板を基材として用い、コン
スタンタン膜を抵抗体として用いることも可能であり、
上記に限定されるものではない。また、単に圧力のみな
らず歪などの計測も本センサを用いれば可能になる。
The sensor of the above embodiment has a very simple structure including the lead portion of the strain sensitive element, and the measurement accuracy is ±
About 5% can be easily obtained. Further, when the resistor is formed by drawing and firing the resistance paste, the measurement accuracy can be increased to about ± 1%. In the example,
The substrate made of a metal plate and a glass layer was used as the resistor, and the resistor was made of ruthenium oxide. However, for example, a flexible ceramic plate may be used as the substrate and a constantan film may be used as the resistor. Is possible,
It is not limited to the above. Further, not only the pressure but also the measurement of strain or the like becomes possible by using the present sensor.

【0014】[0014]

【発明の効果】本発明によれば、任意の形状の基材の上
に感歪素子を1次元または2次元状に形成することによ
り、線圧や面圧を解像度高く、高精度に測定できるセン
サが得られる。このためのセンサの形状も従来例よりも
非常に小型で簡易であり、回路も簡易なものにできる。
これまで、実用が不可能であったベッドの床ずれ防止用
など新しい用途を開くことができる。
According to the present invention, by forming a strain sensitive element in a one-dimensional or two-dimensional manner on a base material having an arbitrary shape, it is possible to measure linear pressure and surface pressure with high resolution and high accuracy. A sensor is obtained. The shape of the sensor for this purpose is much smaller and simpler than the conventional example, and the circuit can be simpler.
Until now, it is possible to open new applications such as bed bedsore prevention, which was impossible in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の2次元面圧測定センサを示す断面図で
ある。
FIG. 1 is a sectional view showing a two-dimensional surface pressure measuring sensor of the present invention.

【図2】同センサの概略構成を示す平面図である。FIG. 2 is a plan view showing a schematic configuration of the sensor.

【図3】本発明の1次元圧力測定用センサを用いたベッ
ドを示す斜視図である。
FIG. 3 is a perspective view showing a bed using the one-dimensional pressure measuring sensor of the present invention.

【図4】従来のSi半導体式圧力センサの断面図であ
る。
FIG. 4 is a sectional view of a conventional Si semiconductor pressure sensor.

【図5】従来のポリイミド基板式の歪センサを示す斜視
図である。
FIG. 5 is a perspective view showing a conventional polyimide substrate type strain sensor.

【符号の説明】[Explanation of symbols]

1 金属板 2 ガラス層 3 絶縁性基材 4 電極 5 リード部 6 抵抗体 7 オーバーコート層 1 Metal Plate 2 Glass Layer 3 Insulating Substrate 4 Electrode 5 Lead Section 6 Resistor 7 Overcoat Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 可撓性の絶縁性基材上に、感歪抵抗体と
その一対の電極からなる感歪素子の複数個を1次元また
は2次元マトリクス状に配列したことを特徴とする圧力
センサ。
1. A pressure characterized in that a plurality of strain-sensitive elements each comprising a strain-sensitive resistor and a pair of electrodes thereof are arranged in a one-dimensional or two-dimensional matrix on a flexible insulating substrate. Sensor.
【請求項2】 絶縁性基材が、金属板と金属板上に形成
したガラス層とから構成される請求項1記載の圧力セン
サ。
2. The pressure sensor according to claim 1, wherein the insulating base material comprises a metal plate and a glass layer formed on the metal plate.
【請求項3】 感歪抵抗体が、ガラスとルテニウムの酸
化物との混合層からなる請求項1記載の圧力センサ。
3. The pressure sensor according to claim 1, wherein the strain sensitive resistor comprises a mixed layer of glass and an oxide of ruthenium.
JP5294833A 1993-11-25 1993-11-25 Pressure sensor Pending JPH07146192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5294833A JPH07146192A (en) 1993-11-25 1993-11-25 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5294833A JPH07146192A (en) 1993-11-25 1993-11-25 Pressure sensor

Publications (1)

Publication Number Publication Date
JPH07146192A true JPH07146192A (en) 1995-06-06

Family

ID=17812850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5294833A Pending JPH07146192A (en) 1993-11-25 1993-11-25 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH07146192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015384A1 (en) * 2002-08-07 2004-02-19 Matsushita Electric Industrial Co., Ltd. Load sensor and method of manufacturing the load sensor, paste used for the method, and method of manufacturing the paste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274229A (en) * 1986-05-22 1987-11-28 Fuji Electric Co Ltd Distributed type contact force sensor
JPH04325116A (en) * 1991-04-25 1992-11-13 France Bed Co Ltd Selecting device for mattress
JPH0593659A (en) * 1990-10-29 1993-04-16 Matsushita Electric Ind Co Ltd Distortion sensor and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274229A (en) * 1986-05-22 1987-11-28 Fuji Electric Co Ltd Distributed type contact force sensor
JPH0593659A (en) * 1990-10-29 1993-04-16 Matsushita Electric Ind Co Ltd Distortion sensor and its manufacture
JPH04325116A (en) * 1991-04-25 1992-11-13 France Bed Co Ltd Selecting device for mattress

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015384A1 (en) * 2002-08-07 2004-02-19 Matsushita Electric Industrial Co., Ltd. Load sensor and method of manufacturing the load sensor, paste used for the method, and method of manufacturing the paste
US7164342B2 (en) 2002-08-07 2007-01-16 Matsushita Electric Industrial Co., Ltd. Load sensor and method of manufacturing the load sensor, paste used for the method, and method of manufacturing the paste

Similar Documents

Publication Publication Date Title
US9664573B2 (en) Thermal imaging sensors
JP2595246B2 (en) Touch sensor device with linearity
US20150016487A1 (en) Flexible Temperature and Strain Sensors
US5079949A (en) Surface pressure distribution detecting element
US6235243B1 (en) Gas sensor array for detecting individual gas constituents in a gas mixture
JP2019120688A (en) Biological data measurement device
US11248967B2 (en) Dual-use strain sensor to detect environmental information
US4795498A (en) Low cost thermocouple apparatus and methods for fabricating the same
US6225814B1 (en) Contact width sensors
Prudenziati et al. Piezoresistive Properties of Thick‐film Resistors An Overview
JPH05142060A (en) Physical amount sensor using resistance equipped with migration preventing pattern
JPH0755598A (en) Tactile sensor and tactile imager
JPH0510826A (en) Array sensor
US4631350A (en) Low cost thermocouple apparatus and methods for fabricating the same
JP3756737B2 (en) Thin film tactile sensor
JPH07146192A (en) Pressure sensor
JPH0640031B2 (en) Heat flow sensor and manufacturing method thereof
JPS62291001A (en) Thin film thermistor and manufacture of the same
Morten et al. Thick-film technology and sensors
JPH02105216A (en) Unkown point positioning device of conductor attached to independent aggregate conductor and pressure sensitive tough plate attached to said device
JP2013079837A (en) Surface pressure sensor
CN112710405A (en) Temperature sensor
JPS6212458B2 (en)
JPH01209322A (en) Fuel liquid level detecting device
JPH075050A (en) Temperature sensor