JPH07146118A - Part-dimension measuring device - Google Patents

Part-dimension measuring device

Info

Publication number
JPH07146118A
JPH07146118A JP29373393A JP29373393A JPH07146118A JP H07146118 A JPH07146118 A JP H07146118A JP 29373393 A JP29373393 A JP 29373393A JP 29373393 A JP29373393 A JP 29373393A JP H07146118 A JPH07146118 A JP H07146118A
Authority
JP
Japan
Prior art keywords
laser
line sensor
measurement
measurement point
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29373393A
Other languages
Japanese (ja)
Inventor
Toshio Takitani
俊夫 滝谷
Kozo Oba
厚三 大場
Masao Kinoshita
正生 木下
Haruhiko Yoshida
晴彦 吉田
Tatsuya Kenta
達也 堅多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP29373393A priority Critical patent/JPH07146118A/en
Publication of JPH07146118A publication Critical patent/JPH07146118A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve data processing speed and measurement accuracy by using line sensors. CONSTITUTION:A dolly 11 for putting and transporting a measuring object 1 and a plurality of line sensors 15 are arranged in the plane perpendicular to the moving direction of the dolly 11. Laser radiators 13 to irradiate laser lights spreading in sheat shape along the moving direction to the measuring location and an illuminator 14 are provided. Each detection signal from line sensors 15 for detecting the reflection light from the edge position of the measuring object 1 and line sensors 15 for detecting the sheet shape laser reflection light are input to an operator provided to obtain the angle in sight of the reflection light from each measuring location and position coordinates of the measuring location based on the positions of each line sensor 15 and each laser radiator 13 and the irradiation angles of laser lights from each laser radiator 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば鋼橋、鉄塔、水
門、海洋構造物などで使用される大型の構造部材の寸法
を自動的に測定するための部材寸法測定装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member size measuring device for automatically measuring the size of a large structural member used in, for example, steel bridges, steel towers, sluices, and marine structures.

【0002】[0002]

【従来の技術】従来、鋼橋、鉄塔、水門、海洋構造物な
どで使用される大型の構造部材の寸法を自動的に測定す
る方法として、光切断法が用いられている。
2. Description of the Related Art Conventionally, an optical cutting method has been used as a method for automatically measuring the dimensions of large structural members used in steel bridges, steel towers, sluices, marine structures and the like.

【0003】この光切断法は、図4に示すように、複数
のシート状のレーザ光源61を、測定対象物である構造
部材、例えばH形鋼51の周囲に配置して、その表面に
光切断線62を作り、この光切断線62を複数の撮像装
置(例えばCCDカメラ)63によって斜め方向から撮
影し、光切断線62を画像データとして取り込んだ後、
この画像データを解析して、H形鋼51の断面形状すな
わち外形寸法を測定する方法である。
In this light cutting method, as shown in FIG. 4, a plurality of sheet-shaped laser light sources 61 are arranged around a structural member, such as an H-shaped steel 51, which is an object to be measured, and light is irradiated on the surface thereof. A cutting line 62 is created, the light cutting line 62 is photographed in an oblique direction by a plurality of image pickup devices (for example, CCD cameras) 63, and the light cutting line 62 is captured as image data.
This is a method of analyzing the image data and measuring the cross-sectional shape of the H-section steel 51, that is, the outer dimension.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のような
光切断法によると、基本的に二次元の配列データを取り
扱うため、測定に必要な部分をフレームメモリから抽出
するのに要する時間、および二次元データの解析に要す
る時間が長いという欠点がある。
However, according to the above-mentioned optical cutting method, since basically two-dimensional array data is handled, the time required to extract a portion required for measurement from the frame memory, and It has a drawback that it takes a long time to analyze two-dimensional data.

【0005】また、撮像装置として、CCDカメラを使
用する場合には、現在、ハイビジョン用にしても、1280
×1024ピクセルであり、一次元のラインセンサの5000ピ
クセルに比べると、一方向での解像度が低いという欠点
も有している。
Further, when a CCD camera is used as an image pickup device, even if it is currently used for high-definition, it is 1280
The number of pixels is × 1024, which is also a drawback that the resolution in one direction is low compared to 5000 pixels of a one-dimensional line sensor.

【0006】そこで、本発明は上記問題を解消し得る部
材寸法測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a member size measuring device which can solve the above problems.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の部材寸法測定装置は、測定対象物を載置す
るとともに所定方向に移動させる移動台車と、この移動
台車の移動方向と直交する平面内にラインセンサを複数
個配置し、測定対象物の測定箇所に対応する位置に、上
記移動台車の移動方向に沿ってシート状に拡がるレーザ
光を上記測定箇所に照射するレーザ照射器および上記測
定箇所を照らす照明器を設け、かつ上記測定対象物のエ
ッジ位置からの照射反射光を検出する上記所定のライン
センサおよび上記測定対象物表面の測定箇所からのシー
ト状レーザ反射光を検出する他のラインセンサからの各
検出信号を入力して、各測定箇所における各ラインセン
サ側の光軸に対する反射光の見込み角度を求めるととも
に、上記各ラインセンサおよび各レーザ照射器の位置並
びに各レーザ照射器からのレーザ光の照射角度に基づ
き、測定対象物の測定箇所の位置座標を求める演算装置
を具備したものである。
In order to solve the above-mentioned problems, a member size measuring apparatus of the present invention comprises a movable carriage on which an object to be measured is placed and which is moved in a predetermined direction, and an orthogonal direction to the moving direction of the movable carriage. Arranging a plurality of line sensors in the plane to the position corresponding to the measurement point of the measurement object, a laser irradiator for irradiating the measurement point with a laser beam that spreads in a sheet shape along the moving direction of the movable carriage and An illuminator that illuminates the measurement point is provided, and the sheet-like laser reflection light from the measurement point on the predetermined line sensor and the measurement object surface that detects the irradiation reflected light from the edge position of the measurement object is detected. Each detection signal from another line sensor is input to obtain the expected angle of reflected light with respect to the optical axis on the side of each line sensor at each measurement point, and Based on the irradiation angle of the laser beam from the sub and position as well as the laser irradiator of the laser irradiator is obtained by including a computing unit for determining the position coordinates of the measurement points of the measurement object.

【0008】[0008]

【作用】上記の構成によると、測定対象物の外形寸法を
測定するのに、照明器、レーザ照射器から照射されるそ
の反射光を、ラインセンサにより検出して、所定の測定
箇所の位置座標を求めるようにしているので、例えば二
次元センサを使用する場合に比べて、データの処理速度
が向上するとともに、測定精度が向上する。
According to the above structure, in measuring the external dimensions of the object to be measured, the reflected light emitted from the illuminator and the laser irradiator is detected by the line sensor, and the position coordinates of the predetermined measurement point are detected. Therefore, as compared with the case of using a two-dimensional sensor, the processing speed of data is improved and the measurement accuracy is improved.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1〜図3に基づ
き説明する。図1において、11は案内レール12上を
移動自在にされた移動台車で、H形鋼などの測定対象物
1が載置されるとともに、所定方向に所定の速度でもっ
て移動させるためのものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In FIG. 1, reference numeral 11 denotes a movable carriage that is movable on a guide rail 12, and is for moving an object to be measured 1 such as an H-shaped steel and moving it in a predetermined direction at a predetermined speed. is there.

【0010】上記移動台車11の移動経路の途中には、
その上面に載置された測定対象物1の外形寸法を測定す
るために、移動台車11の移動方向Aに沿って、すなわ
ち測定対象物1の長手軸心方向に沿ってシート状に拡が
るレーザ光5を、その測定箇所に照射するレーザ照射器
13と、同じく測定対象物1の測定箇所に通常のライト
を照らす照明器14と、上記測定対象物1の長手軸心方
向と直交する面内に配置された複数個の一次元ラインセ
ンサ(例えば、CCDなどにより構成されたもの)15
とが配置されている。勿論、これら各ラインセンサ15
には結像用のレンズ(図示せず)が設けられている。
In the middle of the moving route of the moving carriage 11,
In order to measure the outer dimensions of the measuring object 1 placed on the upper surface thereof, a laser beam that spreads in a sheet shape along the moving direction A of the moving carriage 11, that is, along the longitudinal axis direction of the measuring object 1. 5, a laser irradiator 13 that irradiates the measurement point, an illuminator 14 that similarly illuminates a measurement point of the measurement target 1 with a normal light, and a plane orthogonal to the longitudinal axis direction of the measurement target 1. A plurality of one-dimensional line sensors (for example, ones composed of CCD) arranged 15
And are arranged. Of course, each of these line sensors 15
Is provided with a lens for image formation (not shown).

【0011】そして、上記測定対象物1のエッジ位置か
らの照射反射光を検出する所定のラインセンサ15およ
び測定対象物1表面の測定箇所からのシート状のレーザ
反射光を検出する他のラインセンサ15からの各検出信
号を入力して、各測定箇所すなわち測定点の各ラインセ
ンサ15の前方に配置されたレンズの光軸に対する各反
射光の見込み角度を求めるとともに、上記ラインセンサ
15およびレーザ照射器13の位置並びにレーザ照射器
13からのレーザ光の照射角度に基づき、測定対象物1
の測定箇所すなわち測定点の位置座標を求める演算装置
(図示せず)が具備されている。
Then, a predetermined line sensor 15 for detecting the irradiation reflected light from the edge position of the measuring object 1 and another line sensor for detecting the sheet-like laser reflected light from the measuring point on the surface of the measuring object 1 are detected. Each detection signal from 15 is input to obtain an estimated angle of each reflected light with respect to the optical axis of the lens arranged in front of each line sensor 15 at each measurement point, that is, the measurement point, and the line sensor 15 and the laser irradiation. The object to be measured 1 based on the position of the device 13 and the irradiation angle of the laser light from the laser irradiation device 13.
An arithmetic unit (not shown) for obtaining the measurement position, that is, the position coordinates of the measurement point is provided.

【0012】次に、上記構成により、測定対象物1とし
て、例えばH形鋼の所定箇所の位置を検出する方法につ
いて説明する。なお、本説明では、H形鋼1の表面寸法
を測定する場合、図2に示すように、測定点が8箇所
(〜)である場合について説明する。
Next, a method of detecting the position of a predetermined portion of, for example, H-section steel as the measuring object 1 with the above-mentioned configuration will be described. In addition, in this description, when measuring the surface dimension of the H-section steel 1, as shown in FIG. 2, the case where there are eight measurement points (-) will be described.

【0013】この場合、H形鋼1の形状が左右対称であ
るため、例えば左側の4箇所(,,,)を測定
する場合を、図3に基づき説明する。まず、通常のライ
トを照らす照明器14(図1参照)を少し離れて配置
し、H形鋼1のウエブ2の表面の測定すべき2箇所に、
それぞれH形鋼1の長手軸心に沿うシート状のレーザ光
を照射する第1および第2レーザ照射器13A,13B
を、ウエブ2の表面に対して所定角度でもって傾斜する
ように配置する。勿論、この両レーザ照射器13A,1
3Bから照射されるレーザ光が、所定の測定点,に
照射されるように配置される。さらに、長手軸心に直交
する面内に、第1〜第3ラインセンサ15A,15B,
15Cを配置するとともに、第1ラインセンサ15Aに
おけるレンズの光軸(ラインセンサ側光軸)aがウエブ
2の表面に垂直となるように配置し、第2および第3ラ
インセンサ15B,15Cを、それぞれのレンズの光軸
(ラインセンサ側光軸)b,cが第1ラインセンサ15
Aの上下位置でかつ第1ラインセンサ15Aの光軸aに
対して所定の角度β,γでもって傾斜するように配置す
る。また、上述した両レーザ照射器13A,13Bの上
記第1ラインセンサ15Aの光軸aと平行な直線に対す
る傾斜角度をαとする。
In this case, since the shape of the H-shaped steel 1 is bilaterally symmetric, a case of measuring, for example, four places (,,,) on the left side will be described with reference to FIG. First, an illuminator 14 for illuminating a normal light (see FIG. 1) is arranged at a distance, and two positions to be measured on the surface of the web 2 of the H-section steel 1 are measured.
First and second laser irradiators 13A and 13B for irradiating sheet-like laser light along the longitudinal axis of the H-shaped steel 1 respectively
Are arranged so as to be inclined at a predetermined angle with respect to the surface of the web 2. Of course, both laser irradiators 13A, 1
The laser beam emitted from 3B is arranged so as to be emitted to a predetermined measurement point. Further, in the plane orthogonal to the longitudinal axis, the first to third line sensors 15A, 15B,
15C is arranged, and the optical axis (optical axis on the line sensor side) a of the lens in the first line sensor 15A is arranged to be perpendicular to the surface of the web 2, and the second and third line sensors 15B and 15C are The optical axes (optical axes on the line sensor side) b and c of the respective lenses are the first line sensor 15
It is arranged at the upper and lower positions of A and inclined with predetermined angles β and γ with respect to the optical axis a of the first line sensor 15A. Further, the inclination angle of both the laser irradiators 13A and 13B with respect to the straight line parallel to the optical axis a of the first line sensor 15A is α.

【0014】なお、図3に示すように、第1および第2
レーザ照射器13A,13Bの座標位置を、(XP ,Y
P ),(XQ ,YQ )とし、第1〜第3ラインセンサ1
5A〜15Cのレンズの座標位置を、(XA ,YA ),
(XB ,YB ),(XC ,Y C )とし、またH形鋼1に
おける測定点,,,の各座標を、(X1 ,Y
1 ),(X2 ,Y2 ),(X5 ,Y5 ),(X6 ,Y
6 )とする。
Incidentally, as shown in FIG. 3, the first and second
Set the coordinate positions of the laser irradiators 13A and 13B to (XP , Y
P ), (XQ , YQ ) And the 1st-3rd line sensor 1
Set the coordinate position of the lens of 5A to 15C to (XA , YA ),
(XB , YB ), (XC , Y C ), And for H-section steel 1
The coordinates of the measurement points in the1 , Y
1 ), (X2 , Y2 ), (XFive , YFive ), (X6 , Y
6 ).

【0015】そして、第1ラインセンサ15Aにより、
H形鋼1のフランジ3の先端エッジ位置,および測
定点,に対する各見込み角度(θA1),(θA2),
(θ A5),(θA6)をそれぞれ検出する。
Then, by the first line sensor 15A,
Position of tip edge of flange 3 of H-section steel 1 and measurement
Each prospective angle (θA1), (ΘA2),
A5), (ΘA6) Are detected respectively.

【0016】次に、同様にして、第2および第3ライン
センサ15B,15Cにより、フランジ3の先端エッジ
位置,の見込み角度(θB1),(θC2)を検出す
る。そして、上記のように、それぞれ検出された各見込
み角度が演算装置に入力されるとともに、予め入力され
た各ラインセンサ15のレンズの位置座標および各レー
ザ照射器13の位置座標並びに各レーザ照射器13A,
13Bの第1ラインセンサ15Aの光軸aに対する傾斜
角度に基づき、測定箇所であるエッジ位置,および
測定点,の位置座標が演算により求められる。
Next, similarly, the second and third line sensors 15B and 15C detect the expected angles (θ B1 ) and (θ C2 ) of the tip edge position of the flange 3. Then, as described above, the respective prospective angles respectively detected are input to the arithmetic device, and the position coordinates of the lens of each line sensor 15 and the position coordinates of each laser irradiator 13 and each laser irradiator which are input in advance are input. 13A,
Based on the inclination angle of the first line sensor 15A of 13B with respect to the optical axis a, the position coordinates of the edge position, which is the measurement location, and the measurement point are calculated.

【0017】例えば、測定点の位置座標は、下記の
(1) および(2) 式により求められる。
For example, the position coordinates of measurement points are as follows.
It is calculated by Eqs. (1) and (2).

【0018】[0018]

【数1】 [Equation 1]

【0019】また、測定点の位置座標は、下記の(3)
および(4) 式により求められる。
Further, the position coordinates of the measurement points are as shown in (3) below.
And it is calculated by the equation (4).

【0020】[0020]

【数2】 [Equation 2]

【0021】残りの他の測定点,,,,,
についても、上記と同様の方法で求めることができる。
なお、本実施例の説明では、測定点,,,につ
いては、レーザ光が乱反射することを前提としている
が、正反射する場合でも、例えば図3におけるレーザ照
射器13Aから照射されるレーザ光に対して、第1ライ
ンセンサ15Bを、その正反射方向に配置しておくこと
により、測定点の位置を求めることができる。
The other measurement points remaining ...
Can also be calculated by the same method as above.
In the description of the present embodiment, it is assumed that the laser light diffusely reflects at the measurement points ,,, but even when the light is specularly reflected, the laser light emitted from the laser irradiator 13A in FIG. On the other hand, by arranging the first line sensor 15B in the regular reflection direction, the position of the measurement point can be obtained.

【0022】[0022]

【発明の効果】以上のように本発明の構成によると、測
定対象物の外形寸法を測定するのに、照明器、レーザ照
射器から照射されたその反射光を、ラインセンサにより
検出して、所定の測定箇所の位置座標を求めるようにし
ているので、従来のように、二次元センサを使用する場
合に比べて、データの処理速度が向上するとともに、測
定精度も向上する。
As described above, according to the configuration of the present invention, in measuring the outer dimension of the object to be measured, the reflected light emitted from the illuminator and the laser irradiator is detected by the line sensor, Since the position coordinates of a predetermined measurement point are obtained, the data processing speed is improved and the measurement accuracy is improved as compared with the case where a two-dimensional sensor is used as in the conventional case.

【0023】測定に際して、シート状のレーザ光線の拡
がり方向とラインセンサの検出方向とが直交するように
しているので、検出されるデータは、必要最小限とな
り、したがって測定効率が向上する。
At the time of measurement, since the divergence direction of the sheet-like laser beam and the detection direction of the line sensor are orthogonal to each other, the detected data becomes the minimum necessary, and therefore the measurement efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における部材寸法測定装置の
概略構成を示す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of a member dimension measuring device according to an embodiment of the present invention.

【図2】同実施例における測定対象物の測定箇所を示す
断面図である。
FIG. 2 is a cross-sectional view showing measurement points of a measurement object in the same example.

【図3】同実施例における部材寸法測定方法を説明する
図である。
FIG. 3 is a diagram illustrating a member dimension measuring method in the example.

【図4】従来例における部材の寸法測定方法を説明する
概略斜視図である。
FIG. 4 is a schematic perspective view illustrating a dimension measuring method of a member in a conventional example.

【符号の説明】[Explanation of symbols]

1 測定対象物(H形鋼) 11 移動台車 13 レーザ照射器 14 照明器 15 ラインセンサ 1 Object to be Measured (H-Shaped Steel) 11 Moving Carriage 13 Laser Irradiator 14 Illuminator 15 Line Sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 晴彦 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 堅多 達也 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Haruhiko Yoshida Inventor Haruhiko Yoshida 5-3-8 Nishikujo, Konohana-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. 3-28, Hitachi Shipbuilding Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定対象物を載置するとともに所定方向に
移動させる移動台車と、この移動台車の移動方向と直交
する平面内にラインセンサを複数個配置し、測定対象物
の測定箇所に対応する位置に、上記移動台車の移動方向
に沿ってシート状に拡がるレーザ光を上記測定箇所に照
射するレーザ照射器および上記測定箇所を照らす照明器
を設け、かつ上記測定対象物のエッジ位置からの照射反
射光を検出する上記所定のラインセンサおよび上記測定
対象物表面の測定箇所からのシート状レーザ反射光を検
出する他のラインセンサからの各検出信号を入力して、
各測定箇所における各ラインセンサ側の光軸に対する反
射光の見込み角度を求めるとともに、上記各ラインセン
サおよび各レーザ照射器の位置並びに各レーザ照射器か
らのレーザ光の照射角度に基づき、測定対象物の測定箇
所の位置座標を求める演算装置を具備したことを特徴と
する部材寸法測定装置。
1. A mobile trolley for placing an object to be measured and moving it in a predetermined direction, and a plurality of line sensors arranged in a plane orthogonal to the moving direction of the mobile trolley to correspond to the measurement point of the object to be measured. At the position to be provided, a laser irradiator that irradiates the measurement point with a laser beam that spreads in a sheet shape along the moving direction of the moving carriage and an illuminator that illuminates the measurement point, and from the edge position of the measurement object Input each detection signal from the other line sensor that detects the sheet-shaped laser reflected light from the measurement point of the predetermined line sensor and the measurement target surface that detects the irradiation reflected light,
The object to be measured is obtained based on the position of each line sensor and each laser irradiator and the irradiation angle of the laser light from each laser irradiator while obtaining the expected angle of the reflected light with respect to the optical axis of each line sensor at each measurement location. 2. A member dimension measuring device, comprising: an arithmetic device for obtaining the position coordinates of the measurement point of.
JP29373393A 1993-11-25 1993-11-25 Part-dimension measuring device Pending JPH07146118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29373393A JPH07146118A (en) 1993-11-25 1993-11-25 Part-dimension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29373393A JPH07146118A (en) 1993-11-25 1993-11-25 Part-dimension measuring device

Publications (1)

Publication Number Publication Date
JPH07146118A true JPH07146118A (en) 1995-06-06

Family

ID=17798543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29373393A Pending JPH07146118A (en) 1993-11-25 1993-11-25 Part-dimension measuring device

Country Status (1)

Country Link
JP (1) JPH07146118A (en)

Similar Documents

Publication Publication Date Title
JP4604774B2 (en) Calibration method for 3D measurement
JP2002139304A (en) Distance measuring device and distance measuring method
EP0483362B1 (en) System for measuring length of sheet
JPH02114156A (en) Inspection device of mounted substrate
JP2001148025A5 (en)
EP0871008B1 (en) Device for measuring the dimensions of an object that is very extensive longitudinally and whose cross section has a curved contour
WO1999012022A1 (en) Apparatus and method for determining the optical distortion of a transparent substrate
JP3324809B2 (en) Measurement point indicator for 3D measurement
JPH07146118A (en) Part-dimension measuring device
JPS6298204A (en) Recognizing method for object
JPH10185514A (en) Coil position detector
JP3111869B2 (en) Two-dimensional position and orientation measurement method and apparatus
JP2861800B2 (en) Shape measuring device
JP2006258760A (en) Displacement measuring system and displacement measuring method for long object
KR100966814B1 (en) A Surface Defect Detection and Surface Shape Recognition Equipment
JPH01227910A (en) Optical inspection device
JP3235325B2 (en) Product inspection equipment by image processing
JPH10185515A (en) Coil position detector
JPS5811804A (en) Method and device for measuring screw shape
JP3105899B2 (en) Laser optical system equipment
JPH0310110A (en) Method and apparatus for measuring height
JP3201297B2 (en) Coil position detection device
JPH10185519A (en) Coil locator
JP2001194116A (en) Height measuring apparatus
JP5529829B2 (en) Height measuring device and height measuring method