JPH07145773A - Noise-wave suppression type distributor and manufacture thereof - Google Patents

Noise-wave suppression type distributor and manufacture thereof

Info

Publication number
JPH07145773A
JPH07145773A JP29481493A JP29481493A JPH07145773A JP H07145773 A JPH07145773 A JP H07145773A JP 29481493 A JP29481493 A JP 29481493A JP 29481493 A JP29481493 A JP 29481493A JP H07145773 A JPH07145773 A JP H07145773A
Authority
JP
Japan
Prior art keywords
discharge
distribution
discharge electrode
electrode
resistance insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29481493A
Other languages
Japanese (ja)
Inventor
Takayuki Sagawa
隆幸 佐川
Isao Hanada
五佐雄 花田
Masahiro Sato
政弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Hitachi Kasei Mold KK
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Kasei Mold KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Kasei Mold KK filed Critical Hitachi Chemical Co Ltd
Priority to JP29481493A priority Critical patent/JPH07145773A/en
Publication of JPH07145773A publication Critical patent/JPH07145773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide an internal combustion engine with a noise wave suppressing type distributor excellent in productivity, low in cost and sufficient for noise wave suppressing effect, and to provide its manufacture. CONSTITUTION:A distributor comprises a distribution element 1 making rotative motion, in which a discharge electrode 4 is exposed without surrounding a discharge face and a high-voltage receiving portion with a high-resistance insulator 9 and plural lateral terminal electrodes 7 opposed to the distribution element with a gap in between. In the manufacture of addictively forming a high resistance insulator 9 in a discharge electrode 4 of the distributor, a discharge electrode 4 formed in specific form is placed in a forming metal mold, with its discharge face and its high-voltage receiving portion being exposed. And then, a high resistance insulator material is poured into the forming metal mold and set. Or otherwise, a discharge electrode 4 is formed in specific form. A high resistance insulator 9 in sheet form, stamped in form of a discharge face and a high voltage receiving portion of a discharge electrode is then disposed in a forming metal mold, so that portions other than the discharge face and the high voltage receiving portion are heat pressure formed integrally so as to surround the high resistance insulator 9, thereby forming a distributor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車用、その他の内燃
機関の点火装置から発生する雑音電波を抑止するための
装置の製造法に関し、特に配電子の放電電極(以下放電
電極とする)と側方端子電極間に発生する放電に起因す
る雑音電波を抑止するための雑音電波抑止型配電器(以
下配電器とする)及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a device for suppressing noise radio waves generated from an ignition device of an internal combustion engine for automobiles, and more particularly to a discharge electrode for distribution (hereinafter referred to as a discharge electrode). The present invention relates to a noise electric wave suppression type distributor (hereinafter referred to as a distributor) for suppressing a noise electric wave caused by a discharge generated between side terminal electrodes, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】雑音電波を抑止するのは火花放電に起因
する雑音電波により自動車の電子制御装置、ラジオ放
送、テレビジョン放送の他、各種無線通信に妨害を与え
ることを防ぐためであり、そのための研究開発が種々行
われており、今後増加する傾向にあることは周知のこと
である。
2. Description of the Related Art Suppressing noise radio waves is intended to prevent noise radio waves caused by spark discharge from interfering with various electronic communications such as automobile electronic control devices, radio broadcasts, television broadcasts, and various wireless communications. It is well known that various kinds of research and development have been carried out and that the number tends to increase in the future.

【0003】配電器の構成及び機能は図3に示すよう
に、配電子1はセンターシャフト2に装着し、センター
カーボン片3と配電子の放電電極4とを接触させる構造
となっている。接触圧力はスプリング5によって得る。
一次高圧電流は、一次高圧配線6、スプリング5及びセ
ンターカーボン片3を介して、配電子の放電電極(以下
放電電極とする)4に充電される。
As shown in FIG. 3, the configuration and the function of the distributor are such that the distributor 1 is mounted on the center shaft 2 and the center carbon piece 3 is brought into contact with the discharge electrode 4 of the distributor. The contact pressure is obtained by the spring 5.
The primary high-voltage current is charged through the primary high-voltage wiring 6, the spring 5 and the center carbon piece 3 into the discharge electrode (hereinafter referred to as the discharge electrode) 4 of the electron distribution.

【0004】配電子1は機関のクランク軸と同期した速
度で回転しており、配電器キャップの側方端子電極7と
放電電極4とが対向したとき、放電電極4と側方端子電
極7間とのギャップの空気を絶縁破壊して火花放電が行
われ、二次高圧配線8を経て機関の点火プラグに電流が
流れ、高電圧が供給される。雑音電波は、この火花放電
時の電圧の立上りの大きさに比例し、その値が小さいほ
ど、雑音電波が小さくなる傾向にあることは周知の通り
である。
The distribution electron 1 is rotating at a speed synchronized with the crankshaft of the engine, and when the side terminal electrode 7 of the distributor cap and the discharge electrode 4 face each other, the discharge electrode 4 and the side terminal electrode 7 are separated from each other. The air in the gap between and is subjected to a dielectric breakdown to cause spark discharge, and a current flows through the secondary high-voltage wiring 8 to the spark plug of the engine to supply a high voltage. It is well known that the noise radio wave is proportional to the rise of the voltage during the spark discharge, and the smaller the value, the smaller the noise radio wave tends to be.

【0005】従来の配電器の例として、配電子詳しくは
放電電極の先端と配電器キャップの側方端子電極間とに
一定量の空隙を設け、かつ放電電極の上下両面に図4に
示す如く厚さが0.3〜0.6mmの薄いマイカ板、セラ
ミック板、耐熱性合成樹脂板等からなる高抵抗絶縁体9
を形成付加して配電子1を形成し、この高抵抗絶縁体9
と放電電極4との間に部分放電を生じせしめることによ
り放電電圧及び放電電流を低下させ、火花放電による雑
音電波の電界強度を低下させ、雑音電波の抑止を行って
いた。
[0005] As an example of a conventional power distribution device, specifically, the distribution of electrons, more specifically, a certain amount of space is provided between the tip of the discharge electrode and the side terminal electrode of the power distribution cap, and the upper and lower surfaces of the discharge electrode are as shown in FIG. High resistance insulator 9 made of thin mica plate, ceramic plate, heat-resistant synthetic resin plate, etc. with a thickness of 0.3-0.6 mm 9
Is formed and added to form the electron distribution 1, and the high resistance insulator 9
The discharge voltage and the discharge current are reduced by causing a partial discharge between the discharge electrode 4 and the discharge electrode 4, and the electric field strength of the noise radio wave due to the spark discharge is reduced to suppress the noise radio wave.

【0006】[0006]

【発明が解決しようとする課題】しかしながら従来の配
電子は、放電電極4の両面に高抵抗絶縁体9を形成付加
するのに接着剤を用いて貼り付ける手段をとっている
が、接着強度のばらつきにより品質が不安定で放電電極
4と高抵抗絶縁体9とが剥離し易い、放電電極4と高抵
抗絶縁体9との放電面に段差ができたり、放電電極4と
高抵抗絶縁体9との間に間隙ができたりして放電電極4
と高抵抗絶縁体9との間の部分放電が十分に行われず十
分な雑音電波抑制効果を得ることができないという問題
点がある。
However, in the conventional electron distribution, the high resistance insulator 9 is formed and attached on both surfaces of the discharge electrode 4 by using an adhesive agent. Due to variations, the quality is unstable and the discharge electrode 4 and the high resistance insulator 9 are easily separated, a step is formed on the discharge surface between the discharge electrode 4 and the high resistance insulator 9, and the discharge electrode 4 and the high resistance insulator 9 are formed. There is a gap between the discharge electrode 4 and
There is a problem that the partial discharge between the high resistance insulator 9 and the high resistance insulator 9 is not sufficiently performed and a sufficient noise radio wave suppressing effect cannot be obtained.

【0007】また放電電極4と高抵抗絶縁体9との接着
強度を上げるため、放電電極4の表面(高抵抗絶縁体9
との接着面)を粗面化する必要性が有り、一般市場品の
金属材料をそのまま使用することができず、金属板の表
面を粗面加工したり、粗面化品を特別注文したりするた
め高価になると共に接着面の管理と接着強さの管理が必
要で生産性が悪く、このため生産性の向上が要求され、
大量にそして安価に製造しなければならない自動車用の
部品としては生産性上問題がある。
In order to increase the adhesive strength between the discharge electrode 4 and the high resistance insulator 9, the surface of the discharge electrode 4 (the high resistance insulator 9
Since it is necessary to roughen the (bonding surface with), it is not possible to use the metal material of the general market product as it is, and the surface of the metal plate is roughened, or the roughened product is specially ordered. Therefore, it becomes expensive and the management of the adhesive surface and the adhesive strength are required, and the productivity is poor. Therefore, it is required to improve the productivity.
There is a problem in terms of productivity as parts for automobiles that must be manufactured in large quantities and at low cost.

【0008】上記の他に放電電極の上面に高抵抗絶縁体
を多数枚重ね合せて、リベットで加締める方法もある
が、この方法においても放電電極と高抵抗絶縁体とにリ
ベットを通す穴を形成したり、放電電極と高抵抗絶縁体
とに隙間が発生し易いなどの問題点がある。
In addition to the above, there is also a method of stacking a number of high resistance insulators on the upper surface of the discharge electrode and crimping them with a rivet. In this method as well, a hole for passing a rivet is formed between the discharge electrode and the high resistance insulator. There are problems such as formation and a gap between the discharge electrode and the high resistance insulator.

【0009】さらに放電電極の表面に、高抵抗絶縁ワニ
スを焼き付けたり、高抵抗絶縁グリースを塗布する方法
もあるが、高抵抗絶縁ワニスを焼き付ける方法は、高抵
抗絶縁ワニスが放電面に流れて付着するためこれを除去
しなければならず面倒である。除去が不十分であると放
電電圧が変動して十分な雑音電波抑制効果が得られず、
また塗布する寸法を一定にするには極めて困難である。
一方高抵抗絶縁グリースを塗布する方法も、高抵抗絶縁
グリースが放電面にも流れて付着し、これを除去するの
は極めて困難であるばかりでなく、配電子の回転による
遠心力や放電エネルギーによって飛散して寿命が短いと
いう問題点がある。
Further, there is a method of baking a high resistance insulating varnish or applying a high resistance insulating grease on the surface of the discharge electrode. In the method of baking the high resistance insulating varnish, the high resistance insulating varnish flows and adheres to the discharge surface. In order to do this, it must be removed, which is troublesome. If the removal is insufficient, the discharge voltage will fluctuate and a sufficient noise radio wave suppression effect will not be obtained,
Further, it is extremely difficult to make the applied size constant.
On the other hand, with the method of applying high-resistance insulating grease, not only is it extremely difficult to remove the high-resistance insulating grease flowing and adhering to the discharge surface, but the centrifugal force and discharge energy generated by the rotation of the distribution There is a problem that it is scattered and the life is short.

【0010】このように、何れの方法においても、十分
な雑音電波抑止効果を有し、かつ生産性に優れ、安価で
ある配電器がないのが現状である。本発明はこのような
従来の欠点を除去し、生産性に優れ、低価格で、十分な
雑音電波抑制効果を有する配電器及びその製造法を提供
するものである。
As described above, in any of the methods, there is currently no distributor which has a sufficient effect of suppressing noise radio waves, is excellent in productivity, and is inexpensive. The present invention eliminates such conventional drawbacks, and provides a distributor having excellent productivity, low cost, and sufficient noise radio wave suppressing effect, and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】本発明は放電電極の放電
面及び高電圧を受電する部分を高抵抗絶縁体で包むこと
なく露出させた雑音電波抑止型配電器及び内燃機関の回
転に連動して回転運動をなす配電子と、該配電子と空隙
を介して相対向して設けられた複数個の側方端子電極と
を有し、かつ放電電極に高抵抗絶縁体を形成付加した配
電器を製造する方法において、所定形状に形成した放電
電極を、放電面及び高電圧を受電する部分を露出するよ
うにして成形金型内に装てんし、ついで高抵抗絶縁体材
料を前記成形金型に注入し、該高抵抗絶縁体材料を硬化
させて放電電極の放電面及び高電圧を受電する部分以外
の箇所を高抵抗絶縁体で包むように一体化した後、配電
子を形成する配電器の製造法並びに内燃機関の回転に連
動して回転運動をなす配電子と、該配電子と空隙を介し
て相対向して設けられた複数個の側方端子電極とを有
し、かつ放電電極に高抵抗絶縁体を形成付加した配電器
を製造する方法において、所定形状に放電電極を形成
し、ついで放電電極の所定の位置に放電電極の放電面及
び高電圧を受電する部分の形状に打ち抜いたシート状の
高抵抗絶縁体を配設して成形金型にセットした後、加熱
加圧成形して放電電極の放電面及び高電圧を受電する部
分以外の箇所を高抵抗絶縁体で包むように一体化した
後、配電子を形成する配電器の製造法に関する。
DISCLOSURE OF THE INVENTION The present invention interlocks with the rotation of a noise electric wave suppression type distributor and an internal combustion engine in which a discharge surface of a discharge electrode and a portion for receiving a high voltage are exposed without being covered with a high resistance insulator. Distributor having a distribution electron which makes a rotational motion and a plurality of side terminal electrodes provided opposite to the distribution electron via a gap, and in which a high resistance insulator is added to the discharge electrode. In the method for producing, a discharge electrode formed in a predetermined shape is loaded into a molding die so that a discharge surface and a portion receiving a high voltage are exposed, and then a high resistance insulator material is applied to the molding die. Manufacture of a distributor by injecting and curing the high resistance insulator material to integrate the discharge electrode and the portion other than the portion receiving the high voltage with the high resistance insulator so as to form an electron distribution. Method and rotational movement of the internal combustion engine A method of manufacturing a distributor having a distribution electron and a plurality of side terminal electrodes provided opposite to each other with a gap between the distribution electron and forming a high resistance insulator on a discharge electrode. , A discharge electrode is formed in a predetermined shape, and then a sheet-shaped high-resistance insulator punched into the shape of the discharge surface of the discharge electrode and the portion receiving high voltage is arranged at a predetermined position of the discharge electrode. After setting in a mold, heat and pressure molding is performed so that the discharge surface of the discharge electrode and parts other than the part receiving high voltage are integrated so as to be wrapped with a high resistance insulator, and then a distribution device is formed. Regarding

【0012】本発明において放電電極としては、導電性
を有するステンレス、黄銅、アルミニウム、鉄などの金
属板、カーボン繊維をシリコーン樹脂、フェノール樹
脂、ジアリルフタレート樹脂、ポリエステル樹脂、エポ
キシ樹脂などで結合した板等が使用できるが、ステンレ
ス、黄銅、アルミニウム、鉄などの金属板の方が入手が
容易で価格が安いので好ましい。
In the present invention, as the discharge electrode, a conductive metal plate of stainless steel, brass, aluminum, iron or the like, a plate in which carbon fibers are bonded with a silicone resin, a phenol resin, a diallyl phthalate resin, a polyester resin, an epoxy resin, or the like. Etc., but metal plates such as stainless steel, brass, aluminum, and iron are preferable because they are easily available and cheap.

【0013】高抵抗絶縁体としては、樹脂分を10〜9
0重量%含み、かつ充てん剤及び繊維状物質の一種以上
を含有することが好ましい。このうち樹脂としては、シ
リコーン樹脂、フェノール樹脂、ジアリルフタレート樹
脂、ポリエステル樹脂、エポキシ樹脂等の耐熱性の熱硬
化性樹脂を用いることが好ましい。充てん剤としては、
シリカ系、マイカ系、ガラス系、その他通常公知の充て
ん剤が用いられ、繊維状物質としては、ガラス繊維、ア
スベスト繊維、セラミックス繊維等が用いられる。高抵
抗絶縁体の組成は、必要に応じて適宜選定して組合せて
用いるが、樹脂としてはシリコーン樹脂、充てん剤とし
てはシリカ系粉体及び繊維状物質としてはガラス繊維を
組合せて用いることが好ましい。
As the high resistance insulator, the resin content is 10 to 9
It is preferable to contain 0% by weight and at least one of filler and fibrous substance. Among them, it is preferable to use a heat-resistant thermosetting resin such as silicone resin, phenol resin, diallyl phthalate resin, polyester resin, or epoxy resin as the resin. As a filler,
Silica-based, mica-based, glass-based and other commonly known fillers are used, and as the fibrous substance, glass fiber, asbestos fiber, ceramic fiber, etc. are used. The composition of the high-resistance insulator is appropriately selected and used in combination as needed, but it is preferable to use a silicone resin as the resin, silica-based powder as the filler, and glass fiber as the fibrous substance. .

【0014】放電電極の放電面及び高電圧を受電する部
分以外の箇所を高抵抗絶縁体で包むように一体化したも
の(配電子電極)は、さらに成形材料中に埋め込まれて
配電子とされる。配電子電極を成形材料中に埋め込む方
法は、溶融状態又は粉体の高抵抗絶縁体材料を成形金型
内に注入して成形する射出成形法、シート状の高抵抗絶
縁体材料を用いて加熱加圧成形する圧縮成形法、粉体の
高抵抗絶縁体材料を用いて加熱加圧成形する圧縮成形法
などの方法が適用可能であるが、このうち射出成形法で
成形する方法が安価にそして効率よく製造できるので好
ましく、二色式異種材料射出成形法で成形すれば、配電
子を形成するまでの工程を連続的に行うことができるの
でさらに好ましい。また成形条件などについては従来公
知の方法で行うものとし、特に制限はない。
A part (distributor electrode) in which the discharge surface of the discharge electrode and a part other than the part for receiving a high voltage are integrated so as to be wrapped with a high resistance insulator is further embedded in a molding material to form an electron distribution. . The method of embedding the distribution electrode in the molding material is the injection molding method in which a molten or powdered high-resistance insulator material is injected into the molding die for molding, and a sheet-shaped high-resistance insulator material is used for heating. Methods such as compression molding for pressure molding and compression molding for heat and pressure molding using a powdery high-resistance insulator material can be applied. Among them, the method of molding by injection molding is inexpensive and It is preferable because it can be produced efficiently, and it is more preferable to perform the molding by the two-color type different material injection molding method because the steps up to the formation of the distribution can be continuously performed. Also, the molding conditions and the like are performed by a conventionally known method, and there is no particular limitation.

【0015】放電電極の放電面及びセンターカーボン片
と接触して高電圧を受電する部分は、高抵抗絶縁体材料
が付着しないようにしなければならないのでこの部分
は、露出するようにして成形金型にセットし、高抵抗絶
縁体材料が流入しないようにする。
It is necessary to prevent the high-resistance insulator material from adhering to the portion of the discharge electrode that is in contact with the discharge surface and the center carbon piece and receives a high voltage. To prevent the high-resistance insulator material from flowing in.

【0016】成形金型には、放電電極の放電部分の上下
面に高抵抗絶縁体を形成するための所要の形状を刻設す
る。この刻設部分に高抵抗絶縁体材料を充てんすること
により、放電電極の放電面及び高電圧を受電する部分以
外の箇所を高抵抗絶縁体で包むように一体化することが
できる。
The molding die is engraved with a required shape for forming a high resistance insulator on the upper and lower surfaces of the discharge portion of the discharge electrode. By filling the engraved portion with a high-resistance insulator material, the discharge surface of the discharge electrode and the portion other than the portion receiving the high voltage can be integrated so as to be wrapped with the high-resistance insulator.

【0017】なお一体化した際、高抵抗絶縁体が放電電
極から剥離することを防止するため、放電電極には放電
機能やセンターカーボン片との接触機能に支障とならな
い個所に孔を設けるか、外周に切欠きを設ける等の剥離
防止機能を付与することが好ましい。この剥離防止機能
は、一般的なプラスチック成形品の抜け止め防止機能を
使用でき、特別な機能は必要とせず、数は2個以上設け
れば剥離防止がより効果的であるので好ましい。
When integrated, in order to prevent the high resistance insulator from peeling off from the discharge electrode, the discharge electrode may be provided with a hole at a position which does not interfere with the discharge function or the contact function with the center carbon piece, or It is preferable to provide a peeling prevention function such as providing a notch on the outer periphery. This peeling prevention function can use a general plastic molded article retaining prevention function, does not require a special function, and it is preferable that the number is two or more because the peeling prevention is more effective.

【0018】配電子の形成は、従来公知の方法で行うも
のとし、特に制限はなく、用いる材料についても制限は
なく従来公知の材料が用いられる。
The formation of the electron distribution is carried out by a conventionally known method, and there is no particular limitation, and the material used is also not limited, and a conventionally known material can be used.

【0019】[0019]

【実施例】以下本発明の実施例を説明する。 実施例1 粗面加工を施していない厚さが0.6mmのステンレス鋼
板(JIS G4305 SUS304)を打ち抜きプレ
スで所定の形状寸法に打ち抜くと共に高抵抗絶縁体の脱
落防止孔を2個打ち抜いて形成した後、希塩酸溶液で洗
浄して脱脂した。
EXAMPLES Examples of the present invention will be described below. Example 1 A stainless steel plate (JIS G4305 SUS304) having a thickness of 0.6 mm, which was not roughened, was punched into a predetermined shape and size by a punching press, and two high-resistance insulator drop-out preventing holes were punched out. Then, it was degreased by washing with a dilute hydrochloric acid solution.

【0020】次に上記のステンレス鋼板打ち抜き品を、
放電面となる部分及びセンターカーボン片と接触して高
電圧を受電する部分は露出するように製品形状に該設し
た成形金型にセットし、金型表面温度を200℃に保ち
ながら、ガラス繊維50重量%及びシリコーン樹脂50
重量%(固形分)を混合したシリコーン樹脂成形材料
(信越化学工業社製、商品名KMC−401)を前記成
形金型に公知の方法で射出成形し、シリコーン樹脂成形
材料が硬化した後成形金型を開き、図1に示すように放
電電極4の一部を高抵抗絶縁体9で包むように一体化し
た配電子電極を得た。なお図1において10は脱落防止
孔である。得られた配電子電極を倍率が20倍の拡大鏡
を用いて放電電極4と高抵抗絶縁体9との隙間の有無を
観察したが、隙間は認められなかった。
Next, the above punched stainless steel plate was
Set the discharge surface and the part that contacts the center carbon piece and receive high voltage to the product shape so that it is exposed, and set in the molding die, and while maintaining the die surface temperature at 200 ° C, glass fiber 50% by weight and silicone resin 50
A silicone resin molding material (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KMC-401) mixed with weight% (solid content) is injection-molded into the above-mentioned molding die by a known method, and after the silicone resin molding material is cured, the molding die is cured. The mold was opened, and as shown in FIG. 1, a distribution electrode was obtained in which a part of the discharge electrode 4 was wrapped with a high resistance insulator 9 to be integrated. In addition, in FIG. 1, reference numeral 10 is a drop-out preventing hole. The presence or absence of a gap between the discharge electrode 4 and the high resistance insulator 9 was observed for the obtained distribution electrode using a magnifying glass having a magnification of 20 times, but no gap was observed.

【0021】ついで該配電子電極の高電圧を受電する部
分(ステンレス鋼板打ち抜き品の露出面)を上面にして
配電子成形金型にセットし、従来公知の射出成形法でタ
ルク40重量%入りポリプロピレン樹脂成形材料(日立
化成モールド社製、ハイフォルムM40BF)中に配電
子電極を埋込成形し、配電子を得た。このようにして得
た配電子は、従来公知の方法で組立てられ配電器を構成
する(以下同じ)。
Then, the portion for receiving a high voltage of the distribution electrode (the exposed surface of the punched stainless steel plate) is set on the distribution molding die, and the polypropylene containing 40% by weight of talc is prepared by a conventionally known injection molding method. A distribution electrode was embedded in a resin molding material (Hyform M40BF manufactured by Hitachi Chemical Mold Co., Ltd.) to obtain a distribution. The distribution thus obtained is assembled by a conventionally known method to form a distributor (the same applies hereinafter).

【0022】実施例2 実施例1で用いたシリコーン樹脂成形材料に代えて、フ
ェノール樹脂30重量%(固形分)、ガラス繊維40重
量%及びその他ケイ酸カルシウム、アスベスト、ヘキサ
メチレンテトラミン、有機質基材等を含む複数の充てん
剤を30重量%含むフェノール樹脂成形材料(日立化成
工業社製、商品名CP−J−771BK)を用いた以外
は実施例1と同様の方法で放電電極の一部を高抵抗絶縁
体で包むように一体化した配電子電極を得た。得られた
配電子電極を倍率が20倍の拡大鏡を用いて放電電極と
高抵抗絶縁体との隙間の有無を観察したが、隙間は認め
られなかった。以下実施例1と同様の工程を経て配電子
を得た。
Example 2 Instead of the silicone resin molding material used in Example 1, 30% by weight of phenol resin (solid content), 40% by weight of glass fiber and other calcium silicate, asbestos, hexamethylenetetramine, organic base material A part of the discharge electrode was prepared in the same manner as in Example 1 except that a phenolic resin molding material containing 30% by weight of a plurality of fillers containing the same (Hitachi Chemical Co., Ltd., trade name CP-J-771BK) was used. An integrated distribution electrode was obtained so as to be wrapped with a high resistance insulator. The presence or absence of a gap between the discharge electrode and the high resistance insulator of the obtained distribution electrode was observed using a magnifying glass having a magnification of 20 times, but no gap was observed. Then, the electron distribution was obtained through the same steps as in Example 1.

【0023】実施例3 実施例1と同様のステンレス鋼板を所定の形状寸法に打
ち抜くと共に高抵抗絶縁体の脱落防止孔を2個打ち抜い
て形成した後、密着性を増加させるために両表面をサン
ダーで粗面に加工した後、シランカップリング剤(日本
ユニカー社製、商品名A−174)をメタノールで粘度
調整したものを塗布して乾燥した。
Example 3 A stainless steel plate similar to that of Example 1 was punched into a predetermined shape and size, and two dropout prevention holes of a high resistance insulator were punched out to form a sander on both surfaces for increasing adhesion. After being roughened with, a silane coupling agent (manufactured by Nippon Unicar, trade name A-174) whose viscosity was adjusted with methanol was applied and dried.

【0024】一方厚さが0.18mmの平織ガラス繊維布
(旭シェーベル社製、商品名AS−350)に触媒とし
てジクルミパーオキサイドを添加したシリコーン樹脂
(東芝ケミカル社製、商品名YR−3224H)を含浸
し、以下従来公知の方法で溶媒を揮発させ、シリコーン
樹脂の付着量が28重量%のシリコーン樹脂含浸塗工布
を得た。この後、シリコーン樹脂含浸塗工布を型で放電
電極の放電面及び高電圧を受電する部分の形状、その他
の箇所は所定の形状寸法に打ち抜き、シート状の高抵抗
絶縁体を得た。
On the other hand, a silicone resin (manufactured by Toshiba Chemical Co., Ltd., trade name YR-3224H) obtained by adding dichlumiperoxide as a catalyst to a plain woven glass fiber cloth having a thickness of 0.18 mm (trade name AS-350 manufactured by Asahi Shovel Co.). ), And the solvent was volatilized by a conventionally known method to obtain a silicone resin-impregnated coated cloth having a silicone resin adhesion of 28% by weight. After that, the silicone resin-impregnated coated cloth was die-cut with a mold in the shape of the discharge surface of the discharge electrode and the portion receiving high voltage, and the other portions were punched out into a predetermined shape and dimension to obtain a sheet-like high resistance insulator.

【0025】次にステンレス鋼板打ち抜き品(放電電
極)の所定の位置にシート状の高抵抗絶縁体を配設して
成形金型にセットし、公知の圧縮成形法により、220
℃で35分間、9.8×106Pa(100kg/cm2)の
圧力を加えて加熱加圧成形して放電電極の一部を高抵抗
絶縁体で包むように一体化した配電子電極を得た。得ら
れた配電子電極を倍率が20倍の拡大鏡を用いて放電電
極と高抵抗絶縁体との隙間の有無を観察したが、隙間は
認められなかった。以下実施例1と同様の工程を経て配
電子を得た。
Next, a sheet-shaped high-resistance insulator is arranged at a predetermined position of a punched product (discharge electrode) of a stainless steel plate and set in a molding die, and 220 is formed by a known compression molding method.
A pressure distribution of 9.8 × 10 6 Pa (100 kg / cm 2 ) was applied at 35 ° C. for 35 minutes to form a distribution electrode integrated by encapsulating a part of the discharge electrode with a high resistance insulator by heating and pressurizing. It was The presence or absence of a gap between the discharge electrode and the high resistance insulator of the obtained distribution electrode was observed using a magnifying glass having a magnification of 20 times, but no gap was observed. Then, the electron distribution was obtained through the same steps as in Example 1.

【0026】実施例4 実施例1で用いたシリコーン樹脂成形材料に代えて、フ
ェノール樹脂50重量%、ガラス繊維10重量%及びそ
の他ケイ酸カルシウム、有機質基材等を含む複数の充て
ん剤を40重量%含むフェノール樹脂成形材料(日立化
成工業社製、商品名CP−J−8800BK)を用いた
以外は実施例1と同様の方法で配電子電極を得た。得ら
れた配電子電極を倍率が20倍の拡大鏡を用いて放電電
極と高抵抗絶縁体との隙間の有無を観察したが、隙間は
認められなかった。以下実施例1と同様の工程を経て放
電電極の一部を高抵抗絶縁体で包むように一体化した配
電子を得た。
Example 4 Instead of the silicone resin molding material used in Example 1, 40% by weight of a plurality of fillers containing 50% by weight of phenol resin, 10% by weight of glass fiber and other calcium silicate, organic base material and the like. %, And a phenol resin molding material (Hitachi Chemical Co., Ltd., trade name CP-J-8800BK) was used to obtain a distribution electrode in the same manner as in Example 1. The presence or absence of a gap between the discharge electrode and the high resistance insulator of the obtained distribution electrode was observed using a magnifying glass having a magnification of 20 times, but no gap was observed. Then, the same steps as in Example 1 were performed to obtain an electronic distribution in which a part of the discharge electrode was integrated with a high resistance insulator.

【0027】実施例5 成形機として二色射出成形機を用い、一方の射出シリン
ダーは熱硬化性樹脂用に、他の一方の射出シリンダーは
熱可塑性樹脂用とし、熱硬化性樹脂用シリンダー側には
放電電極を高抵抗絶縁体で包むように一体化して配電子
電極を得るための成形金型を取付け、熱可塑性樹脂用シ
リンダー側には配電子を得るための成形金型を取付け
た。さらに配電子電極を得るための成形金型(以下配電
子電極成形金型とする)は、配電子電極を得た後、該配
電子電極を成形金型の一方に保持したまま、他の配電子
を得るための成形金型(以下配電子成形金型とする)に
移動して配電子を成形し、この間に他の一対の成形金型
で配電子電極を得るという工程を交互に繰り返すよう
に、成形金型が交互に置き換え可能な構造とした。
Example 5 A two-color injection molding machine was used as a molding machine. One injection cylinder was used for a thermosetting resin and the other injection cylinder was used for a thermoplastic resin. Attached a molding die to obtain a distribution electrode by integrating the discharge electrode with a high-resistance insulator, and a molding die to obtain a distribution electron on the thermoplastic resin cylinder side. Further, a molding die for obtaining a distribution electrode (hereinafter referred to as a distribution electrode molding die) is manufactured by obtaining a distribution electrode and then holding the distribution electrode on one side of the molding die while holding the other distribution electrode. Repeat the process of moving to a molding die for obtaining electrons (hereinafter referred to as the distribution molding die) to mold the distribution and obtaining the distribution electrode with another pair of molding dies during this period. In addition, the structure is such that the molding dies can be replaced alternately.

【0028】まず熱硬化性樹脂用シリンダーに実施例1
で用いたシリコーン樹脂分が50重量%のシリコーン樹
脂成形材料を充てんしておき、配電子電極成形金型の表
面温度を200℃に保持した。ついでこの成形金型に実
施例1で用いたステンレス鋼板打ち抜き品を、放電面と
なる部分及び受電する部分は露出するようにセットした
後、公知の方法で射出成形し、シリコーン樹脂成形材料
を硬化させて放電電極の一部を高抵抗絶縁体で包むよう
に一体化した配電子電極を得た。
First, a thermosetting resin cylinder was used in Example 1.
The silicone resin molding material having a silicone resin content of 50% by weight used in Example 1 was filled and the surface temperature of the distribution electrode molding die was kept at 200 ° C. Then, the punched stainless steel plate used in Example 1 was set in this molding die so that the portion which became the discharge surface and the portion which received electricity were exposed, and injection molding was carried out by a known method to cure the silicone resin molding material. Thus, a distribution electrode was obtained in which a part of the discharge electrode was wrapped with a high resistance insulator to be integrated.

【0029】次に配電子電極成形金型を開き、片方の配
電子電極成形金型(上型)に配電子電極を保持したまま
の状態で熱可塑性樹脂用シリンダー側に回転させ、固定
している配電子成形金型(下型)側に移動し、移動した
配電子電極成形金型と固定している配電子成形金型とを
合体して新たに配電子成形金型を構成した。なお移動し
た配電子電極成形金型及び固定している配電子成形金型
の温度は80℃に調節した。ついで熱可塑性樹脂用シリ
ンダーから実施例1で用いたタルク40重量%入りポリ
プロピレン樹脂成形材料を公知の方法で配電子成形金型
内に射出成形し、冷却固化した後成形金型を開いて取出
し、配電子を得た。なお配電子の露出している部分の配
電子電極を倍率が20倍の拡大鏡を用いて放射電極と高
抵抗絶縁体との隙間の有無を観察したが、隙間は認めら
れなかった。
Next, the distribution electrode molding die is opened, and while the distribution electrode is held in one of the distribution electrode molding dies (upper mold), it is rotated toward the thermoplastic resin cylinder side and fixed. The distribution mold was moved to the existing distribution mold (lower mold), and the moved distribution electrode mold and the fixed distribution mold were combined to form a new distribution mold. The temperature of the moved distribution electrode molding die and the fixed distribution molding die was adjusted to 80 ° C. Then, a polypropylene resin molding material containing 40% by weight of talc used in Example 1 was injection-molded from a thermoplastic resin cylinder into a distribution molding die by a known method, cooled and solidified, and then the molding die was opened and taken out. Got electronic distribution. The distribution electrode in the exposed portion of the distribution was observed for the presence of a gap between the radiation electrode and the high resistance insulator by using a magnifying glass having a magnification of 20. However, no gap was observed.

【0030】実施例6 配電子電極の放電面及び高電圧を受電する部分に干渉し
ない位置に、該配電子電極を支持する部分(以下配電子
本体とする)と係合する2個の孔を形成した以外は実施
例1と同様の工程を経て放電電極の一部を高抵抗絶縁体
で包むように一体化した配電子電極を得た。得られた配
電子電極を倍率20倍の拡大鏡を用いて放電電極と高抵
抗絶縁体との隙間の有無を観察したが、隙間は認められ
なかった。
Embodiment 6 Two holes for engaging with a portion supporting the distribution electrode (hereinafter referred to as a distribution main body) are formed at positions not interfering with the discharge surface of the distribution electrode and the portion receiving high voltage. Except for the formation, the same steps as in Example 1 were carried out to obtain a distribution electrode in which a part of the discharge electrode was integrated so as to be wrapped with a high resistance insulator. The presence or absence of a gap between the discharge electrode and the high resistance insulator was observed for the obtained distribution electrode using a magnifying glass with a magnification of 20 times, but no gap was observed.

【0031】一方上記とは別に、実施例1で用いたタル
ク40重量%入りポリプロピレン樹脂成形材料を公知の
射出成形法で成形して配電子電極に形成した2個の孔と
係合する柱状体を設けた配電子本体を得た。なお柱状体
の高さは配電子電極の高さ(厚さ)より高く形成した。
ついで配電子本体の柱状体に配電子電極に形成した2個
の孔を押し込み、さらに配電子電極表面から飛び出た柱
状体を熱によって軟化させてつぶし、配電子本体に配電
子電極を固定した。
On the other hand, in addition to the above, a columnar body engaging with two holes formed in the distribution electrode by molding the polypropylene resin molding material containing 40% by weight of talc used in Example 1 by a known injection molding method. The electronic distribution main body provided with was obtained. The height of the columnar body was higher than the height (thickness) of the distribution electrode.
Then, the two holes formed in the distribution electrode were pushed into the columnar body of the distribution body, and the columnar body protruding from the surface of the distribution electrode was softened by heat and crushed to fix the distribution electrode to the distribution body.

【0032】比較例1 実施例1と同様のステンレス鋼板の片面をサンダーで粗
面に加工した後、洗浄、脱脂し、さらに粗面加工した面
にシランカップリング剤(日本ユニカー社製、商品名A
−174)をメタノールで粘度調整したものを塗布して
乾燥した。
Comparative Example 1 A stainless steel sheet similar to that used in Example 1 was roughened on one side with a sander, washed, degreased, and then roughened. A silane coupling agent (manufactured by Nippon Unicar, trade name) A
-174) whose viscosity was adjusted with methanol was applied and dried.

【0033】次に実施例3で用いたシリコーン樹脂の付
着量が28重量%のシリコーン樹脂含浸塗工布を前記ス
テンレス鋼板の粗面化、脱脂処理及びシランカップリン
グ剤を塗布した側に3枚積層し、公知の方法で加熱加圧
してステンレス鋼板に高抵抗絶縁体Aを形成付加し、つ
いで型で所定の形状寸法に打ち抜いて2層構造の積層板
を得た。
Next, three pieces of the silicone resin-impregnated coated cloth used in Example 3 and having a silicone resin adhesion amount of 28% by weight were provided on the side of the stainless steel plate to which surface roughening, degreasing treatment and silane coupling agent were applied. The laminate was laminated, heated and pressed by a known method to form and add the high resistance insulator A to the stainless steel plate, and then punched into a predetermined shape and dimension with a mold to obtain a laminated plate having a two-layer structure.

【0034】一方上記とは別に前記のシリコーン樹脂含
浸塗工布を3枚積層し、公知の方法で加熱加圧して一体
化した後、センターカーボン片が接触する部分を型で打
ち抜き高抵抗絶縁体Bを得た。この後2層構造の積層板
のステンレス鋼板側に前記の高抵抗絶縁体Bを合わせシ
リコーン接着剤(信越化学工業社製、商品名KR−10
5)を用いて両者を接着して配電子電極を得た。なお接
着は常温、常湿の室内で行った。得られた配電子電極を
倍率が20倍の拡大鏡を用いてステンレス鋼板と高抵抗
絶縁体A及びBとの隙間の有無を観察したところ、深さ
が0.2mmで幅が0.1mmの隙間がほぼ全周に発生して
いるのが確認され、またステレス鋼板と高抵抗絶縁体A
及びBとには0.1mmの段差が生じ高抵抗絶縁体A及び
Bがステンレス鋼板より突出しているのが確認された。
On the other hand, in addition to the above, three sheets of the above silicone resin-impregnated coated cloth are laminated and integrated by heating and pressurizing by a known method, and then the portion where the center carbon piece comes into contact is punched out with a mold to obtain a high resistance insulator. B was obtained. Then, the high-resistance insulator B was attached to the stainless steel plate side of the laminated plate having a two-layer structure, and a silicone adhesive (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KR-10).
Both were adhered using 5) to obtain a distribution electrode. The bonding was performed in a room at room temperature and humidity. When the presence or absence of a gap between the stainless steel plate and the high resistance insulators A and B was observed for the obtained distribution electrode using a magnifying glass with a magnification of 20 times, the depth was 0.2 mm and the width was 0.1 mm. It was confirmed that a gap was generated almost all around, and the stainless steel plate and high resistance insulator A
It was confirmed that there was a step difference of 0.1 mm between B and B and that the high resistance insulators A and B were projected from the stainless steel plate.

【0035】比較例2 厚さが1.0mmのステンレス鋼板(JIS Q4305
SUS304)から打ち抜きプレスで所定の形状寸法に
打ち抜いた後、高抵抗絶縁体を形成しないで配電子成形
金型にセットし、従来公知の射出成形法で実施例1で用
いたタルク40重量%入りポリプロピレン樹脂成形材料
中に埋込成形した配電子を得た。
Comparative Example 2 A stainless steel plate having a thickness of 1.0 mm (JIS Q4305
SUS304) was punched into a predetermined shape and dimensions by a punching press, and then set in a distribution molding die without forming a high-resistance insulator, and 40% by weight of talc used in Example 1 was used by a conventionally known injection molding method. An electronic distribution embedded in a polypropylene resin molding material was obtained.

【0036】次に各実施例及び各比較例で得た配電子の
放電電圧を測定した。なお測定は、配電子の放電電力と
対向する側方電極にJIS H 4040のアルミニウム
合金棒5052を用い、放電電極と側方端子電極との間
隙を1.0mmとし、イグニッションコイル電圧を配電子
の放電電極に充電して行った。その測定結果を表1に示
す。
Next, the discharge voltage of the electron distribution obtained in each example and each comparative example was measured. In addition, the measurement uses an aluminum alloy rod 5052 of JIS H 4040 for the side electrode facing the discharge power of the electron distribution, the gap between the discharge electrode and the side terminal electrode is 1.0 mm, and the ignition coil voltage is set to the distribution electrode. The discharge electrode was charged. The measurement results are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】表1に示されるように本発明の実施例にな
る配電子の放電電圧は、比較例1の従来公知の配電子の
放電電圧と同等か又はそれ以下であり、また比較例2の
従来公知の配電子の放電電圧に比較し、著しく小さいこ
とがわかる。特に実施例1、5及び6の配電子は比較例
1の従来公知の配電子の放電電極に比較して約30%低
くなっており、優れた雑音電波抑止効果を発揮すること
を示している。
As shown in Table 1, the discharge voltage of the distribution according to the embodiment of the present invention is equal to or lower than the discharge voltage of the conventionally known distribution of Comparative Example 1, and the discharge voltage of Comparative Example 2 is smaller. It can be seen that the discharge voltage is remarkably smaller than the conventionally known discharge voltage of distribution. In particular, the electron distributions of Examples 1, 5 and 6 are about 30% lower than that of the discharge electrode of the conventionally known electron distribution of Comparative Example 1, which shows that an excellent noise radio wave suppressing effect is exhibited. .

【0039】実施例においては放電電極に高抵抗絶縁体
の脱落防止孔を2個打ち抜いて形成したものについて説
明したが、図2に示すように放電電極の外周に切欠き1
1を設けたものについても実施例と同様の効果が得られ
る。
In the embodiment, the discharge electrode is formed by punching out two holes for preventing the high resistance insulator from falling off. However, as shown in FIG. 2, a notch 1 is formed on the outer circumference of the discharge electrode.
The same effects as those of the embodiment can be obtained with the device provided with 1.

【0040】[0040]

【発明の効果】本発明によれば配電子電極は、公知の成
形方法を応用して製造することができ、しかも放電電極
と高抵抗絶縁体とが密着し、かつ一体となるので得られ
る配電器は、雑音電波抑止効果が従来公知の配電器と同
等か、それ以上である。また配電子も公知の成形材料を
用いて、公知の成形方法で製造できるので、生産性に優
れ、安価に効率よく量産性に優れた配電器を製造するこ
とができる。
According to the present invention, the distribution electrode can be manufactured by applying a known molding method, and moreover, the discharge electrode and the high resistance insulator are in intimate contact with each other and are integrated with each other. The electric appliance has a noise electric wave suppression effect equal to or higher than that of a conventionally known electric distributor. Further, since the electronic distribution can be manufactured by a known molding method using a known molding material, it is possible to manufacture a power distributor having excellent productivity, low cost, efficiency, and mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例になる配電器に用いられる配
電子電極の平面図である。
FIG. 1 is a plan view of a distribution electrode used in a distributor according to an embodiment of the present invention.

【図2】本発明の他の一実施例になる配電器に用いられ
る配電子電極の平面図である。
FIG. 2 is a plan view of a distribution electrode used in a distributor according to another embodiment of the present invention.

【図3】配電器の構造を示す一部断面側面図である。FIG. 3 is a partial cross-sectional side view showing the structure of the distributor.

【図4】従来の配電子を示す一部断面側面図である。FIG. 4 is a partial cross-sectional side view showing a conventional electron distribution.

【符号の説明】[Explanation of symbols]

1 配電子 2 センターシャフト 3 センターカーボン片 4 放電電極 5 スプリング 6 一次高圧配線 7 側方端子電極 8 二次高圧配線 9 高抵抗絶縁体 10 脱落防止孔 11 切欠き 1 Electronic Distribution 2 Center Shaft 3 Center Carbon Piece 4 Discharge Electrode 5 Spring 6 Primary High Voltage Wiring 7 Side Terminal Electrode 8 Secondary High Voltage Wiring 9 High Resistance Insulator 10 Fall Prevention Hole 11 Notch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 政弘 茨城県日立市東多賀町一丁目1番1号 日 立化成モールド株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Sato 1-1-1 Higashitaga-cho, Hitachi-shi, Ibaraki Nititsu Kasei Mold Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 配電子の放電電極(以下放電電極とす
る)の放電面及び高電圧を受電する部分を高抵抗絶縁体
で包むことなく露出させた雑音電波抑止型配電器。
1. A noise electric wave suppression type power distributor in which a discharge surface of a discharge electrode of a distribution electron (hereinafter referred to as a discharge electrode) and a portion for receiving a high voltage are exposed without being wrapped with a high resistance insulator.
【請求項2】 内燃機関の回転に連動して回転運動をな
す配電子と、該配電子と空隙を介して相対向して設けら
れた複数個の側方端子電極とを有し、かつ放電電極に高
抵抗絶縁体を形成付加した雑音電波抑止型配電器を製造
する方法において、所定形状に形成した放電電極を、放
電面及び高電圧を受電する部分を露出するようにして成
形金型内に装てんし、ついで高抵抗絶縁体材料を前記成
形金型に注入し、該高抵抗絶縁体材料を硬化させて放電
電極の放電面及び高電圧を受電する部分以外の箇所を高
抵抗絶縁体で包むように一体化した後、配電子を形成す
ることを特徴とする雑音電波抑止型配電器の製造法。
2. A discharge having a distribution of electrons that makes a rotary motion in conjunction with rotation of an internal combustion engine and a plurality of side terminal electrodes provided opposite to the distribution of electrons through a gap, and having a discharge. In a method of manufacturing a noise electric wave suppression type distributor in which a high resistance insulator is added to an electrode, a discharge electrode having a predetermined shape is formed in a molding die by exposing a discharge surface and a portion receiving a high voltage. Then, a high-resistance insulator material is injected into the molding die, and the high-resistance insulator material is cured so that the discharge surface of the discharge electrode and the portion other than the portion receiving the high voltage are made of the high-resistance insulator. A method of manufacturing a noise electric wave suppression type distributor, which comprises forming an electric distribution after wrapping and integrating.
【請求項3】 内燃機関の回転に連動して回転運動をな
す配電子と、該配電子と空隙を介して相対向して設けら
れた複数個の側方端子電極とを有し、かつ放電電極に高
抵抗絶縁体を形成付加した雑音電波抑止型配電器を製造
する方法において、所定形状に放電電極を形成し、つい
で放電電極の所定の位置に放電電極の放電面及び高電圧
を受電する部分の形状に打ち抜いたシート状の高抵抗絶
縁体を配設して成形金型にセットした後、加熱加圧成形
して放電電極の放電面及び高電圧を受電する部分以外の
箇所を高抵抗絶縁体で包むように一体化した後、配電子
を形成することを特徴とする雑音電波抑止型配電器の製
造法。
3. A discharge having a distribution of electrons that makes a rotary motion in association with rotation of an internal combustion engine, and a plurality of side terminal electrodes provided opposite to the distribution of electrons through a gap, and discharging. In a method of manufacturing a noise electric wave suppression type distributor in which a high resistance insulator is added to an electrode, a discharge electrode is formed in a predetermined shape, and then a discharge surface of the discharge electrode and a high voltage are received at a predetermined position of the discharge electrode. After arranging a sheet-shaped high resistance insulator punched out in the shape of the part and setting it in the molding die, heat and pressure molding is performed to make the discharge surface of the discharge electrode and parts other than the part receiving high voltage high resistance A method of manufacturing a noise electric wave suppression type distributor, comprising forming an electric distribution after being integrated so as to be wrapped with an insulator.
【請求項4】 高抵抗絶縁体が、樹脂分を10〜90重
量%含み、かつ充てん剤及び繊維状物質の一種以上を含
有してなる請求項2又は3記載の雑音電波抑止型配電器
の製造法。
4. The noise electric wave suppression type distributor according to claim 2, wherein the high resistance insulator contains 10 to 90% by weight of a resin component and one or more of a filler and a fibrous substance. Manufacturing method.
JP29481493A 1993-11-25 1993-11-25 Noise-wave suppression type distributor and manufacture thereof Pending JPH07145773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29481493A JPH07145773A (en) 1993-11-25 1993-11-25 Noise-wave suppression type distributor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29481493A JPH07145773A (en) 1993-11-25 1993-11-25 Noise-wave suppression type distributor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07145773A true JPH07145773A (en) 1995-06-06

Family

ID=17812603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29481493A Pending JPH07145773A (en) 1993-11-25 1993-11-25 Noise-wave suppression type distributor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07145773A (en)

Similar Documents

Publication Publication Date Title
US3785049A (en) Slip ring assembly and method of making same
JP2747096B2 (en) Method for manufacturing three-dimensional circuit board
JPS5825020B2 (en) Iron core and coil structure of rotating electrical machines
US4067945A (en) Method of making a multi-circuit electrical interconnector
US3478421A (en) Method of manufacturing commutators
CN100548613C (en) Be used to protect the coated semiconductor and the application process of elastomeric electrical cable accessories
JPH07145773A (en) Noise-wave suppression type distributor and manufacture thereof
CN101183575A (en) Novel plug-in thermal sensitive element with overflowing and ESD double protection and method of producing the same
CN100430427C (en) Electronic material composition, electronic product and method of using electronic material composition
KR20220021475A (en) Heating device and method for manufacturing same and non-combustible heated smoking device
KR101024505B1 (en) Manufacturing method for printing antenna pattern on plastic part for mobile phone using electrically conductible ink
US20210298132A1 (en) Electric Heating Device and Method of Manufacturing the Same
JPH031137B2 (en)
CN210668103U (en) Capacitor with a capacitor element
JPS60237173A (en) Noise wave suppressing type distributor
JPH0158743B2 (en)
JPS605787B2 (en) Manufacturing method of noise radio wave suppression type power distributor
KR101028414B1 (en) Ink for printing antenna pattern on mobile phone
US1218596A (en) Article composed partly of rubber or the like.
CN209980984U (en) Shell-less capacitor
JP5934457B2 (en) Ignition coil for internal combustion engine and method of manufacturing the ignition coil
SU448550A1 (en) A method of manufacturing a printed winding of an electrical machine
JP2017028757A (en) Dc motor, resin composition, and protective member
JP2001069709A (en) Dynamo-electric machine
JP2925913B2 (en) Switch for ignition of internal combustion engine