JPH07143764A - Electrostatic actuator and its driving method - Google Patents

Electrostatic actuator and its driving method

Info

Publication number
JPH07143764A
JPH07143764A JP30754593A JP30754593A JPH07143764A JP H07143764 A JPH07143764 A JP H07143764A JP 30754593 A JP30754593 A JP 30754593A JP 30754593 A JP30754593 A JP 30754593A JP H07143764 A JPH07143764 A JP H07143764A
Authority
JP
Japan
Prior art keywords
rotor
electrode
stator
charging
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30754593A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuda
広志 松田
Kazunari Matsuzaki
一成 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP30754593A priority Critical patent/JPH07143764A/en
Publication of JPH07143764A publication Critical patent/JPH07143764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

PURPOSE:To obtain high output by providing a radial bearing, having the rotary side and the fixed side which come into contact with each other and connected electrically during stoppage whereas separated from each other during rotation, with a charging electrode forming a capacitor between the rotor electrode and the stator electrode at the shaft end part of rotor. CONSTITUTION:When positive and negative voltages are applied to a stator electrode 7 and a charging electrode 6, respectively, from a power supply section through lead wires 12, 13 while being controlled by a control circuit 11 under stationary state, the electrode of a rotor 2 is charged negatively whereas the stator electrode 7 is charged positively because an aerodynamic radial bearing 4 and the charging electrode 6 are conducting through contact. When the application of charging voltage is interrupted and a three-phase driving voltage is applied to the stator electrode 7, the rotor 2 is rotated. When the rotational speed is increased, noncontact supporting of the rotor 2 is realized by means of the aerodynamic radial bearing 4 and a thrust bearing 5 and the rotation is sustained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロマシン等に用
いられる静電アクチュエータおよびその駆動方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic actuator used in micromachines and the like and a driving method thereof.

【0002】[0002]

【従来の技術】従来の静電アクチュエータは、ステータ
内周部に一定の間隔で電極を配置し、このステータ電極
に対して所定の間隔、たとえばピッチ3/4でロータ電
極を配置した構成のものがある。この静電アクチュエー
タは、ロータとステータ間に電界を発生させる必要か
ら、ロータ電極に常時、電圧を印加しており、この状態
でステータ電極に駆動用の電圧を順次印加して、ロータ
を駆動させていた。ロータ電極に常時電圧を印加する方
法として、直接導線を接続して導通を得る方法、電極を
滑り接触させる方法、滑り軸受で導通を確保するなどの
方法が取られていた(たとえば、特開昭63-95858号、特
開平4-96669 号)。
2. Description of the Related Art A conventional electrostatic actuator has a structure in which electrodes are arranged at a constant interval on an inner peripheral portion of a stator, and rotor electrodes are arranged at a predetermined interval with respect to the stator electrode, for example, pitch 3/4. There is. Since this electrostatic actuator needs to generate an electric field between the rotor and the stator, a voltage is constantly applied to the rotor electrode, and in this state, a driving voltage is sequentially applied to the rotor electrode to drive the rotor. Was there. As a method of constantly applying a voltage to the rotor electrode, a method of connecting a conductive wire directly to obtain conduction, a method of slidingly contacting the electrode, a method of ensuring conduction with a sliding bearing, etc. have been taken (for example, Japanese Patent Laid-Open Publication No. Sho. 63-95858, JP-A-4-96669).

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の直接
導線を取り付ける方法では、導線が干渉するため、回転
数の制限や出力トルクの低下を招くし、電極を滑り接触
させる方法では、電極部の構成が複雑になるばかりでな
く接触により摩耗、摩擦部分が増え出力トルクの低減や
破損の原因となる。また、軸受部で導通を確保する方法
では、摩擦抵抗を小さくするための空気軸受、磁気軸受
など非接触軸受や、真空中などの特殊環境で使用する場
合の非導電性の固体潤滑材による軸受が使用できないと
いう問題があった。さらに、出力トルクは駆動電圧の2
乗に比例するため、比較的大きな力を得るには電圧を大
きくしなければならない。そのためコントローラや電源
装置を小型化することができず、マイクロマシンのアク
チュエータとして使用できない等の問題があった。そこ
で、本発明は導線による干渉がなく、非接触軸受が適用
でき、かつ小さな駆動電圧で高い出力が得られる小型の
静電アクチュエータを提供することを目的とする。
However, in the conventional method of attaching the direct conductive wire, the conductive wires interfere with each other, so that the rotation speed is limited and the output torque is lowered. Not only does the structure become complicated, but wear and friction increase due to contact, which reduces output torque and causes damage. In addition, in the method of ensuring continuity in the bearing part, non-contact bearings such as air bearings and magnetic bearings to reduce frictional resistance, and bearings made of non-conductive solid lubricant when used in special environments such as vacuum There was a problem that it could not be used. Furthermore, the output torque is 2 of the drive voltage.
Since it is proportional to the power, the voltage must be increased to obtain a relatively large force. Therefore, there is a problem that the controller and the power supply device cannot be downsized and cannot be used as an actuator of a micromachine. Therefore, an object of the present invention is to provide a small-sized electrostatic actuator which is free from interference by a conductive wire, can use a non-contact bearing, and can obtain a high output with a small driving voltage.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は一定のピッチで配置された複数個の凸形の
ロータ電極をもつ円筒形のロータと、ロータの電極ピッ
チに対して所定の関係をもつ複数個のステータ電極が配
置された円筒形のステータと、ロータを支持する軸受
と、ロータ電極およびステータ電極にそれぞれ導線で接
続された電源部とからなる静電アクチュエータにおい
て、ロータの本体部または軸端部に、ロータ電極とステ
ータ電極間にコンデンサを形成させる充電用電極を停止
時には回転側と固定側とが接触し、電気的に導通してお
り、回転時には非接触となり電気的に絶縁されるラジア
ル軸受に備えた構成にしている。この静電アクチュエー
タを駆動するには、充電用電極とステータ電極間との間
に電圧を印加してこの間にコンデンサを形成した後、ス
テータ電極に駆動用の電圧を印加して駆動する。なお、
充電用電極のコンデンサに充電する電圧をステータの駆
動電圧よりも高くするとより効果的である。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a cylindrical rotor having a plurality of convex rotor electrodes arranged at a constant pitch, and a predetermined rotor electrode pitch. In an electrostatic actuator including a cylindrical stator in which a plurality of stator electrodes having the above relationship are arranged, a bearing that supports the rotor, and a power supply unit that is connected to the rotor electrode and the stator electrode by conductors respectively, When the charging electrode that forms a capacitor between the rotor electrode and the stator electrode is stopped at the main body or the shaft end, the rotating side and the fixed side are in contact with each other when they are stopped, and they are electrically conducting. The radial bearing is insulated from the above. In order to drive this electrostatic actuator, a voltage is applied between the charging electrode and the stator electrode to form a capacitor between them, and then a driving voltage is applied to the stator electrode to drive it. In addition,
It is more effective if the voltage for charging the capacitor of the charging electrode is higher than the drive voltage of the stator.

【0005】[0005]

【作用】上記手段により充電用電極を設けているので、
充電用電極とステータ電極間に電圧を印加するとロータ
電極とステータ電極間にコンデンサが形成され、ロータ
電極の凸形部は電荷密度が高い状態になる。この状態で
ステータ電極に正の電圧を印加すると、ロータ中の過剰
電荷はステータ電極に引きつけられ、ロータ電極の凸部
に集中し、ステータ電極とロータ電極間に吸引力が働き
ロータは回転力を受ける。電圧を印加する電極をR相、
S相、T相と順次切り換えることによりロータは回転を
する。このようにロータは導線とは分離されているの
で、干渉せず円滑に回転し推力の損失もない。
Since the charging electrode is provided by the above means,
When a voltage is applied between the charging electrode and the stator electrode, a capacitor is formed between the rotor electrode and the stator electrode, and the convex portion of the rotor electrode has a high charge density. When a positive voltage is applied to the stator electrode in this state, excess charge in the rotor is attracted to the stator electrode and concentrates on the protrusions of the rotor electrode, attracting force between the stator electrode and the rotor electrode, and causing the rotor to rotate. receive. The electrode for applying the voltage is the R phase,
The rotor rotates by sequentially switching between the S phase and the T phase. Since the rotor is separated from the conductive wire in this way, it does not interfere with each other and rotates smoothly, and there is no loss of thrust.

【0006】[0006]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。 第1実施例 図1は本発明の第1の実施例を示す静電アクチュエータ
の側断面図、図2は図1のA−A’線における断面図で
ある。図において1は円筒形状のステータ、2はロー
タ、3はロータ2に一体に設けられた回転軸、4は回転
軸3を支える動圧空気を用いたラジアル軸受、5は軸方
向の支持を行う動圧空気を用いたスラスト軸受、6は充
電用電極、7はステータ1のステータ電極、8はステー
タ電極同士を絶縁する絶縁体、10は電源部、11はス
イッチング回路を含む制御回路である。12はステータ
電極7と電源部10とを接続する導線である。ステータ
1は絶縁物からなる円筒状のケーシングの内側に円周方
向に一定のピッチでステータ電極7が絶縁体8を介して
配置されている。ロータ2はアルミニウム等の軽金属か
らなり、表面には単一相である凸形で複数個のロータ電
極21を配置したもので、回転軸と一体構造になって
る。ロータ電極21の表面は図示しない絶縁膜で覆われ
ており、ステータ電極との接触による短絡および絶縁破
壊を防いでいる。充電用電極6はラジアル軸受4の外周
部に設けられ、導線13(G1 )により電源部10に接
続されている。つぎに、動作を図3の電圧印加のための
接続配線と電荷の分布を示す模式図および図4の印加電
圧のパターン図により説明する。まず、ステータ1とロ
ータ2間に充電する充電時の状態を図3(a)および図
4の「充電時」の部分に示す。アクチュエータが静止し
ている状態で制御回路11により電源部10から導線1
2を介してステータ電極7に正、導線13を介して充電
用電極6に負の電圧を印加する(G1 )。ラジアル軸受
4と充電用電極6とは接触により導通している。したが
って、ロータ電極21にマイナス(−)電荷が、ステー
タ電極7にプラス(+)電荷が帯電する。つぎに、充電
終了後のロータ駆動時の状態を図3(b)および図4の
「ロータ駆動時」の部分に示す。ステータ電極7と充電
用電極6への電圧印加を停止し、ステータ電極7に駆動
用の電圧を印加する。これによりロータ電極21の表面
の電荷はロータ電極21とステータ電極7の間の電界に
集中し、静電力を発生させる。駆動電圧は矩形波の、1
20度位相の異なるR、S、Tの各相に、必ずどこかの
電極に電圧が印加するようにわずかに重なるようなパタ
ーンにしている。この電圧パターンを用いることによ
り、ロータ2を連続的に回転させることができる。ロー
タ2の回転速度が増すとロータ2は動圧空気を用いたラ
ジアル軸受4およびスラスト軸受5により非接触に支持
される。ロータ2は周囲と絶縁されているが、ロータ2
内に閉じこめられた(−)電荷によって継続的に回転力
が与えられる。このように非接触にロータを支持するこ
とにより、導線が直接接続されていないので、摩擦損失
を排除でき効率の良いアクチュエータを得ることができ
る。また、充電用電極のキャパシタンスを大きくするこ
とで、出力を落とさずに駆動時に印加する電圧を低く抑
えることができる。本実施例では、ロータ2の材料に軽
金属を用いたが、この代わりに合成樹脂を用いロータ本
体および回転軸の全表面を金属膜を被覆したものでもよ
い。この場合、軽量化できるので、さらに駆動力を向上
することができる。 第2実施例 図5は本発明の第2の実施例を示す静電アクチュエータ
の側断面図、図6はその印加電圧のパターン図である。
これは第1実施例の充電用電極6に加えて、スラスト軸
受5を用い、補助コンデンサ9を形成するための補助コ
ンデンサ電極91を形成している。充電用電極6には負
の電圧(G1 )を、補助コンデンサ電極91には正の電
圧(G2 )を印加するように接続されている。まず、ス
ラスト軸受5を作動させて回転側と固定側を非接触にす
る。この後、充電のための電圧を制御回路11により電
源部10からステータ電極7と補助コンデンサ電極91
にそれぞれ正の電圧を印加し、充電用電極6には負の電
圧を印加する。そうすると、ステータ電極7とロータ電
極21との間およびスラスト軸受5の固定側51と回転
側52との間の双方にコンデンサが形成される。すなわ
ち、ステータ電極7とスラスト軸受5の固定側51に
(+)電荷、ロータ電極21とスラスト軸受5の回転側
52に(−)電荷が励起される。この(−)電荷がロー
タ電極21に集積する。この状態で第1の実施例と同様
に3相になったステータ電極7に順次電圧を印加するこ
とにより、ロータ2を連続的に回転させることができ
る。回転時はラジアル軸受4によりロータ2は非接触に
支持される。第3実施例図7は本発明の第3実施例を示
す静電アクチュエータの側断面図である。これは第2実
施例の補助コンデンサをロータ2の端面とステータ1の
軸受保持部11に形成したものである。ドーナツ円板状
の補助コンデンサ電極9を軸受保持部11の内面に形成
し、正の電圧(G2 )を印加するように電源部10に接
続されている。動作は第2実施例と同様である。なお、
本実施例ではラジアルギャップの静電アクチュエータに
ついて述べたが、ワブルタイプやアキシャルギャップタ
イプの静電アクチュエータにも有効に適用できる。ま
た、非接触軸受けとして空気動圧軸受を用いたが、他の
動圧流体軸受や、静圧軸受、磁気軸受などの軸受の使用
が可能であり、ロータとステータ間にかける電圧の正負
もこれに限らない。さらに充電用と駆動用の2つの電源
部を別個のものとすることにより、駆動用の制御器およ
び電源部を小型・省電力化することができる。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a side sectional view of an electrostatic actuator showing a first embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AA ′ in FIG. In the drawing, 1 is a cylindrical stator, 2 is a rotor, 3 is a rotary shaft provided integrally with the rotor 2, 4 is a radial bearing using dynamic pressure air that supports the rotary shaft 3, and 5 is axial support. A thrust bearing using dynamic air, 6 is a charging electrode, 7 is a stator electrode of the stator 1, 8 is an insulator that insulates the stator electrodes from each other, 10 is a power supply unit, and 11 is a control circuit including a switching circuit. Reference numeral 12 is a conductor wire that connects the stator electrode 7 and the power supply unit 10. In the stator 1, stator electrodes 7 are arranged inside a cylindrical casing made of an insulating material at a constant pitch in the circumferential direction with an insulator 8 interposed therebetween. The rotor 2 is made of a light metal such as aluminum, and a plurality of rotor electrodes 21 having a single-phase convex shape are arranged on the surface of the rotor 2, which is integrated with the rotating shaft. The surface of the rotor electrode 21 is covered with an insulating film (not shown) to prevent short circuit and dielectric breakdown due to contact with the stator electrode. The charging electrode 6 is provided on the outer peripheral portion of the radial bearing 4, and is connected to the power supply unit 10 by a conductor 13 (G 1 ). Next, the operation will be described with reference to FIG. 3 which is a schematic diagram showing the connection wiring for voltage application and charge distribution, and FIG. 4 which is a pattern diagram of the applied voltage. First, the charging state in which the stator 1 and the rotor 2 are charged is shown in the "charging" portion of FIG. 3 (a) and FIG. When the actuator is stationary, the control circuit 11 controls the power supply unit 10 to connect the conductor 1
A positive voltage is applied to the stator electrode 7 via 2 and a negative voltage is applied to the charging electrode 6 via the lead wire 13 (G 1 ). The radial bearing 4 and the charging electrode 6 are electrically connected by contact. Therefore, the rotor electrode 21 is charged with a negative (−) electric charge, and the stator electrode 7 is charged with a positive (+) electric charge. Next, the state of driving the rotor after charging is shown in FIG. 3 (b) and the portion of "driving the rotor" in FIG. The voltage application to the stator electrode 7 and the charging electrode 6 is stopped, and the driving voltage is applied to the stator electrode 7. As a result, the electric charges on the surface of the rotor electrode 21 are concentrated on the electric field between the rotor electrode 21 and the stator electrode 7, and an electrostatic force is generated. Drive voltage is square wave, 1
The R, S, and T phases that are different in phase by 20 degrees are slightly overlapped so that a voltage is always applied to some electrode. By using this voltage pattern, the rotor 2 can be continuously rotated. When the rotation speed of the rotor 2 increases, the rotor 2 is supported in a non-contact manner by the radial bearing 4 and the thrust bearing 5 using dynamic pressure air. Although the rotor 2 is insulated from the surroundings, the rotor 2
The rotational force is continuously applied by the (-) charge trapped inside. By supporting the rotor in a non-contact manner as described above, the conductor wire is not directly connected, so that friction loss can be eliminated and an efficient actuator can be obtained. Further, by increasing the capacitance of the charging electrode, the voltage applied during driving can be suppressed to a low level without reducing the output. In this embodiment, light metal is used as the material of the rotor 2, but synthetic resin may be used instead of the metal, and the entire surface of the rotor body and the rotary shaft may be covered with a metal film. In this case, since the weight can be reduced, the driving force can be further improved. Second Embodiment FIG. 5 is a side sectional view of an electrostatic actuator showing a second embodiment of the present invention, and FIG. 6 is a pattern diagram of its applied voltage.
In addition to the charging electrode 6 of the first embodiment, the thrust bearing 5 is used to form the auxiliary capacitor electrode 91 for forming the auxiliary capacitor 9. The charging electrode 6 is connected to apply a negative voltage (G 1 ) and the auxiliary capacitor electrode 91 is applied to apply a positive voltage (G 2 ). First, the thrust bearing 5 is operated to bring the rotating side and the fixed side into non-contact with each other. Thereafter, the voltage for charging is supplied from the power supply unit 10 to the stator electrode 7 and the auxiliary capacitor electrode 91 by the control circuit 11.
To the charging electrode 6 and a negative voltage to the charging electrode 6. Then, capacitors are formed both between the stator electrode 7 and the rotor electrode 21 and between the fixed side 51 and the rotating side 52 of the thrust bearing 5. That is, (+) charges are excited on the fixed side 51 of the stator electrode 7 and the thrust bearing 5, and (−) charges are excited on the rotating side 52 of the rotor electrode 21 and the thrust bearing 5. This (−) charge is accumulated on the rotor electrode 21. In this state, the rotor 2 can be continuously rotated by sequentially applying a voltage to the three-phase stator electrode 7 as in the first embodiment. During rotation, the rotor 2 is supported by the radial bearing 4 in a non-contact manner. Third Embodiment FIG. 7 is a side sectional view of an electrostatic actuator showing a third embodiment of the present invention. This is one in which the auxiliary capacitor of the second embodiment is formed on the end surface of the rotor 2 and the bearing holding portion 11 of the stator 1. A donut disk-shaped auxiliary capacitor electrode 9 is formed on the inner surface of the bearing holding portion 11 and is connected to the power supply portion 10 so as to apply a positive voltage (G 2 ). The operation is similar to that of the second embodiment. In addition,
Although the radial gap electrostatic actuator is described in the present embodiment, the present invention can be effectively applied to a wobble type or axial gap type electrostatic actuator. Further, although the air dynamic pressure bearing was used as the non-contact bearing, other dynamic pressure fluid bearings, static pressure bearings, magnetic bearings, and other bearings can be used. Not limited to Further, by making the two power sources for charging and driving separate, it is possible to reduce the size and power consumption of the driving controller and the power source.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、駆
動の前にロータとステータ間にコンデンサを形成し、駆
動時は導線を切離すかまたは、非接触軸受を用いてロー
タを回転させるので、導線の干渉と軸受の摩擦抵抗がな
くなり、小形で高出力の静電アクチュエータが得られる
効果がある。
As described above, according to the present invention, a capacitor is formed between the rotor and the stator before driving, and the conductor is disconnected during driving, or the rotor is rotated by using a non-contact bearing. As a result, the interference of the lead wires and the frictional resistance of the bearing are eliminated, and there is an effect that a compact and high-power electrostatic actuator can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す静電アクチュエータ
の側断面図である。
FIG. 1 is a side sectional view of an electrostatic actuator showing a first embodiment of the present invention.

【図2】図1のA−A’線における断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ in FIG.

【図3】本発明の動作原理を示す模式図である。FIG. 3 is a schematic view showing the operating principle of the present invention.

【図4】本発明の第1実施例の駆動パターン図である。FIG. 4 is a drive pattern diagram of the first embodiment of the present invention.

【図5】本発明の第2実施例を示す静電アクチュエータ
の側断面図である。
FIG. 5 is a side sectional view of an electrostatic actuator showing a second embodiment of the present invention.

【図6】本発明の第2実施例の駆動パターン図である。FIG. 6 is a drive pattern diagram of a second embodiment of the present invention.

【図7】本発明の第3実施例を示す静電アクチュエータ
の側断面図である。
FIG. 7 is a side sectional view of an electrostatic actuator showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:ステータ 11:軸受保持部 2:ロータ 21:ロータ電極 3:回転軸 4:ラジアル軸受 5:スラスト軸受 51:固定側 52:回転側 6:充電用電極 7:ステータ電極 8:絶縁体 9:補助コンデンサ 91:補助コンデンサ電極 10:電源部 11:制御回路 12、13:導線 1: Stator 11: Bearing holding part 2: Rotor 21: Rotor electrode 3: Rotating shaft 4: Radial bearing 5: Thrust bearing 51: Fixed side 52: Rotating side 6: Charging electrode 7: Stator electrode 8: Insulator 9: Auxiliary capacitor 91: Auxiliary capacitor electrode 10: Power supply unit 11: Control circuit 12, 13: Conductor

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】一定のピッチで配置された複数個の凸形の
ロータ電極をもつ円筒形のロータと、前記ロータの電極
ピッチに対して所定の関係をもつ複数個のステータ電極
が配置された円筒形のステータと、前記ロータを支持す
る軸受と、前記ロータ電極およびステータ電極にそれぞ
れ導線で接続された電源部とからなる静電アクチュエー
タにおいて、 前記ロータの本体部または軸端部に、前記ロータ電極と
前記ステータ電極との間にコンデンサを形成させる充電
用電極を備えたことを特徴する静電アクチュエータ。
1. A cylindrical rotor having a plurality of convex rotor electrodes arranged at a constant pitch, and a plurality of stator electrodes having a predetermined relationship with the rotor electrode pitch. An electrostatic actuator comprising a cylindrical stator, a bearing for supporting the rotor, and a power source section connected to the rotor electrode and the stator electrode by conductors respectively, wherein the rotor body is attached to the rotor body or the shaft end portion. An electrostatic actuator comprising a charging electrode for forming a capacitor between an electrode and the stator electrode.
【請求項2】前記充電用電極を前記ロータの停止時には
回転側と固定側とが接触しており、回転時には非接触と
なるラジアル軸受に設けたことを特徴とする請求項1記
載の静電アクチュエータ。
2. The electrostatic bearing according to claim 1, wherein the charging electrode is provided on a radial bearing whose rotating side and fixed side are in contact with each other when the rotor is stopped and which are not in contact with each other when rotating the rotor. Actuator.
【請求項3】前記コンデンサに加え前記ロータの軸端部
に補助コンデンサを設けたことを特徴する請求項1また
は2記載の静電アクチュエータ。
3. The electrostatic actuator according to claim 1, wherein an auxiliary capacitor is provided at the shaft end of the rotor in addition to the capacitor.
【請求項4】前記補助コンデンサを非接触のスラスト軸
受に設けたことを特徴する請求項3記載の静電アクチュ
エータ。
4. The electrostatic actuator according to claim 3, wherein the auxiliary capacitor is provided in a non-contact thrust bearing.
【請求項5】前記補助コンデンサの容量が前記ロータ電
極と前記ステータ電極との間のコンデンサ容量よりも大
きいことを特徴とする請求項3または4記載の静電アク
チュエータ。
5. The electrostatic actuator according to claim 3, wherein the capacity of the auxiliary capacitor is larger than the capacity of the capacitor between the rotor electrode and the stator electrode.
【請求項6】一定のピッチで配置された複数個の凸形の
ロータ電極をもつ円筒形のロータと、前記ロータの電極
ピッチに対して所定の関係をもつ複数個のステータ電極
が配置された円筒形のステータと、前記ロータを支持す
る軸受と、前記ロータ電極およびステータ電極にそれぞ
れ導線で接続された電源部とからなり、前記ステータ電
極に印加する電圧を順次切り換えることによって駆動さ
れる静電アクチュエータの駆動方法において、 前記ロータの本体部または軸端部に、前記ロータ電極と
前記ステータとの間にコンデンサを形成させる充電用電
極を備え、前記ロータの充電用電極と前記ステータ電極
間との間に電圧を印加してこの間にコンデンサを形成し
た後、前記ステータ電極に駆動用の電圧を印加すること
を特徴とする静電アクチュエータの駆動方法。
6. A cylindrical rotor having a plurality of convex rotor electrodes arranged at a constant pitch, and a plurality of stator electrodes having a predetermined relation to the electrode pitch of the rotor. An electrostatic capacitor that is composed of a cylindrical stator, a bearing that supports the rotor, and a power supply unit that is connected to the rotor electrode and the stator electrode by conductors, and that is driven by sequentially switching the voltage applied to the stator electrode. In the driving method of the actuator, a charging electrode for forming a capacitor between the rotor electrode and the stator is provided on a main body portion or a shaft end portion of the rotor, and a charging electrode between the rotor and the stator electrode is provided. A voltage is applied between the electrodes to form a capacitor therebetween, and then a driving voltage is applied to the stator electrode. How to drive Eta.
【請求項7】前記充電用電極のコンデンサに充電する充
電電圧を前記ステータの駆動電圧より高くすることを特
徴とする請求項6記載の静電アクチュエータの駆動方
法。
7. The method of driving an electrostatic actuator according to claim 6, wherein the charging voltage for charging the capacitor of the charging electrode is set higher than the driving voltage of the stator.
JP30754593A 1993-11-12 1993-11-12 Electrostatic actuator and its driving method Pending JPH07143764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30754593A JPH07143764A (en) 1993-11-12 1993-11-12 Electrostatic actuator and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30754593A JPH07143764A (en) 1993-11-12 1993-11-12 Electrostatic actuator and its driving method

Publications (1)

Publication Number Publication Date
JPH07143764A true JPH07143764A (en) 1995-06-02

Family

ID=17970387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30754593A Pending JPH07143764A (en) 1993-11-12 1993-11-12 Electrostatic actuator and its driving method

Country Status (1)

Country Link
JP (1) JPH07143764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113928564A (en) * 2021-11-25 2022-01-14 北京航空航天大学 Rotor power system based on electrostatic driving

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113928564A (en) * 2021-11-25 2022-01-14 北京航空航天大学 Rotor power system based on electrostatic driving
CN113928564B (en) * 2021-11-25 2023-04-18 北京航空航天大学 Rotor power system based on electrostatic driving

Similar Documents

Publication Publication Date Title
US6353276B1 (en) High efficiency alternating and direct current electrostatic motor
JPS5981254U (en) Grounding device for preventing galvanic corrosion of rotating electrical machine bearings
KR0138031B1 (en) X-ray tube apparatus of a rotating anode type
US20060049711A1 (en) Homopolar multi-frames (cylinders) generator-motor
US3471205A (en) Squeeze film bearings
EP0297121A1 (en) Rectifier assembly
JP3608430B2 (en) Rotating electric machine
US5087852A (en) Direct current traveling wave motor
JPH07143764A (en) Electrostatic actuator and its driving method
JPH08149858A (en) Electrostatic motor
RU2214033C2 (en) Electrostatic induction generator with multiplication of charges
JP3478741B2 (en) Bearing current reduction device for rotating machine
JP7286032B1 (en) Rotating electric machine
EP1368888B1 (en) High efficiency alternating and direct current electrostatic motor
US20230369992A1 (en) Electrostatic actuator
JP2003199285A (en) Inverter driving induction motor
CN114785080A (en) Shielded capacitor type alternating current generator
JP2000134860A (en) Electric rotating machine
SU1640799A1 (en) Unipolar machine
JPH08256485A (en) Electrostatic actuator and its drive method
JPH0323814Y2 (en)
SU1066009A1 (en) Electrostatic motor
JP2001095267A (en) Electrostatic actuator
WO2024180463A1 (en) Electrostatic alternating current generator
JP2995821B2 (en) Electrostatic motor