JPH07145221A - Production of glycidyl-etherified phenolic novolak resin - Google Patents

Production of glycidyl-etherified phenolic novolak resin

Info

Publication number
JPH07145221A
JPH07145221A JP31898193A JP31898193A JPH07145221A JP H07145221 A JPH07145221 A JP H07145221A JP 31898193 A JP31898193 A JP 31898193A JP 31898193 A JP31898193 A JP 31898193A JP H07145221 A JPH07145221 A JP H07145221A
Authority
JP
Japan
Prior art keywords
phenol novolac
novolac resin
glycidyl
allyl
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31898193A
Other languages
Japanese (ja)
Inventor
Shiyouji Takeda
紹二 武田
Yoshikazu Takeuchi
嘉一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP31898193A priority Critical patent/JPH07145221A/en
Publication of JPH07145221A publication Critical patent/JPH07145221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain a glycidyl-etherified phenolic novolak resin having excellent heat resistance and low-water absorption, self-curing, simple in compounding, excellent in workability and useful as curing agaent, etc., by reacting a specific phenolic novolak resin with an allyl halide. CONSTITUTION:The objective resin is obrtained by reacting (A) a phenolic novolak resin having a number average molecular weight of 450-1000 and (B) an allyl halide and epoxidizing the allyl group with a paracid after the allyl- etherification of 20-80% of the OH group of the component A. Further, the reaction is preferably performed e.g. under the reaction conditions: a reaction temperature of 0-80 deg.C and a reaction of about 1-5hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は部分グリシジルエーテル
化フェノールノボラック樹脂の製造方法に関する。詳し
くは、耐熱性および低吸水性に優れ、自硬化しうる部分
グリシジルエーテル化フェノールノボラック樹脂の製造
方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a partially glycidyl etherified phenol novolac resin. More specifically, it relates to a method for producing a partially glycidyl etherified phenol novolac resin which has excellent heat resistance and low water absorption and can be self-cured.

【0002】[0002]

【従来の技術】従来より、エポキシ樹脂は塗料、積層
板、電気・電子材料等のさまざまな用途に使用されてい
る。また、エポキシ樹脂は一般に硬化剤と組み合わせて
使用されており、特に、電気・電子材料関係の分野にお
いては、耐熱性に優れることから硬化剤としてフェノー
ルノボラック樹脂が好適に用いられている。
2. Description of the Related Art Epoxy resins have hitherto been used in various applications such as paints, laminated plates and electric / electronic materials. Further, the epoxy resin is generally used in combination with a curing agent, and particularly in the field of electric / electronic materials, a phenol novolac resin is preferably used as the curing agent because of its excellent heat resistance.

【0003】しかし、フェノールノボラック樹脂は、エ
ポキシ樹脂と反応して網目構造物となり、その際に反応
に関与しないフェノール性水酸基が未反応のまま残存す
るため、水との親和性が強く、一般的に吸湿性が高いと
いった欠点があった。そのため、フェノールノボラック
樹脂を硬化剤としてなるエポキシ樹脂組成物が封止材等
に用いられた場合には、実装時に気化する水分の蒸気圧
により材料にクラックが生じるといった問題があった。
また、エポキシ樹脂組成物はフェノールノボラック樹脂
とエポキシ樹脂の混合物であり、配合には高度な技術と
品質管理が必要であった。
However, the phenol novolac resin reacts with the epoxy resin to form a network structure, and at that time, the phenolic hydroxyl groups that do not participate in the reaction remain unreacted, so that they have a strong affinity with water and are generally used. It had a drawback that it had a high hygroscopicity. Therefore, when an epoxy resin composition using a phenol novolac resin as a curing agent is used as a sealing material or the like, there is a problem that the material is cracked due to the vapor pressure of water vaporized during mounting.
Further, the epoxy resin composition is a mixture of a phenol novolac resin and an epoxy resin, and the compounding requires high technology and quality control.

【0004】[0004]

【発明が解決しようとする課題】本発明は、耐熱性およ
び低吸水性に優れ、自硬化性しうるフェノールノボラッ
ク樹脂を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a phenol novolac resin which has excellent heat resistance and low water absorption and can be self-curable.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意検討を重ねた結果、フェノールノボラ
ック樹脂の水酸基の一部をグリシジルエーテル化して得
られる、部分グリシジルエーテル化フェノールノボラッ
ク樹脂によれば、分子内または分子間でグリシジル基と
フェノール性水酸基が反応して自硬化し、残存フェノー
ル性水酸基の少ない硬化物が得られることを見出し本発
明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, partially glycidyl etherified phenol novolac obtained by glycidyl etherification of some of the hydroxyl groups of the phenol novolac resin. The inventors have found that a resin allows the glycidyl group and the phenolic hydroxyl group to react with each other intramolecularly or intermolecularly to self-cure to obtain a cured product having a small amount of residual phenolic hydroxyl group, and thus completed the present invention.

【0006】すなわち、本発明は、数平均分子量450
〜1000のフェノールノボラック樹脂とハロゲン化ア
リルを反応させて、該フェノールノボラック樹脂の水酸
基の20〜80%をアリルエーテル化した後に、過酸に
よりアリル基をエポキシ化することを特徴とする部分グ
リシジルエーテル化フェノールノボラック樹脂の製造方
法に関する。
That is, the present invention has a number average molecular weight of 450.
~ 1000 phenol novolac resin and allyl halide are reacted to make 20-80% of the hydroxyl groups of the phenol novolac resin allyl etherified, and then the allyl group is epoxidized with peracid to form a partial glycidyl ether. The present invention relates to a method for producing a modified phenol novolac resin.

【0007】本発明で得られる部分グリシジルエーテル
化フェノールノボラック樹脂は、前記のとおりフェノー
ルノボラック樹脂の水酸基の20〜80%が部分グリシ
ジルエーテル化されたものである。好ましくは35〜6
5%がグリシジルエーテル化されているのがよい。フェ
ノールノボラック樹脂のグリシジルエーテル化率が20
%に満たない場合には硬化物の架橋密度が低くなり、耐
熱性を満足しえない。また80%を越える場合にはゲル
化速度が速くなり硬化速度の制御が困難になるため、い
ずれの場合も好ましくない。
The partially glycidyl etherified phenol novolac resin obtained in the present invention is the one in which 20 to 80% of the hydroxyl groups of the phenol novolac resin are partially glycidyl etherified as described above. Preferably 35-6
5% is preferably glycidyl etherified. The glycidyl etherification rate of phenol novolac resin is 20
If it is less than%, the cross-linking density of the cured product becomes low, and heat resistance cannot be satisfied. On the other hand, when it exceeds 80%, the gelation rate becomes fast and the control of the curing rate becomes difficult, and therefore either case is not preferable.

【0008】また、本発明で得られる部分グリシジルエ
ーテル化フェノールノボラック樹脂の軟化点は70〜1
20℃程度、好ましくは80〜100℃である。70℃
未満では耐熱性を満足しえず、120℃を越える場合に
は樹脂の溶融粘度が高くなり作業性が悪くなる。
The softening point of the partially glycidyl etherified phenol novolac resin obtained by the present invention is 70-1.
The temperature is about 20 ° C, preferably 80 to 100 ° C. 70 ° C
If it is less than 120 ° C, the heat resistance cannot be satisfied, and if it exceeds 120 ° C, the melt viscosity of the resin becomes high and the workability deteriorates.

【0009】かかる本発明の部分グリシジルエーテル化
フェノールノボラック樹脂は、数平均分子量450〜1
000のフェノールノボラック樹脂とハロゲン化アリル
を反応させて、該フェノールノボラック樹脂の水酸基の
20〜80%をアリルエーテル化した後に、過酸により
アリル基をエポキシ化することにより製造できる。
The partially glycidyl etherified phenol novolac resin of the present invention has a number average molecular weight of 450 to 1
It can be produced by reacting 000 phenol novolac resin with allyl halide to 20 to 80% of the hydroxyl groups of the phenol novolac resin to allyl ether, and then epoxidizing the allyl group with peracid.

【0010】数平均分子量450〜1000のフェノー
ルノボラック樹脂としては、酸性条件下でフェノール類
とホルムアルデヒド類とを付加縮合して得られる公知の
ものを使用できる。たとえば、フェノール類としては、
フェノール、o−クレゾール、m−クレゾール、p−ク
レゾール、2,3−キシレノール、2,4−キシレノー
ル、2,5−キシレノール、2,6−キシレノール、
3,4−キシレノール、3,5−キシレノール、p−エ
チルフェノール、p−イソプロピルフェノール、p−タ
ーシャリーブチルフェノール、p−オクチルフェノー
ル、ノニルフェノール、p−フェニルフェノール、p−
クロロフェノール、p−ブロモフェノールなどが挙げら
れ、これらは単独でも2種以上混合して用いてもよい。
フェノールノボラック樹脂の数平均分子量が450に満
たない場合には耐熱性を十分に満足しえず、1000を
越える場合には溶融粘度が高くなり作業性が悪くなる。
なお、フェノールノボラック樹脂の軟化点は85℃程度
以上であるのが好ましい。85℃に満たない場合は部分
グリシジルエーテル化フェノールノボラック樹脂の軟化
点が低くなり、耐熱性を満足しえなくなる。
As the phenol novolac resin having a number average molecular weight of 450 to 1,000, known resins obtained by addition-condensing phenols and formaldehyde under acidic conditions can be used. For example, as phenols,
Phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol,
3,4-xylenol, 3,5-xylenol, p-ethylphenol, p-isopropylphenol, p-tert-butylphenol, p-octylphenol, nonylphenol, p-phenylphenol, p-
Examples thereof include chlorophenol and p-bromophenol, and these may be used alone or in combination of two or more kinds.
When the number average molecular weight of the phenol novolac resin is less than 450, the heat resistance cannot be sufficiently satisfied, and when it exceeds 1000, the melt viscosity becomes high and the workability deteriorates.
The softening point of the phenol novolac resin is preferably about 85 ° C. or higher. If the temperature is less than 85 ° C, the softening point of the partially glycidyl etherified phenol novolac resin will be low, and heat resistance will not be satisfied.

【0011】前記公知のフェノールノボラック樹脂のア
リルエーテル化は、フェノールノボラック樹脂の水酸基
に対し、前記アリルエーテル化率となるようなハロゲン
化アリルを、水酸化ナトリウム等のアルカリ存在下に反
応させることにより行う。なお、ハロゲン化アリルの使
用量は、所望のアリルエーテル化率の1.5倍程度の過
剰量とするのが好ましい。反応は、通常、メチルイソブ
チルケトン等の溶剤中で、反応温度40〜70℃程度、
反応時間2〜5時間の条件で行い、得られた部分アリル
エーテル化フェノールノボラック樹脂は、溶剤抽出し水
洗した後、これを濃縮して使用する。かかる部分アリル
エーテル化ノボラックの軟化点は50℃程度以上である
のが好ましい。軟化点が50℃に満たない場合は、酸化
してエポキシ化しても部分グリシジルエーテル化フェノ
ールノボラック樹脂の軟化点が低くなり、耐熱性を満足
しえなくなる。
The allyl etherification of the known phenol novolac resin is carried out by reacting the hydroxyl group of the phenol novolac resin with an allyl halide having the above allyl etherification ratio in the presence of an alkali such as sodium hydroxide. To do. The amount of allyl halide used is preferably about 1.5 times the desired allyl etherification rate. The reaction is usually carried out in a solvent such as methyl isobutyl ketone at a reaction temperature of about 40 to 70 ° C.
The reaction time is 2 to 5 hours. The partially allyl etherified phenol novolac resin obtained is solvent-extracted, washed with water, and then concentrated before use. The softening point of the partially allyl etherified novolak is preferably about 50 ° C. or higher. If the softening point is less than 50 ° C., the partially glycidyl etherified phenol novolac resin will have a low softening point even if it is oxidized and epoxidized, and heat resistance cannot be satisfied.

【0012】次いで、本発明では、前記部分アリルエー
テル化フェノールノボラック樹脂のアリル基を、過酸で
エポキシ化して部分グリシジルエーテル化フェノールノ
ボラック樹脂を製造する。過酸としては過酸化水素水、
過酢酸、過安息香酸、メタクロロ過安息香酸等があげら
れ、その使用量は、通常、部分アリルエーテル化フェノ
ールノボラック樹脂のアリル基1モル当量に対し、過酸
1〜1.2モル当量を用いる。かかるエポキシ化は、通
常、ジクロロエタン、ジクロロメタン、クロロホルム等
の溶剤中で、反応温度0〜80℃程度、反応時間1〜5
時間程度の条件で行う。得られた部分グリシジルエーテ
ル化フェノールノボラック樹脂は、溶剤抽出し水洗する
か、または過酸をチオ硫酸ナトリウム等の還元剤で還元
した後、水洗して使用する。
Next, in the present invention, the allyl group of the partially allyl etherified phenol novolac resin is epoxidized with a peracid to produce a partially glycidyl etherified phenol novolac resin. Hydrogen peroxide solution as peracid,
Examples thereof include peracetic acid, perbenzoic acid, and metachloroperbenzoic acid. The amount of the peracid used is usually 1 to 1.2 molar equivalents of peracid with respect to 1 molar equivalent of allyl groups of the partially allyl etherified phenol novolac resin. . Such epoxidation is usually carried out in a solvent such as dichloroethane, dichloromethane or chloroform at a reaction temperature of about 0 to 80 ° C. for a reaction time of 1 to 5
Perform under the condition of time. The partially glycidyl etherified phenol novolac resin obtained is solvent-extracted and washed with water, or peracid is reduced with a reducing agent such as sodium thiosulfate and then washed with water.

【0013】得られた本発明の部分グリシジルエーテル
化フェノールノボラック樹脂は、硬化反応を促進するた
めに通常、硬化促進剤を添加して使用する。硬化促進剤
としては、例えば、1,8−ジアザ−ビシクロ(5,
4,0)ウンデセン−7、トリエチレンジアミン、ベン
ジルジメチルアミン、トリエタノールアミン、ジメチル
アミノエタノール、トリス(ジメチルアミノメチル)フ
ェノールなどの三級アミン類;2−メチルイミダゾー
ル、2−フェニルイミダゾール、2−フェニル−4−メ
チルイミダゾール、2−ヘプタデシルイミダゾールなど
のイミダゾール類;トリブチルホスフィン、メチルジフ
ェニルホスフィン、トリフェニルホスフィン、ジフェニ
ルホスフィン、フェニルホスフィンなどの有機ホスフィ
ン類;テトラフェニルホスホニウム・テトラフェニルボ
ーレート、2−エチル−4−メチルイミダゾール・テト
ラフェニルボーレート、N−メチルモルホリン・テトラ
フェニルボーレートなどのテトラフェニルボロン塩など
をあげることができる。硬化促進剤の使用量は、部分グ
リシジルエーテル化フェノールノボラック樹脂の100
重量部に対し、0.1〜5重量部の割合で使用する。
0.1重量部未満では硬化促進の効果が殆どなく、5重
量部を越える場合には硬化物の耐熱性、機械特性等の特
性を損なう傾向があり好ましくない。
The partially glycidyl etherified phenol novolac resin of the present invention thus obtained is usually used after adding a curing accelerator in order to accelerate the curing reaction. As the curing accelerator, for example, 1,8-diaza-bicyclo (5,5
4,0) tertiary amines such as undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, 2-phenyl Imidazoles such as 4-methylimidazole and 2-heptadecylimidazole; organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine and phenylphosphine; tetraphenylphosphonium tetraphenylborate, 2-ethyl- Examples include tetraphenylboron salts such as 4-methylimidazole tetraphenylborate and N-methylmorpholine tetraphenylborate. . The amount of the curing accelerator used is 100% of the partially glycidyl etherified phenol novolac resin.
It is used in a proportion of 0.1 to 5 parts by weight with respect to parts by weight.
If the amount is less than 0.1 parts by weight, the effect of promoting curing is scarce, and if the amount exceeds 5 parts by weight, the cured product tends to impair properties such as heat resistance and mechanical properties, which is not preferable.

【0014】また、本発明の部分グリシジルエーテル化
フェノールノボラック樹脂は、自硬化性であるが、低吸
水性の性能に悪影響を及ぼさない範囲で公知のフェノー
ルノボラック樹脂や多官能性エポキシ樹脂を併用するこ
ともできる。公知のフェノールノボラック樹脂としては
前記例示のフェノールノボラック樹脂があげられ、多官
能性エポキシ樹脂としては、オルソクレゾールノボラッ
ク型エポキシ樹脂、フェノールノボラック型エポキシ樹
脂等のノボラック樹脂型エポキシ樹脂;ビスフェノール
A、ビスフェノールFなどのジグリシジルエーテル、フ
タル酸、ダイマー酸などの多塩基酸およびエピクロロヒ
ドリンを反応させて得られるグリシジルエステル型エポ
キシ樹脂;ジアミノジフェニルメタン、イソシアヌル酸
などのポリアミンとエピクロロヒドリンを反応させて得
られるグリシジルアミン型エポキシ樹脂;オレフィン結
合を過酢酸などの過酸で酸化して得られる線状脂肪族エ
ポキシ樹脂および脂環式エポキシ樹脂などがあげられ
る。
The partially glycidyl etherified phenol novolac resin of the present invention is self-curable, but a known phenol novolac resin or polyfunctional epoxy resin is used in combination within a range that does not adversely affect the performance of low water absorption. You can also Known phenol novolac resins include the phenol novolac resins exemplified above, and polyfunctional epoxy resins include orthocresol novolac type epoxy resins, phenol novolac type epoxy resins and other novolac resin type epoxy resins; bisphenol A, bisphenol F Glycidyl ester type epoxy resin obtained by reacting diglycidyl ether such as phthalic acid, polybasic acid such as dimer acid, and epichlorohydrin; reacting polyamine such as diaminodiphenylmethane, isocyanuric acid with epichlorohydrin Glycidyl amine type epoxy resins obtained include linear aliphatic epoxy resins and alicyclic epoxy resins obtained by oxidizing an olefin bond with a peracid such as peracetic acid.

【0015】その他、部分グリシジルエーテル化フェノ
ールノボラック樹脂には、必要に応じて、溶剤、充填
剤、離型剤、表面処理剤、難燃剤等を配合してもよい。
In addition, a solvent, a filler, a release agent, a surface treatment agent, a flame retardant and the like may be added to the partially glycidyl etherified phenol novolac resin, if necessary.

【0016】[0016]

【発明の効果】本発明によれば、耐熱性および低吸水性
に優れたフェノールノボラック樹脂を提供できる。ま
た、本発明のフェノールノボラック樹脂は自硬化性であ
り、配合が簡便であり、取扱性に優れる。
According to the present invention, a phenol novolac resin excellent in heat resistance and low water absorption can be provided. Further, the phenol novolac resin of the present invention is self-curing, easy to mix, and excellent in handleability.

【0017】[0017]

【実施例】以下に製造例、実施例及び比較例をあげて本
発明をさらに詳細に説明するが、本発明はこれら実施例
に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to production examples, examples and comparative examples, but the present invention is not limited to these examples.

【0018】製造例1 撹拌機、温度計及び冷却器を備えた1000ml容フラ
スコ内を窒素ガスで置換した後、フェノール329g
(3.5モル)、37%ホルマリン水溶液236g
(2.9モル)およびシュウ酸2.2gを加え、窒素気
流下に4時間還流した後、減圧下に脱水し、水蒸気蒸留
により脱フェノールを行い、未反応のフェノール含有量
が0.5%以下、軟化点115℃、数平均分子量65
0、水酸基当量106のフェノールノボラック樹脂32
0gを得た。該フェノールノボラック樹脂を化合物Aと
いう。
Production Example 1 After replacing the inside of a 1000 ml flask equipped with a stirrer, a thermometer and a condenser with nitrogen gas, 329 g of phenol
(3.5 mol), 236 g of 37% formalin aqueous solution
(2.9 mol) and 2.2 g of oxalic acid were added, and the mixture was refluxed under a nitrogen stream for 4 hours, dehydrated under reduced pressure, and dephenoled by steam distillation to obtain an unreacted phenol content of 0.5%. Hereafter, the softening point is 115 ° C. and the number average molecular weight is 65.
0, phenolic novolac resin 32 having a hydroxyl equivalent of 106
0 g was obtained. The phenol novolac resin is referred to as Compound A.

【0019】製造例2 撹拌機、温度計及び冷却器を備えた1000ml容フラ
スコ内を窒素ガスで置換した後、オルソクレゾール37
8g(3.5モル)、37%ホルマリン水溶液131g
(1.6モル)、92%パラホルムアルデヒド52.6
g(1.6モル)およびシュウ酸2.2gを加え、窒素
気流下に3時間還流した後、減圧下に脱水し、水蒸気蒸
留により脱クレゾールを行い、未反応のクレゾール含有
量が0.5%以下、軟化点110℃、数平均分子量70
0、水酸基当量120のオルソクレゾールノボラック樹
脂380gを得た。該オルソクレゾールノボラック樹脂
を化合物Bという。
Production Example 2 After replacing the inside of a 1000 ml flask equipped with a stirrer, a thermometer and a condenser with nitrogen gas, orthocresol 37
8g (3.5mol), 37g formalin aqueous solution 131g
(1.6 mol), 92% paraformaldehyde 52.6
g (1.6 mol) and 2.2 g of oxalic acid were added, refluxed under a nitrogen stream for 3 hours, dehydrated under reduced pressure, and decresoled by steam distillation to obtain an unreacted cresol content of 0.5. % Or less, softening point 110 ° C., number average molecular weight 70
380 g of ortho-cresol novolac resin having 0 and a hydroxyl equivalent of 120 was obtained. The orthocresol novolak resin is referred to as Compound B.

【0020】製造例3 撹拌機、温度計及び冷却器を備えた1000ml容フラ
スコ内を窒素ガスで置換した後、フェノール329g
(3.5モル)、37%ホルマリン水溶液207g
(2.55モル)およびシュウ酸1.3gを加え、窒素
気流下に3時間還流した後、減圧下に脱水し、水蒸気蒸
留により脱フェノールを行い、未反応のフェノール含有
量が0.5%以下、軟化点92℃、数平均分子量48
0、水酸基当量106のフェノールノボラック樹脂30
3gを得た。該フェノールノボラック樹脂を化合物Cと
いう。
Production Example 3 After replacing the inside of a 1000 ml flask equipped with a stirrer, a thermometer and a condenser with nitrogen gas, 329 g of phenol
(3.5 mol), 207 g of 37% formalin aqueous solution
(2.55 mol) and 1.3 g of oxalic acid were added, and the mixture was refluxed under a nitrogen stream for 3 hours, dehydrated under reduced pressure, and dephenoled by steam distillation to obtain an unreacted phenol content of 0.5%. Below, softening point 92 ℃, number average molecular weight 48
0, phenolic novolac resin 30 having a hydroxyl equivalent of 106
3 g was obtained. The phenol novolac resin is referred to as compound C.

【0021】実施例1 撹拌機、温度計及び冷却器を備えた1000ml容フラ
スコ内を窒素ガスで置換してた後、製造例1で得た化合
物A(水酸基当量106)106gおよびメチルイソブ
チルケトン200gを加え、溶解した。次いで臭化アリ
ル94.4gを添加し、続いて24%水酸化ナトリウム
水溶液100gを1時間かけて滴下した後、60℃で3
時間保温した。その後、400gの水で5回水洗し、有
機溶媒層を濃縮して136gの樹脂を得た。該樹脂は半
固形状樹脂であり、アリルエーテル化率は60%であっ
た。次いで、該半固形状樹脂68gをジクロロエタン2
00gに溶解し10℃に冷却して、メタクロロ過安息香
酸57gを撹拌しながら徐々に加えた。10℃で2時間
撹拌した後、1000mlのエーテルで希釈し、チオ硫
酸ナトリウム水で溶媒層を洗浄、十分に水洗した後、濃
縮して、軟化点は95℃、エポキシ当量264の部分グ
リシジルエーテル化フェノールノボラック樹脂72gを
得た。該部分グリシジルエーテル化フェノールノボラッ
ク樹脂を化合物Dという。
Example 1 After replacing the inside of a 1000 ml flask equipped with a stirrer, a thermometer and a cooler with nitrogen gas, 106 g of compound A (hydroxyl equivalent 106) obtained in Preparation Example 1 and 200 g of methyl isobutyl ketone. Was added and dissolved. Then, 94.4 g of allyl bromide was added, and subsequently 100 g of a 24% aqueous sodium hydroxide solution was added dropwise over 1 hour, and then at 60 ° C. for 3 hours.
I kept it warm for an hour. Then, it was washed 5 times with 400 g of water, and the organic solvent layer was concentrated to obtain 136 g of resin. The resin was a semi-solid resin, and the allyl etherification rate was 60%. Then, 68 g of the semi-solid resin was added to dichloroethane 2
It was dissolved in 00 g, cooled to 10 ° C., and 57 g of metachloroperbenzoic acid was gradually added with stirring. After stirring at 10 ° C. for 2 hours, diluting with 1000 ml of ether, washing the solvent layer with aqueous sodium thiosulfate, washing thoroughly with water, and concentrating, softening point is 95 ° C., partial glycidyl etherification of epoxy equivalent 264 72 g of phenol novolac resin was obtained. The partially glycidyl etherified phenol novolac resin is referred to as Compound D.

【0022】実施例2 実施例1において、製造例1で得た化合物A(水酸基当
量106)106gに代えて、製造例2で得た化合物B
(水酸基当量120)120gを使用した他は、実施例
1と同様に行い、軟化点は91℃、エポキシ当量296
の部分グリシジルエーテル化フェノールノボラック樹脂
80gを得た。該部分グリシジルエーテル化フェノール
ノボラック樹脂を化合物Eという。
Example 2 Compound B obtained in Production Example 2 was replaced with 106 g of Compound A (hydroxyl group equivalent 106) obtained in Production Example 1 in Example 1.
(Hydroxyl equivalent 120) The same procedure as in Example 1 except that 120 g was used, the softening point was 91 ° C, and the epoxy equivalent was 296.
80 g of partially glycidyl etherified phenol novolac resin of was obtained. The partially glycidyl etherified phenol novolac resin is referred to as Compound E.

【0023】(試験例)実施例で得られた化合物Aもし
くはB、または比較例として製造例3で得られた化合物
Cとエポキシ樹脂(ESCM195XL、住友化学工業
(株)製、エポキシ当量198)の混合物、および硬化
促進剤DBU(1,8−ジアザ−ビシクロ(5,4,
0)ウンデセン−7)をそれぞれ表1に示す割合で配合
し、175℃で10時間硬化させ厚さ2mmの板状の試
験片を得た。得られた硬化物のガラス転移温度、吸水率
を測定した結果を表1に示す。
(Test Example) Compound A or B obtained in the example or compound C obtained in Production Example 3 as a comparative example and an epoxy resin (ESCM195XL, manufactured by Sumitomo Chemical Co., Ltd., epoxy equivalent 198) Mixture and curing accelerator DBU (1,8-diaza-bicyclo (5,4,4
0) undecene-7) was blended in the proportions shown in Table 1 and cured at 175 ° C. for 10 hours to obtain a plate-shaped test piece having a thickness of 2 mm. The results of measuring the glass transition temperature and water absorption of the obtained cured product are shown in Table 1.

【0024】なお、ガラス転移温度(Tg)はセイコー
電子工業( 株) TMA120を用いて測定した。また、
吸水率は厚さ2mm×直径50mmの円盤状試験片を恒
温恒湿器(タバイ製、HUMIDITY CABINE
T、LHL−111)を用いて、85℃、85%湿度の
条件で96時間放置した後における重量の増加率であ
る。
The glass transition temperature (Tg) was measured by using TMA120 manufactured by Seiko Instruments Inc. Also,
The water absorption rate is 2 mm in thickness and 50 mm in diameter, and a disk-shaped test piece is made into a thermo-hygrostat (manufactured by Tabai, HUMIDITY CABINE
T, LHL-111) and the rate of increase in weight after being left for 96 hours under the conditions of 85 ° C. and 85% humidity.

【0025】[0025]

【表1】 [Table 1]

【0026】表1の結果から、本発明の自硬化した硬化
物は、殆ど同じガラス転移温度(耐熱性)を有する、従
来のエポキシ樹脂組成物の硬化物に比べて、吸水性が低
いことが認められる。
From the results shown in Table 1, the self-cured cured product of the present invention has lower water absorption than the cured product of the conventional epoxy resin composition having almost the same glass transition temperature (heat resistance). Is recognized.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 数平均分子量450〜1000のフェノ
ールノボラック樹脂とハロゲン化アリルを反応させて、
該フェノールノボラック樹脂の水酸基の20〜80%を
アリルエーテル化した後に、過酸によりアリル基をエポ
キシ化することを特徴とする部分グリシジルエーテル化
フェノールノボラック樹脂の製造方法。
1. A phenol novolac resin having a number average molecular weight of 450 to 1000 is reacted with an allyl halide,
A method for producing a partially glycidyl etherified phenol novolac resin, which comprises allylating 20 to 80% of the hydroxyl groups of the phenol novolac resin and then epoxidizing the allyl group with peracid.
JP31898193A 1993-11-24 1993-11-24 Production of glycidyl-etherified phenolic novolak resin Pending JPH07145221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31898193A JPH07145221A (en) 1993-11-24 1993-11-24 Production of glycidyl-etherified phenolic novolak resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31898193A JPH07145221A (en) 1993-11-24 1993-11-24 Production of glycidyl-etherified phenolic novolak resin

Publications (1)

Publication Number Publication Date
JPH07145221A true JPH07145221A (en) 1995-06-06

Family

ID=18105161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31898193A Pending JPH07145221A (en) 1993-11-24 1993-11-24 Production of glycidyl-etherified phenolic novolak resin

Country Status (1)

Country Link
JP (1) JPH07145221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073960A1 (en) 2008-12-26 2010-07-01 昭和電工株式会社 Epoxy compound production method
WO2014123051A1 (en) * 2013-02-05 2014-08-14 日本化薬株式会社 Allyl ether resin and epoxy resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073960A1 (en) 2008-12-26 2010-07-01 昭和電工株式会社 Epoxy compound production method
US8536352B2 (en) 2008-12-26 2013-09-17 Showa Denko K.K. Method of producing epoxy compounds
WO2014123051A1 (en) * 2013-02-05 2014-08-14 日本化薬株式会社 Allyl ether resin and epoxy resin
KR20150114939A (en) * 2013-02-05 2015-10-13 닛뽄 가야쿠 가부시키가이샤 Allyl ether resin and epoxy resin
JPWO2014123051A1 (en) * 2013-02-05 2017-02-02 日本化薬株式会社 Allyl ether resin and epoxy resin
JP2018123334A (en) * 2013-02-05 2018-08-09 日本化薬株式会社 Allyl ether resin and epoxy resin

Similar Documents

Publication Publication Date Title
JP5013234B2 (en) Curable resin composition, cured product thereof, phenolic resin, epoxy resin, and semiconductor sealing material
GB2316407A (en) Epoxy resins and compositions containing them
KR100611733B1 (en) Process for producing high-purity epoxy resin and epoxy resin composition
JP5689230B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device, and epoxy resin
US6255365B1 (en) Epoxy resin composition for semiconductor encapsulation
JP5473209B2 (en) Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof
JP5605629B2 (en) Curable resin composition, cured product thereof, phenol resin, epoxy resin, and semiconductor encapsulant
JP2013108011A (en) Epoxy resin solution, epoxy resin composition, hardened material and adhesive
JPH05339341A (en) Epoxy resin composition
JPH1143531A (en) Modified epoxy resin, epoxy resin composition and its cured product
JP4264769B2 (en) Epoxy resin composition and semiconductor sealing material
JPH07258240A (en) Glycidyl ether compound and epoxy resin composition
JPH07145221A (en) Production of glycidyl-etherified phenolic novolak resin
JPH03163128A (en) Preparation of novolac epoxy resin and novolac epoxy resin composition
JPH07145300A (en) Epoxy resin composition
JP4863434B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP5590416B2 (en) Curable resin composition, cured product thereof, phenol resin, epoxy resin, and semiconductor sealing material
JPH06145309A (en) Hydroxynaphthalene copolymer, epoxidized product thereof, and production and use thereof
JP7345750B2 (en) Epoxy resin composition, epoxy resin cured product and epoxy resin modifier
JPH07216052A (en) Epoxy resin and epoxy resin composition
JPH04304225A (en) New compound, resin, resin composition, and cured article
JPH0625393A (en) Phenol polymer, its production and use thereof
JPH07258241A (en) Glycidyl ether compound and epoxy resin composition
JP3141960B2 (en) New epoxy resin, resin composition and cured product
JPH07145229A (en) Epoxy resin composition