JPH07146003A - Gas combustion device - Google Patents

Gas combustion device

Info

Publication number
JPH07146003A
JPH07146003A JP5290866A JP29086693A JPH07146003A JP H07146003 A JPH07146003 A JP H07146003A JP 5290866 A JP5290866 A JP 5290866A JP 29086693 A JP29086693 A JP 29086693A JP H07146003 A JPH07146003 A JP H07146003A
Authority
JP
Japan
Prior art keywords
sub
heat exchange
water pipe
combustion exhaust
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5290866A
Other languages
Japanese (ja)
Other versions
JP2668645B2 (en
Inventor
Masaaki Nakaura
雅昭 中浦
Kazuo Yagi
和男 八木
Koji Yano
宏治 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP5290866A priority Critical patent/JP2668645B2/en
Publication of JPH07146003A publication Critical patent/JPH07146003A/en
Application granted granted Critical
Publication of JP2668645B2 publication Critical patent/JP2668645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

PURPOSE:To allow combustion exhaust air in proportion to the level of condensation rate to flow in and condense the combustion exhaust air with high efficiency and enhance heat absorption efficiency of latent heat by lowering the flow rate of combustion exhaust air from the upstream side to the downstream side at a sub-heat exchanger unit which absorbs the latent heat of the combustion air. CONSTITUTION:A gas burner, a main heat exchanger unit and a sub-heat exchanger unit 1b are installed in order inside a drum body 6. As the gas burner is burnt, heated water flows in from the sub-heat exchanger and flows out to the main heat exchanger, the sensible heat of combustion air is absorbed at the main heat exchanger during this operation. The latent heat of combustion exhaust air is absorbed at the sub-heat exchanger unit 1b. Under the construction described above, a distribution plate 5 is installed to the downstream side of the main exchanger unit so as to set a flow rate of combustion exhaust air to the sub-heat exchanger unit 1b. More specifically, a large number of penetration holes 50 are installed in a required density distribution so as to drop the flow rate of combustion exhaust air to be supplied to each of water flow lines (a) to (c) to the sub-heat exchanger unit 1b step by step or continuously from the upstream side to the downstream side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス燃焼装置、特に、
ガスバーナの燃焼排気中の水蒸気を凝縮させ、その潜熱
を熱交換部に吸熱させることによって熱効率の向上を図
る形式のガス燃焼装置に関するものである。
FIELD OF THE INVENTION The present invention relates to a gas combustion device, in particular
The present invention relates to a gas combustion apparatus of a type that condenses water vapor in combustion exhaust gas of a gas burner and absorbs latent heat of the water vapor in a heat exchange section to improve thermal efficiency.

【0002】[0002]

【従来技術及びその課題】前記形式のガス燃焼装置とし
て、図15に示すように、ガスバーナ(3) と二段式の熱
交換器(1) とが組み合わされたものがある。前記熱交換
器(1) は、通水管(11)とその外周に設けられた多数のフ
ィン(12)(12)とこれらを収容する缶体(6) とから構成さ
れており、該熱交換器(1) は通水管(11)の下流側の主熱
交換部(1a)とその下方に配設された通水管(11)の上流側
の副熱交換部(1b)とに区分される。前記主熱交換部(1a)
側の通水管(11)は、該部分における通水管(11)を蛇行さ
せることにより該通水管(11)が三段構成となるように形
成されており、更にその各段は該通水管(11)が横二列若
しくは三列に蛇行状に曲成された状態になっている。そ
して、副熱交換部(1b)側の通水管(11)は、横三列に蛇行
状に曲成された構成としている。
2. Description of the Related Art As a gas combustor of the type described above, there is one in which a gas burner (3) and a two-stage heat exchanger (1) are combined, as shown in FIG. The heat exchanger (1) is composed of a water pipe (11), a large number of fins (12) (12) provided on the outer periphery of the water pipe (11), and a can body (6) accommodating them. The vessel (1) is divided into a main heat exchange part (1a) on the downstream side of the water pipe (11) and an auxiliary heat exchange part (1b) on the upstream side of the water pipe (11) arranged below it. . The main heat exchange section (1a)
The water passage pipe (11) on the side is formed so that the water passage pipe (11) in the portion is meandered so that the water passage pipe (11) has a three-stage configuration. 11) is in a state of meandering in two or three rows. The water pipe (11) on the side of the sub heat exchange section (1b) is formed in a meandering shape in three horizontal rows.

【0003】前記ガスバーナ(3) の炎孔部は下向きに設
定され、その炎形成域近傍に前記主熱交換部(1a)が位置
するように配設されている。そして、前記ガスバーナ
(3) はファン(4) によって強制的に燃焼用空気が押し込
み供給されるようになっており、これにより、ガスバー
ナの燃焼排気は主・副熱交換部(1a)(1b)を通過した後、
これの下方の排気通路(21)を介して外部に排出されるよ
うになっている。
The flame hole portion of the gas burner (3) is set downward, and the main heat exchange portion (1a) is arranged near the flame forming region. And the gas burner
In (3), the combustion air is forced to be supplied by the fan (4), so that the combustion exhaust of the gas burner passes through the main and auxiliary heat exchange sections (1a) and (1b). ,
It is adapted to be discharged to the outside through an exhaust passage (21) below this.

【0004】このものでは、ガスバーナ(3) を燃焼させ
て副熱交換部(1b)の通水管(11)の上流端から水道水を供
給すると、ガスバーナ(3) の燃焼排気が、ファン(4) に
よって主熱交換部(1a)及び副熱交換部(1b)に供給されて
その熱がこれら熱交換部の通水に吸熱され、主熱交換部
(1a)における通水管(11)の下流端から湯となって外部に
取り出されるが、前記吸熱作用の中で、主熱交換部(1a)
では、主としてガスバーナ(3) の燃焼排気の顕熱を吸熱
する作用が行われており、副熱交換部(1b)では、主とし
て、ガスバーナ(3) の燃焼排気中の水蒸気を凝縮させて
その潜熱を吸熱する作用が行われる。即ち、副熱交換部
(1b)では、主熱交換部(1a)で顕熱が奪われて冷却された
燃焼排気をその露点温度以下に冷却させることによって
ドレンを発生させ、そのときの潜熱を副熱交換部(1b)の
通水管(11)内の通水に吸熱させているのである。このも
のでは、燃焼排気中の顕熱だけでなく潜熱をも積極的に
熱交換部に吸収させるので、熱効率が向上するという利
点がある。
In this case, when the gas burner (3) is burned and tap water is supplied from the upstream end of the water pipe (11) of the sub heat exchange section (1b), the combustion exhaust of the gas burner (3) is changed to the fan (4). ) Supplies the heat to the main heat exchange section (1a) and the sub heat exchange section (1b), and the heat is absorbed by the water passing through these heat exchange sections.
From the downstream end of the water pipe (11) in (1a) is taken out as hot water, but in the endothermic action, the main heat exchange part (1a)
The main function is to absorb the sensible heat of the combustion exhaust of the gas burner (3), and in the auxiliary heat exchange section (1b), the steam in the combustion exhaust of the gas burner (3) is mainly condensed to generate its latent heat. The action of absorbing heat is performed. That is, the sub heat exchange section
In (1b), the sensible heat is taken away in the main heat exchange section (1a) to cool the combustion exhaust gas cooled below its dew-point temperature to generate drainage, and the latent heat at that time is generated to the sub-heat exchange section (1b). The water inside the water pipe (11) is made to absorb heat. In this case, not only the sensible heat in the combustion exhaust gas but also the latent heat is positively absorbed in the heat exchange section, so that there is an advantage that the thermal efficiency is improved.

【0005】しかしながら、このものでは、熱効率を未
だ十分に向上させることができない。ガスバーナ(3) か
らの燃焼排気の顕熱は主熱交換部(1a)で奪われているこ
とから、副熱交換部(1b)に達したときの排気温度は前記
主熱交換部(1a)のそれよりも低い。また、副熱交換部(1
b)側の通水管(11)から給水されることから、該通水管(1
1)は、上流側に位置する部分がその下流側に位置する部
分より低温状態になっている。これらのことから、通水
管(11)の上流側では、燃焼排気が露点以下に冷却される
効率(凝縮率)が最も高い。ところが、このものでは、
ファン(4) によって供給されるガスバーナ(3) の燃焼排
気の流量分布が、副熱交換部(1b)における通水管(11)の
走行域全体にわたってほぼ均等である。つまり、凝縮率
が最も高い通水管(11)の上流端近傍やこれよりも凝縮率
の低いその下流側に対して、ほぼ均しい流量の燃焼排気
が送り込まれるのである。このことから、効率的に燃焼
排気を凝縮させて潜熱を吸収することができず、そのた
めに、熱効率を十分に向上させることができないのであ
る。
However, this one cannot sufficiently improve the thermal efficiency. Since the sensible heat of the combustion exhaust gas from the gas burner (3) is taken by the main heat exchange section (1a), the exhaust temperature when it reaches the sub heat exchange section (1b) is the main heat exchange section (1a). Lower than that. In addition, the sub heat exchange part (1
Since water is supplied from the water pipe (11) on the b) side, the water pipe (1)
In 1), the part located upstream is at a lower temperature than the part located downstream. For these reasons, the efficiency (condensation rate) of cooling the combustion exhaust below the dew point is highest on the upstream side of the water pipe (11). However, with this one,
The flow distribution of the combustion exhaust gas of the gas burner (3) supplied by the fan (4) is substantially uniform over the entire traveling range of the water pipe (11) in the sub heat exchange section (1b). That is, the combustion exhaust gas having a substantially uniform flow rate is sent to the vicinity of the upstream end of the water pipe (11) having the highest condensation rate and its downstream side having a lower condensation rate than this. For this reason, it is not possible to efficiently condense the combustion exhaust gas and absorb the latent heat, and therefore the thermal efficiency cannot be sufficiently improved.

【0006】尚、図16に示すように、ガスバーナ(3)
の上方に主熱交換部(1a)が配設されると共に該主熱交換
部(1a)の上方に副熱交換部(1b)が配設される形式のもの
でも、該副熱交換部(1b)で燃焼排気を凝縮させる場合に
は、上記と同様の不都合が発生する。本発明は、このよ
うな、『主熱交換部(1a)と、これに対してガスバーナ
(3) からの排気流の下流側に設けた副熱交換部(1b)とを
缶体(6) 内に並設し、これら熱交換部を挿通する通水管
内の被加熱水は、副熱交換部(1b)側に流入して主熱交換
部(1a)側から取り出される構成とし、前記主熱交換部(1
a)で燃焼排気の顕熱を吸収し副熱交換部(1b)でこれに接
触する燃焼排気から潜熱を吸収するようにしたガス燃焼
装置』において、熱効率を向上させることをその課題と
する。
As shown in FIG. 16, the gas burner (3)
Even in the type in which the main heat exchange section (1a) is arranged above and the sub heat exchange section (1b) is arranged above the main heat exchange section (1a), When the combustion exhaust gas is condensed in 1b), the same inconvenience as described above occurs. The present invention is such a "main heat exchange section (1a) and a gas burner
The sub-heat exchange section (1b) provided on the downstream side of the exhaust flow from (3) is installed side by side in the can body (6), and the heated water in the water pipe that passes through these heat exchange sections is The main heat exchange part (1b) is introduced into the main heat exchange part (1a) side, and the main heat exchange part (1
It is an object of the present invention to improve the thermal efficiency of a gas combustion apparatus in which the sensible heat of the combustion exhaust gas is absorbed in a) and the latent heat is absorbed from the combustion exhaust gas in contact with the sensible heat of the auxiliary heat exchange section (1b).

【0007】[0007]

【技術的手段】上記課題を解決するために講じた本発明
の技術的手段は、『燃焼排気の副熱交換部(1b)への流量
分布を設定する為の流量分布設定板を主熱交換部(1a)の
下流側に設け、副熱交換部(1b)の通水管の上流側部分か
ら下流側部分にかけて段階的又は連続的に排気流量を低
下させた』ことである。
[Technical Means] The technical means of the present invention taken to solve the above-mentioned problem is that "a main flow of a flow rate distribution setting plate for setting a flow rate distribution of combustion exhaust gas to the auxiliary heat exchange section (1b) is exchanged. It is provided on the downstream side of the portion (1a), and the exhaust gas flow rate is reduced stepwise or continuously from the upstream side portion to the downstream side portion of the water pipe of the auxiliary heat exchange portion (1b). "

【0008】[0008]

【作用】本発明の上記技術的手段は、次のように作用す
る。ガスバーナ(3) を燃焼させて副熱交換部(1b)側の通
水管から被加熱水を供給すると、主熱交換部(1a)や副熱
交換部(1b)内の通水は、ガスバーナ(3) の発生熱量を吸
熱するが、この吸熱作用の中で、主熱交換部(1a)では燃
焼排気の顕熱が吸熱され、副熱交換部(1b)では、ガスバ
ーナ(3) の燃焼排気が凝縮されてその潜熱が吸熱され
る。
The above technical means of the present invention operates as follows. When the gas burner (3) is burned and the heated water is supplied from the water pipe on the side of the sub heat exchange section (1b), the water in the main heat exchange section (1a) and the sub heat exchange section (1b) will flow through the gas burner ( It absorbs the amount of heat generated in (3), but in this endothermic action, the sensible heat of combustion exhaust is absorbed in the main heat exchange section (1a) and the sensible heat of the gas burner (3) is absorbed in the auxiliary heat exchange section (1b). Is condensed and its latent heat is absorbed.

【0009】このとき、前記主熱交換部(1a)の下流側に
は、流量分布設定板が設けられており、該流量分布設定
板によって、副熱交換部(1b)の通水管に送り込まれる排
気流量は、該通水管の上流側部分から下流側部分にかけ
て段階的に又は連続的に低下するように設定されてい
る。また、ガスバーナ(3) からの燃焼排気は主熱交換部
(1a)で顕熱が奪われていることから、該燃焼排気が副熱
交換部(1b)に達したときの排気温度は、主熱交換部(1a)
より低い。一方、給水は副熱交換部(1b)における通水管
の上流端から行われ、通水管内の通水は副熱交換部(1b)
側から主熱交換部(1a)側に至る経路で吸熱が行われるこ
とから、通水管温度は、上流端が最も低く、その下流側
に進むにしたがって次第に高くなっている。したがっ
て、燃焼排気が露点以下に冷却される効率(凝縮率)が
通水管の上流端で最も高く、この凝縮率は、該通水管の
下流に進むにしたがって次第に低くなっている。
At this time, a flow rate distribution setting plate is provided on the downstream side of the main heat exchange section (1a), and the flow rate distribution setting plate sends the flow rate distribution plate to the water pipe of the sub heat exchange section (1b). The exhaust gas flow rate is set to decrease stepwise or continuously from the upstream side portion to the downstream side portion of the water pipe. Also, the combustion exhaust from the gas burner (3) is the main heat exchange part.
Since the sensible heat is taken away in (1a), the exhaust temperature when the combustion exhaust reaches the sub heat exchange section (1b) is the main heat exchange section (1a).
Lower. On the other hand, water is supplied from the upstream end of the water pipe in the sub heat exchange part (1b), and the water in the water pipe is sub heat exchange part (1b).
Since heat is absorbed in the path from the side to the main heat exchange section (1a), the temperature of the water pipe is lowest at the upstream end and gradually increases toward the downstream side. Therefore, the efficiency (condensation rate) of cooling the combustion exhaust below the dew point is the highest at the upstream end of the water pipe, and the condensation rate becomes gradually lower as it goes downstream of the water pipe.

【0010】当該副熱交換部(1b)においては、副熱交換
部(1b)の通水管の上流側部分から下流側部分にかけて、
凝縮率の高さに比例した燃焼排気が流入するので、燃焼
排気が効率的に凝縮されてその潜熱が吸熱されることと
なる。
In the sub heat exchange section (1b), from the upstream side to the downstream side of the water pipe of the sub heat exchange section (1b),
Since the combustion exhaust gas that is proportional to the high degree of condensation flows in, the combustion exhaust gas is efficiently condensed and its latent heat is absorbed.

【0011】[0011]

【効果】本発明は、上記構成であるから、次の特有の効
果を有する。副熱交換部(1b)で、燃焼排気が効率的に凝
縮されてその潜熱が吸熱されることから、熱効率が向上
する。
[Effect] The present invention having the above-mentioned structure has the following unique effects. In the sub heat exchange section (1b), the combustion exhaust gas is efficiently condensed and its latent heat is absorbed, so that the thermal efficiency is improved.

【0012】[0012]

【実施例】以下本発明の実施例を図面に従って説明す
る。図1に示す実施例は、F・F(強制給排気)式の給
湯器に本発明を実施したものであり、このものは、給湯
器本体の下部に熱交換器(1) を具備する缶体(6) を設
け、該缶体(6) の上部に多孔燃焼プレート式のガスバー
ナ(3) を具備し且つ上方に給気室(42)を備える給気箱
(7) を配設し、該給気箱(7) の上部にファン(4)を設
け、前記缶体(6) の下方に排気通路(21)を設けたもので
ある。
Embodiments of the present invention will be described below with reference to the drawings. The embodiment shown in FIG. 1 is one in which the present invention is applied to an F · F (forced air supply / exhaust) type water heater, which has a heat exchanger (1) at the bottom of the water heater body. An air supply box provided with a body (6), a gas burner (3) of a porous combustion plate type provided on an upper portion of the can body (6), and an air supply chamber (42) provided above.
(7) is provided, a fan (4) is provided above the air supply box (7), and an exhaust passage (21) is provided below the can body (6).

【0013】通水管(11)やフィン(12)(12)を具備する前
記熱交換器(1) は、主熱交換部(1a)とその下方に配設さ
れた副熱交換部(1b)とから構成されている。この実施例
では、主熱交換部(1a)の通水管の部分を環状のフィン(1
2)(12)を具備する主通水管(11a) とし、同様に、副熱交
換部(1b)の通水管の部分を副通水管(11b) としている。
尚、前記缶体(6) の下方は開放しており、副熱交換部(1
b)に発生するドレンは、該缶体(6) 下方のドレン排出口
(8) から外部に排出される。
The heat exchanger (1) including the water pipe (11) and the fins (12) and (12) is composed of a main heat exchange section (1a) and a sub heat exchange section (1b) arranged below the main heat exchange section (1a). It consists of and. In this embodiment, the main heat exchange part (1a) is provided with a water passage pipe part having an annular fin (1
2) It is a main water pipe (11a) equipped with (12), and similarly, the part of the water pipe of the sub heat exchange part (1b) is the sub water pipe (11b).
The bottom of the can body (6) is open, and the sub heat exchange section (1
The drain generated in b) is the drain outlet below the can body (6).
It is discharged from (8).

【0014】前記主通水管(11a) は、八つの主通水管部
が直列に接続されて上下三段で構成されており、その各
段は二つ若しくは三つの主通水管部から成る。他方の副
通水管(11b) は、三つの副通水管部を直列に接続した一
段構成としている。そして、前記主通水管(11a) 及び副
通水管(11b) の通水経路は、図1の矢印で示すように、
副通水管(11b) の同図の左端の第1副通水管部(a) →中
央の第2副通水管部(b) →右端の第3副通水管部(c) の
経路を経て→主通水管(11a) に達し、この主通水管(11
a) では、同図の下段の左端の第1主通水管部(d) →中
央の第2主通水管部(e) →右端の第3主通水管部(f) →
中段左側の第4主通水管部(g) →右側の第5主通水管部
(h) →上段の左端の第6主通水管部(i) →中央の第7主
通水管部(j) →上段右端の第8主通水管部(k) の経路と
なるように各通水管部が接続されている。
The main water pipe (11a) is composed of eight main water pipe parts connected in series and is composed of three upper and lower stages, each of which consists of two or three main water pipe parts. The other sub-water conduit (11b) has a single-stage structure in which three sub-water conduits are connected in series. The water passages of the main water pipe (11a) and the sub water pipe (11b) are as shown by the arrows in FIG.
The first sub-water pipe (a) at the left end of the sub-water pipe (11b) → the second sub-water pipe (b) at the center → the third sub-water pipe (c) at the right end → Reach the main water pipe (11a),
In a), the first main water pipe part (d) at the left end of the figure → the second main water pipe part (e) at the center → the third main water pipe part (f) at the right end →
4th main water pipe part (g) on the left side of the middle tier → 5th main water pipe part on the right side
(h) → 6th main water pipe section (i) at the left end of the upper stage → 7th main water pipe section (j) at the center → 8th main water pipe section (k) at the right end of the upper stage The water pipe is connected.

【0015】前記主熱交換部(1a)と副熱交換部(1b)との
間には、流量分布設定板としての分布板(5) を介在させ
ている。該分布板(5) には、図2に示すように、多数の
透孔(50)(50)が穿設されており、該透孔(50)(50)の配設
密度は、第1副通水管部(a)に対応する部分が最も大き
く、これに続いて、第2副通水管部(b) に対応する部分
から第3副通水管部(c) に対応する部分にかけて、順次
小さくなるように設定されている。即ち、ファン(4) に
よって第1〜第3副通水管部(a)(b)(c) に送り込まれる
ガスバーナ(3) で生成された燃焼排気の流量は、図3に
示す如く第1副通水管部(a) →第2副通水管部(b) →第
3副通水管部(c) の順に次第に少なくなるように設定さ
れているのである。
A distribution plate (5) as a flow rate distribution setting plate is interposed between the main heat exchange part (1a) and the sub heat exchange part (1b). As shown in FIG. 2, the distribution plate (5) is provided with a large number of through holes (50) (50), and the arrangement density of the through holes (50) (50) is the first. The part corresponding to the sub water passage part (a) is the largest, and subsequently, from the part corresponding to the second sub water passage part (b) to the part corresponding to the third sub water passage part (c), in order. It is set to be small. That is, the flow rate of the combustion exhaust gas generated by the gas burner (3) fed into the first to third auxiliary water pipe sections (a) (b) (c) by the fan (4) is as shown in FIG. The water flow pipe section (a) → the second sub water flow pipe section (b) → the third sub water flow pipe section (c) are set to decrease in order.

【0016】したがって、ガスバーナ(3) を燃焼させ
て、第1副通水管部(a) から水道水を供給すると、主熱
交換部(1a)の主通水管(11a) や副熱交換部(1b)の副通水
管(11b) 内の通水は、ガスバーナ(3) の発生熱量をフィ
ン(12)(12)等から吸収して、第8主通水管部(k) から湯
となって外部に取り出され、熱交換器(1) を通過後の燃
焼排気は、排気通路(21)を介して排気口(2) から外部に
排出される。このときの吸熱作用の中で、ガスバーナ
(3) の燃焼排気の顕熱を吸熱する作用は、主に、主熱交
換部(1a)で行われており、副熱交換部(1b)では、主とし
て、ガスバーナ(3)の燃焼排気を凝縮させてその潜熱を
吸熱する作用が行われる。即ち、副熱交換部(1b)では、
主として、顕熱が奪われて冷却された燃焼排気をその露
点温度以下に冷却させることによってドレンを発生さ
せ、そのときの潜熱を副通水管(11b) 内の通水に吸収さ
せているのである。
Therefore, when the gas burner (3) is burnt and tap water is supplied from the first sub water pipe section (a), the main water pipe (11a) and the sub heat exchange section (1a) of the main heat exchange section (1a) The water in the sub water pipe (11b) of 1b) absorbs the heat generated by the gas burner (3) from the fins (12), (12), etc., and becomes hot water from the eighth main water pipe (k). The combustion exhaust gas taken out to the outside and passing through the heat exchanger (1) is exhausted to the outside from the exhaust port (2) through the exhaust passage (21). In the endothermic action at this time, the gas burner
The action of absorbing the sensible heat of the combustion exhaust of (3) is mainly performed in the main heat exchange part (1a), and the auxiliary heat exchange part (1b) mainly removes the combustion exhaust of the gas burner (3). The action of condensing and absorbing the latent heat is performed. That is, in the sub heat exchange section (1b),
Mainly, the sensible heat is taken away and the cooled combustion exhaust gas is cooled below its dew point temperature to generate drainage, and the latent heat at that time is absorbed by the water flow in the sub water passage (11b). .

【0017】ここで、ガスバーナ(3) からの燃焼排気は
主熱交換部(1a)で主に顕熱が奪われていることから、副
熱交換部(1b)に達したときの排気温度は前記主熱交換部
(1a)のそれよりも低い。また、給水は第1副通水管部
(a) から行われ、通水管(11)内の通水は上記した通水経
路内で吸熱が行われることから、副通水管(11b) の温度
は、第1副通水管部(a) →第2副通水管部(b) →第3副
通水管部(c) の順に次第に高くなっている。即ち、第1
副通水管部(a) においては、通水管温度が最も低い状態
なのである。このことから、副熱交換部(1b)における燃
焼排気が露点以下に冷却される効率(凝縮率)は、第1
副通水管 (a)→第2副通水管部(b) →第3副通水管部
(c) の順に次第に低くなっている。一方、副熱交換部(1
b)に流入する燃焼排気の流量は、分布板(5) によって、
第1副通水管部(a) →第2副通水管部(b) →第3副通水
管部(c) の順に次第に少なくなるように設定されてい
る。したがって、各副通水管部には、凝縮率の高さに比
例した燃焼排気が流入するので、当該副熱交換部(1b)に
おいては、燃焼排気中の凝縮成分が確実に凝縮されて潜
熱の吸熱効率の向上が図れる。
Here, since the sensible heat of the combustion exhaust gas from the gas burner (3) is mainly taken by the main heat exchange portion (1a), the exhaust gas temperature when it reaches the sub heat exchange portion (1b) is The main heat exchange section
Lower than that of (1a). In addition, the water supply is the first sub water pipe
Since it is performed from (a) and the water in the water pipe (11) absorbs heat in the water passage described above, the temperature of the sub water pipe (11b) is the first sub water pipe part (a). → The second sub-water conduit (b) → The third sub-water conduit (c) is gradually increasing. That is, the first
In the sub water pipe section (a), the temperature of the water pipe is the lowest. From this, the efficiency (condensation rate) at which the combustion exhaust gas in the sub heat exchange section (1b) is cooled below the dew point is
Sub water conduit (a) → Second sub water conduit (b) → Third sub water conduit
It becomes lower gradually in the order of (c). On the other hand, the sub heat exchange part (1
The flow rate of combustion exhaust flowing into b) is determined by the distribution plate (5).
It is set such that the first sub-water pipe section (a) → the second sub-water pipe section (b) → the third sub-water pipe section (c) decreases in order. Therefore, since the combustion exhaust gas that is proportional to the height of the condensation rate flows into each sub water passage portion, in the sub heat exchange portion (1b), the condensed component in the combustion exhaust gas is surely condensed to reduce the latent heat. The heat absorption efficiency can be improved.

【0018】尚、上記実施例は、以下のように変更が可
能である。 1.上記実施例では、分布板(5) における各副通水管部
に対応する透孔(50)(50)の配設密度を変えることによ
り、副熱交換部(1b)に流入する燃焼排気の流量分布が、
第1副通水管部(a) →第2副通水管部(b) →第3副通水
管部(c) の順に次第に少なくなるように設定したが(図
4参照)、以下のように変更することが可能である(図
5〜図8参照。これらの図において、斜線部分の面積の
大小が燃焼排気流量の分布度合の大小に相当する。)。
The above embodiment can be modified as follows. 1. In the above embodiment, the flow rate of the combustion exhaust flowing into the sub heat exchange section (1b) is changed by changing the arrangement density of the through holes (50) (50) corresponding to each sub water passage section in the distribution plate (5). Distribution is
It was set so that the first sub-water pipe (a) → the second sub-water pipe (b) → the third sub-water pipe (c) became smaller in order (see Fig. 4), but changed as follows: It is possible to do so (see FIGS. 5 to 8. In these figures, the size of the shaded area corresponds to the distribution degree of the combustion exhaust gas flow rate).

【0019】.図5に示すように、第1副通水管部
(a) のみを多く設定し、第2副通水管部(b) ・第3副通
水管部(c) を等しく設定する。 .図6に示すように、第1副通水管部(a) の最上流端
近傍の一定域のみが多くなるように設定する。 .図7に示すように、第1副通水管部(a) から第3副
通水管部(c) の経路において、その上流端近傍を最も多
く設定し、その下流側に進むにしたがって、順次少なく
なるように設定する。尚、上記における第1副通水管
部(a) への排気量分布を図7に示す第1副通水管部(a)
のそれに置き換えてもよい。
.. As shown in FIG. 5, the first auxiliary water pipe section
Only a large number of (a) are set, and the second auxiliary water pipe (b) and the third auxiliary water pipe (c) are set equally. . As shown in FIG. 6, it is set so that only a certain area near the most upstream end of the first auxiliary water pipe section (a) increases. . As shown in Fig. 7, in the route from the first sub-water conduit (a) to the third sub-water conduit (c), the vicinity of the upstream end is set to be the largest, and as it goes downstream, the number decreases gradually. To be set. In addition, the exhaust amount distribution to the first auxiliary water pipe section (a) in the above is shown in FIG.
It may be replaced with that.

【0020】.図8に示すように、各副通水管部にお
いて、上流側近傍の一定域のみが多くなるように設定す
る。かかる場合、各副通水管部の全体の流量分布が、第
1副通水管部(a) →第2副通水管部(b) →第3副通水管
部(c) の順に次第に少なくなるように設定する。いずれ
にせよ、副通水管(11b) 内の通水温度分布との関係にお
いて、ドレンの発生量が最大となるように燃焼排気の流
量分布を設定するのが最も望ましいことは言うまでもな
い。
[0020]. As shown in FIG. 8, in each sub-water passage section, it is set so that only a certain area near the upstream side increases. In such a case, the flow rate distribution of each sub water passage part should be gradually reduced in the order of the first sub water pipe part (a) → the second sub water pipe part (b) → the third sub water pipe part (c). Set to. In any case, it is needless to say that it is most desirable to set the flow rate distribution of the combustion exhaust gas so as to maximize the drain generation amount in relation to the water temperature distribution in the sub water passage (11b).

【0021】2.上記実施例では、副通水管(11b) は、
三つの副通水管部が直列に接続される構成としたが、二
つ以下若しくは四つ以上の副通水管部が直列に接続され
る構成としてもよい。副通水管(11b) が一つの副通水管
部から成る場合には、燃焼排気の流量分布は、上記若
しくはにおける第1副通水管部(a) のように上流端近
傍が多くなるように設定する。また、副通水管(11b) が
二つの副通水管部が直列に接続された場合、又は四つ以
上の副通水管部が直列に接続された場合には、燃焼排気
の流量分布は、当該副通水管部の数量における上記した
〜の設定になるようにする。
2. In the above embodiment, the auxiliary water pipe (11b) is
Although the configuration is such that the three auxiliary water pipe portions are connected in series, the configuration may be such that two or less or four or more auxiliary water pipe portions are connected in series. When the sub-water pipe (11b) consists of one sub-water pipe part, the flow distribution of combustion exhaust is set so that the vicinity of the upstream end is large like the first sub-water pipe part (a) above or in To do. In addition, when the two sub-water pipes (11b) are connected in series with two sub-water pipe parts, or when four or more sub-water pipe parts are connected in series, the flow distribution of combustion exhaust gas is Set the above-mentioned items 1 to 3 in the quantity of sub-water passage parts.

【0022】3.上記実施例では、副通水管(11b) の給
水管としての第1副通水管部(a)を図1の左端とした
が、これ以外の副通水管部が第1副通水管部(a) となる
ように副通水管(11b) を構成してもよい。この場合も燃
焼排気の流量分布は、第1副通水管部(a) →第2副通水
管部(b) →第3副通水管部(c) の順に次第に少なくなる
などの設定をする。
3. In the above-described embodiment, the first sub water passage part (a) as the water supply pipe of the sub water pipe (11b) is the left end of FIG. 1, but the other sub water passage parts are the first sub water pipe part (a). The sub water pipe (11b) may be configured so that Also in this case, the flow distribution of the combustion exhaust gas is set to be gradually reduced in the order of the first auxiliary water pipe section (a) → the second auxiliary water pipe section (b) → the third auxiliary water pipe section (c).

【0023】4.上記実施例では流量分布設定板として
分布板(5) を設けたが、これに替えて、図9に示すよう
に、第3主通水管部(f) の下方から第2副通水管部(b)
の上方にかけて走行する態様の遮蔽板(5a)を設けるよう
にしてもよい。かかる場合、第1副通水管部(a) に集中
的に燃焼排気が送り込まれる。尚、この遮蔽板(5a)に透
孔を具備させて、燃焼排気が該透孔を介して第2副通水
管部(b) や第3副通水管部(c) 側に流入するようにして
もよい。
4. In the above embodiment, the distribution plate (5) was provided as the flow rate distribution setting plate, but instead of this, as shown in FIG. 9, from the lower side of the third main water pipe part (f) to the second sub water pipe part ( b)
You may make it provide the shielding plate (5a) of the aspect which travels over the above. In such a case, the combustion exhaust gas is intensively sent to the first auxiliary water pipe section (a). The shield plate (5a) is provided with a through hole so that the combustion exhaust gas flows into the second sub water passage section (b) and the third sub water passage section (c) through the through hole. May be.

【0024】5.上記実施例では副熱交換部(1b)に対し
て排気流の上流側に分布板(5) を設けたが、図10に示
すように、副熱交換部(1b)の下流側に該分布板(5) を設
けてもよい。 6.上記実施例では、通水管(11)を蛇行状に曲成させて
4段構成となるようにしてその中で、最下段を副熱交換
部(1b)とし他の3段を主熱交換部(1a)としたが、主熱交
換部(1a)の顕熱吸収能力によっては潜熱を吸収する副熱
交換部(1b)の副通水管(11b) は、下から2段・3段等の
複数段となる。この場合、図11若しくは図12に示す
ように、副通水管(11b) の各段における排気流の上流側
若しくは下流側に分布板(5)(5)を設けて、各段における
副通水管(11b) の上流側部分から下流側部分にかけて排
気量を低下させてもよく、或は、図13若しくは図14
に示すように、当該副通水管(11b) における排気流の最
上流側若しくは最下流側に分布板(5) を設けて、複数段
まとめて副通水管(11b) の上流側部分から下流側部分に
かけて排気量を低下させてもよい。
5. In the above embodiment, the distribution plate (5) is provided on the upstream side of the exhaust flow with respect to the sub heat exchange section (1b), but as shown in FIG. 10, the distribution plate (5) is provided on the downstream side of the sub heat exchange section (1b). A plate (5) may be provided. 6. In the above embodiment, the water pipe (11) is bent in a meandering manner to form a four-stage structure, in which the lowermost stage is the sub heat exchange part (1b) and the other three stages are the main heat exchange parts. Although (1a) is adopted, the auxiliary water exchange pipe (11b) of the auxiliary heat exchange part (1b), which absorbs latent heat depending on the sensible heat absorbing capacity of the main heat exchange part (1a), is a two-stage or three-stage structure from the bottom. There are multiple stages. In this case, as shown in FIG. 11 or 12, distribution plates (5) and (5) are provided on the upstream side or the downstream side of the exhaust flow in each stage of the sub-water pipe (11b), and the sub-water pipe in each stage is provided. The exhaust amount may be decreased from the upstream side portion to the downstream side portion of (11b), or the amount of exhaust gas may be reduced from that of FIG.
As shown in Fig. 5, a distribution plate (5) is installed on the most upstream side or the most downstream side of the exhaust flow in the sub water passage pipe (11b), and a plurality of stages are grouped together to form the sub water passage pipe (11b) from the upstream side to the downstream side. The exhaust amount may be reduced to the portion.

【0025】このように、副熱交換部(1b)が複数段に構
成される場合は、下から2段目若しくは3段目等の通水
管(11)から給水してもよい。又、上記実施例の場合も含
めて、湯の取り出しは上から2段目若しくは3段目等か
ら行ってもよい。 7.上記実施例では、ファン(4) を給気通路側に設けた
が、これを排気通路(21)側に設けてもよい。
In this way, when the sub heat exchange section (1b) is constructed in a plurality of stages, water may be supplied from the water pipe (11) at the second or third stage from the bottom. Further, including the case of the above embodiment, the hot water may be taken out from the second or third stage from the top. 7. In the above embodiment, the fan (4) is provided on the air supply passage side, but it may be provided on the exhaust passage (21) side.

【0026】8.上記実施例では、F・F(強制給排
気)式の給湯器に本発明を実施したが、この給湯器以外
にも、加熱された水を循環させる方式の暖房器等のガス
燃焼装置、又は、F・E(強制排気)式の給湯器若しく
は前記方式の暖房器等のガス燃焼装置にも本発明を採用
することは可能である。 9.本発明は、主熱交換部(1a)にて主として顕熱を吸収
し、副熱交換部(1b)にて主として潜熱を吸収する形式の
熱交換器はもちろん、主熱交換部(1a)にて顕熱のみを吸
収し、副熱交換部(1b)にて潜熱のみを吸収する形式のも
のにも採用できる。
8. In the above embodiment, the present invention is applied to the F / F (forced air supply / exhaust) type water heater, but in addition to this water heater, a gas combustion device such as a heater for circulating heated water, or The present invention can also be applied to a gas combustion device such as a FE (forced exhaust) type water heater or a heater of the above type. 9. The present invention mainly absorbs sensible heat in the main heat exchange section (1a), and a heat exchanger of the type that mainly absorbs latent heat in the auxiliary heat exchange section (1b), as well as the main heat exchange section (1a). It is also possible to adopt a type in which only the sensible heat is absorbed and only the latent heat is absorbed in the sub heat exchange section (1b).

【0027】10.分布板(5) は図12に示すように各
副通水管部毎に設けてもよい。 11.副熱交換部(1b)が副通水管(11b) 群を上下に並設
する場合、上方の副通水管(11b) 群と下方のそれとの間
にのみ分布板(5) を介在させるようにしてもよい。
10. The distribution plate (5) may be provided for each sub water passage section as shown in FIG. 11. When the sub heat exchange section (1b) has the sub water passage pipes (11b) group arranged side by side, the distribution plate (5) should be interposed only between the upper sub water passage pipes (11b) group and the lower one. May be.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】分布板(5) の説明図[Fig. 2] Illustration of distribution plate (5)

【図3】第1実施例における燃焼排気の流量分布を表し
た副通水管(11b) の断面図
FIG. 3 is a cross-sectional view of a sub water pipe (11b) showing a flow distribution of combustion exhaust gas in the first embodiment.

【図4】第1実施例における燃焼排気の流量分布を表し
た副通水管(11b) の平面図
FIG. 4 is a plan view of an auxiliary water pipe (11b) showing a flow distribution of combustion exhaust gas in the first embodiment.

【図5】第2実施例における燃焼排気の流量分布を表し
た副通水管(11b) の平面図
FIG. 5 is a plan view of a sub water pipe (11b) showing a flow distribution of combustion exhaust gas in the second embodiment.

【図6】第3実施例における燃焼排気の流量分布を表し
た副通水管(11b) の平面図
FIG. 6 is a plan view of an auxiliary water pipe (11b) showing a flow distribution of combustion exhaust gas in a third embodiment.

【図7】第4実施例における燃焼排気の流量分布を表し
た副通水管(11b) の平面図
FIG. 7 is a plan view of an auxiliary water pipe (11b) showing a flow distribution of combustion exhaust gas in a fourth embodiment.

【図8】第5実施例における燃焼排気の流量分布を表し
た副通水管(11b) の平面図
FIG. 8 is a plan view of an auxiliary water pipe (11b) showing a flow distribution of combustion exhaust gas in a fifth embodiment.

【図9】遮蔽板(5a)の説明図FIG. 9 is an explanatory diagram of a shield plate (5a)

【図10】副熱交換部(1b)に対して排気流の下流側に分
布板(5) を設けた状態の説明図
FIG. 10 is an explanatory view showing a state where a distribution plate (5) is provided on the downstream side of the exhaust flow with respect to the sub heat exchange section (1b).

【図11】副通水管(11b) が複数段で構成される場合に
各副通水管部に対して排気流の上流側に分布板(5) を設
けた状態の説明図
FIG. 11 is an explanatory view of a state where the distribution plate (5) is provided on the upstream side of the exhaust flow with respect to each sub-water pipe section when the sub-water pipe (11b) is composed of a plurality of stages.

【図12】副通水管(11b) が複数段で構成される場合に
各副通水管部に対して排気流の下流側に分布板(5) を設
けた状態の説明図
FIG. 12 is an explanatory view of a state where the distribution plate (5) is provided on the downstream side of the exhaust flow with respect to each sub water passage part when the sub water passage (11b) is configured in multiple stages.

【図13】副通水管(11b) が複数段で構成される場合に
該副通水管(11b) に対して排気流の最上流側に分布板
(5) を設けた状態の説明図
FIG. 13 is a distribution plate on the most upstream side of the exhaust flow with respect to the sub water passage pipe (11b) when the sub water passage pipe (11b) is composed of a plurality of stages.
Explanatory drawing of the state with (5)

【図14】副通水管(11b) が複数段で構成される場合に
該副通水管(11b) に対して排気流の最下流側に分布板
(5) を設けた状態の説明図
FIG. 14 is a distribution plate on the most downstream side of the exhaust flow with respect to the sub water passage pipe (11b) when the sub water passage pipe (11b) is composed of a plurality of stages.
Explanatory drawing of the state with (5)

【図15】従来例の説明図FIG. 15 is an explanatory diagram of a conventional example.

【図16】他の従来例の説明図FIG. 16 is an explanatory diagram of another conventional example.

【符号の説明】[Explanation of symbols]

(1a)・・・主熱交換部 (1b)・・・副熱交換部 (3) ・・・ガスバーナ (6) ・・・缶体 (1a) ・ ・ ・ Main heat exchange part (1b) ・ ・ ・ Sub heat exchange part (3) ・ ・ ・ Gas burner (6) ・ ・ ・ Can body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主熱交換部(1a)と、これに対してガスバ
ーナ(3) からの排気流の下流側に設けた副熱交換部(1b)
とを缶体(6) 内に並設し、これら熱交換部を挿通する通
水管内の被加熱水は、副熱交換部(1b)側に流入して主熱
交換部(1a)側から取り出される構成とし、前記主熱交換
部(1a)で燃焼排気の顕熱を吸収し副熱交換部(1b)でこれ
に接触する燃焼排気から潜熱を吸収するようにしたガス
燃焼装置において、燃焼排気の副熱交換部(1b)への流量
分布を設定する為の流量分布設定板を主熱交換部(1a)の
下流側に設け、副熱交換部(1b)の通水管の上流側部分か
ら下流側部分にかけて段階的又は連続的に排気流量を低
下させたガス燃焼装置。
1. A main heat exchange part (1a) and a sub heat exchange part (1b) provided downstream of the exhaust stream from the gas burner (3).
Are installed side by side in the can body (6), and the water to be heated in the water pipe that passes through these heat exchange parts flows into the sub heat exchange part (1b) side and from the main heat exchange part (1a) side. In the gas combustion device configured to be taken out, the main heat exchange section (1a) absorbs the sensible heat of the combustion exhaust gas and the auxiliary heat exchange section (1b) absorbs the latent heat from the combustion exhaust gas that comes into contact therewith. A flow rate distribution setting plate for setting the flow rate distribution of exhaust gas to the sub heat exchange section (1b) is provided on the downstream side of the main heat exchange section (1a), and the upstream side of the water pipe of the sub heat exchange section (1b). Gas combustion device in which the exhaust flow rate is gradually or continuously reduced from the downstream side to the downstream side.
【請求項2】 流量分布設定板を副熱交換部(1b)の上流
側に設けた請求項1に記載のガス燃焼装置。
2. The gas combustion apparatus according to claim 1, wherein the flow rate distribution setting plate is provided on the upstream side of the sub heat exchange section (1b).
【請求項3】 流量分布設定板を副熱交換部(1b)の下流
側に設けた請求項1に記載のガス燃焼装置。
3. The gas combustion apparatus according to claim 1, wherein the flow rate distribution setting plate is provided on the downstream side of the auxiliary heat exchange section (1b).
JP5290866A 1993-11-19 1993-11-19 Gas combustion equipment Expired - Fee Related JP2668645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5290866A JP2668645B2 (en) 1993-11-19 1993-11-19 Gas combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5290866A JP2668645B2 (en) 1993-11-19 1993-11-19 Gas combustion equipment

Publications (2)

Publication Number Publication Date
JPH07146003A true JPH07146003A (en) 1995-06-06
JP2668645B2 JP2668645B2 (en) 1997-10-27

Family

ID=17761516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5290866A Expired - Fee Related JP2668645B2 (en) 1993-11-19 1993-11-19 Gas combustion equipment

Country Status (1)

Country Link
JP (1) JP2668645B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392593B1 (en) * 2000-06-28 2003-07-23 주식회사 경동보일러 Condensing heat exchanger of Gas Boiler
WO2010096858A1 (en) * 2009-02-13 2010-09-02 Hydox Pty Ltd Fluid heater
JP2015124906A (en) * 2013-12-25 2015-07-06 株式会社ノーリツ Heat exchanger and water heater equipped with the same
KR20170128125A (en) * 2016-05-12 2017-11-22 린나이코리아 주식회사 Combustion device
WO2020021932A1 (en) * 2018-07-27 2020-01-30 株式会社ノーリツ Water heater
JP2020029994A (en) * 2018-08-23 2020-02-27 パーパス株式会社 Heat exchange unit, heat exchange device and hot water supply system
WO2020066386A1 (en) * 2018-09-26 2020-04-02 株式会社ノーリツ Water heating device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392593B1 (en) * 2000-06-28 2003-07-23 주식회사 경동보일러 Condensing heat exchanger of Gas Boiler
WO2010096858A1 (en) * 2009-02-13 2010-09-02 Hydox Pty Ltd Fluid heater
JP2015124906A (en) * 2013-12-25 2015-07-06 株式会社ノーリツ Heat exchanger and water heater equipped with the same
KR20170128125A (en) * 2016-05-12 2017-11-22 린나이코리아 주식회사 Combustion device
WO2020021932A1 (en) * 2018-07-27 2020-01-30 株式会社ノーリツ Water heater
JP2020029994A (en) * 2018-08-23 2020-02-27 パーパス株式会社 Heat exchange unit, heat exchange device and hot water supply system
US20200064020A1 (en) * 2018-08-23 2020-02-27 Purpose Co., Ltd. Heat exchanging unit, heat exchanging apparatus, and hot water supply system
US11739980B2 (en) 2018-08-23 2023-08-29 Purpose Co., Ltd. Heat exchanging unit, heat exchanging apparatus, and hot water supply system
WO2020066386A1 (en) * 2018-09-26 2020-04-02 株式会社ノーリツ Water heating device
JP2020051671A (en) * 2018-09-26 2020-04-02 株式会社ノーリツ Water heater
CN112703354A (en) * 2018-09-26 2021-04-23 株式会社能率 Water heating device
US11441814B2 (en) 2018-09-26 2022-09-13 Noritz Corporation Water heating device

Also Published As

Publication number Publication date
JP2668645B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
EP0085470B1 (en) A condensing boiler
JP2668645B2 (en) Gas combustion equipment
US3194214A (en) Air heater having by-pass to prevent cold-end corrosion
US2970811A (en) Self protecting air heater
JP3805892B2 (en) Hot water boiler
KR0132742B1 (en) Heat exchanger apparatus
US5915468A (en) High-temperature generator
JP4531018B2 (en) Combined heat source
KR100391259B1 (en) Uptrend Combustion Condensing Type Heat Exchanger of Gas Boiler
JP3720614B2 (en) Heat exchanger
KR0164005B1 (en) Gas combustion apparatus
JP2652337B2 (en) Heat exchange equipment
JPH0894284A (en) Vertical condenser
KR100219911B1 (en) Gas combustion apparatus
KR100437667B1 (en) condensing Gas boiler using uptrend combustion type for withdraw latent heat
KR100391895B1 (en) structure of heat exchanger of condensing boiler
JPH07159079A (en) Heat exchanging device
JP2732019B2 (en) Gas combustion equipment
KR20010025427A (en) A body heat exchanger of condensing gas boiler
JP4405652B2 (en) Boiler with horizontal heat absorption fins in the combustion gas passage
KR100391261B1 (en) Uptrend Combustion Condensing Type Heat Exchanger of Gas Boiler
RU2232354C2 (en) Water-heating boiler
KR100199248B1 (en) Gas combination structure
JPH06182134A (en) Carbon dioxide concentrator
KR100391260B1 (en) Uptrend Combustion Condensing Type Heat Exchanger of Gas Boiler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees