JPH07143687A - Battery charger - Google Patents

Battery charger

Info

Publication number
JPH07143687A
JPH07143687A JP28529593A JP28529593A JPH07143687A JP H07143687 A JPH07143687 A JP H07143687A JP 28529593 A JP28529593 A JP 28529593A JP 28529593 A JP28529593 A JP 28529593A JP H07143687 A JPH07143687 A JP H07143687A
Authority
JP
Japan
Prior art keywords
storage battery
charging
battery
remaining capacity
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28529593A
Other languages
Japanese (ja)
Inventor
Hideaki Mizumoto
秀顕 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP28529593A priority Critical patent/JPH07143687A/en
Publication of JPH07143687A publication Critical patent/JPH07143687A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To provide a battery charger which can shorten the charging time of a battery up to its full charge with electricity and, at the same time, can prevent the overcharging of the battery. CONSTITUTION:A battery 5 is charged with an electric current supplied from an external power supply 1 and PWM-controlled by means of a charging control section 3. A charging amount calculating section 8 calculates the charging amount of the battery 5 by detecting the charging time since the charging of the battery 5 is started. A discharging amount calculating section 11 calculates the discharging amount from the battery 5 by detecting the discharging time since the battery 5 starts discharge to a load 2. Then a residual capacity calculating section 12 calculates the residual capacity of the battery 5 from the charging amount and discharging amount. In addition, a charging control section 3 compares the residual capacity of the battery 5 with a prescribed value and, when the residual capacity is larger than the prescribed value, charges the battery 5 with electricity in a trickle charging mode. When the residual capacity is smaller than the prescribed value, on the contrary, the section 3 quickly charges the battery 5 in a quick charging mode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負荷に電源供給を行う
蓄電池を外部電源からの充電電流によって充電する充電
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for charging a storage battery that supplies power to a load with a charging current from an external power supply.

【0002】[0002]

【従来の技術】従来より、上記のような充電装置として
は、図6に示すようなものがあった。図6に示す充電装
置は、商用電源等の外部電源1から供給される交流電流
をダイオードブリッジDBで全波整流した後ダイオード
3 を介してコンデンサC2 で平滑して負荷2に供給し
ている。また、ダイオードブリッジDBの出力側の端子
は、抵抗R2 を介してコンデンサC3 とツェナーダイオ
ードZDとに接続されており、ダイオードブリッジDB
の出力が上記コンデンサC3 とツェナーダイオードZD
とで定電圧化されて充電制御部13に供給されている。
2. Description of the Related Art Conventionally, as a charging device as described above, there is one as shown in FIG. The charging device shown in FIG. 6 performs full-wave rectification on an alternating current supplied from an external power supply 1 such as a commercial power supply by a diode bridge DB, smoothes it with a capacitor C 2 via a diode D 3 , and supplies the smoothed current to a load 2. There is. Further, the output-side terminal of the diode bridge DB is connected to the capacitor C 3 and the Zener diode ZD through the resistor R 2, a diode bridge DB
Output is the above capacitor C 3 and Zener diode ZD
The voltage is converted to a constant voltage and is supplied to the charging control unit 13.

【0003】充電制御部13は、その電圧出力端子VO
にトランジスタQ2 のゲートが接続されており、トラン
ジスタQ2 をオン/オフ制御するものである。また、充
電制御部13の電流出力端子IO には、抵抗R3 とホト
カプラPCの2次側であるホトトランジスタQ3 との並
列回路及び抵抗R4 が直列に接続されており、電流出力
端子IO の電位は一定に保たれているため電流出力端子
O からの出力電流は上記2つの抵抗R3 ,R4 によっ
て決定される。すなわち、ホトトランジスタQ 3 がオフ
のときには、電流出力端子Io からは2つの抵抗R3
4 によって決まる出力電流が流れ、ホトトランジスタ
3 がオンのときには、一方の抵抗R4のみで決まる出
力電流が流れ、ホトトランジスタQ3 がオンのときに流
れる出力電流はホトトランジスタQ3 がオフのときに流
れる出力電流よりも大きくなる。さらに、充電制御部1
3の電圧出力端子VO からの出力パルスのデューティ比
は、電流出力端子Io からの出力電流が大きいほど小さ
くなるようになっている。
The charging control unit 13 has its voltage output terminal VO
Transistor Q2The gate of the
Dista Q2ON / OFF control. In addition,
Current output terminal I of power control unit 13OHas a resistance R3And photo
The phototransistor Q, which is the secondary side of the coupler PC3Average
Column circuit and resistor RFourAre connected in series and output current
Terminal IOSince the potential of is kept constant, the current output terminal
IOOutput current from the above two resistors R3, RFourBy
Will be decided. That is, the phototransistor Q 3Is off
When, the current output terminal IoFrom two resistors R3
RFourAn output current determined by
Q3Is on, one resistor RFourOutput determined only by
Force current flows, and phototransistor Q3When is on
Output current is phototransistor Q3Flow when is off
Output current is larger than the output current. Furthermore, the charging control unit 1
3 voltage output terminal VODuty ratio of output pulse from
Is the current output terminal IoThe larger the output current from, the smaller
It is supposed to be.

【0004】また、トランジスタQ2 のドレインとダイ
オードD3 との間にトランスTの1次側が接続されてお
り、充電制御部13がトランジスタQ2 をPWM制御す
ることによって、トランジスタQ2 がオンのときにトラ
ンスTの1次側に外部電源1から供給される交流電流が
流れる。この交流電流によってトランスTの2次側に電
圧が生じ、ダイオードD4 及びインダクタL1 を介して
コンデンサC4 が充電される。次に、トランジスタQ2
がオフになるとインダクタL1 に蓄えられていた磁気エ
ネルギが放出されてコンデンサC4 の両端に直流電圧を
得ることができるのである。そして、コンデンサC4
は逆流阻止用のダイオードD5 及び充電電流制限用の抵
抗R5 を介して蓄電池5が並列に接続されており、コン
デンサC 5 の両端に生じる直流電圧によって蓄電池5の
充電電流が供給されるのである。
Further, the transistor Q2Drain and die
Aether D3The primary side of the transformer T is connected between
The charge control unit 13 turns on the transistor Q.2PWM control
The transistor Q2When is on
AC current supplied from the external power supply 1 to the primary side of the
Flowing. This AC current is applied to the secondary side of the transformer T.
Pressure is generated, diode DFourAnd inductor L1Through
Capacitor CFourIs charged. Next, transistor Q2
Turns off, inductor L1The magnetic energy stored in
The energy is released and the capacitor CFourDC voltage across both ends of
You can get it. And the capacitor CFourTo
Is a diode D for backflow preventionFiveAnd charging current limit resistor
Anti-RFiveThe storage battery 5 is connected in parallel via the
Densa C FiveOf the storage battery 5 by the DC voltage generated at both ends of
The charging current is supplied.

【0005】一方、外部電源1が取り除かれると、蓄電
池5の電池電圧を昇圧回路9によって負荷2を駆動する
のに必要な電圧にまで昇圧し、蓄電池5から負荷2へ電
源供給を行うのである。ここで、蓄電池5の充電は、蓄
電池5を短時間で満充電するために比較的大きな充電電
流による急速充電を行っている。ただし、蓄電池5が過
充電されると、蓄電池5内部にガスが発生して電池寿命
を縮めてしまうので、そのような過充電を防止するため
に過充電防止のための機能を設けることが一般的に行わ
れている。そこで、図6に示す充電装置においても、蓄
電池5が満充電されると、蓄電池5の自己放電の電流を
補う程度の小さな電流で充電するトリクル充電に切り換
えることによって、蓄電池5の過充電を防止している。
On the other hand, when the external power supply 1 is removed, the battery voltage of the storage battery 5 is boosted by the boosting circuit 9 to a voltage required to drive the load 2, and power is supplied from the storage battery 5 to the load 2. . Here, the storage battery 5 is charged rapidly by a relatively large charging current in order to fully charge the storage battery 5 in a short time. However, when the storage battery 5 is overcharged, gas is generated inside the storage battery 5 and the battery life is shortened. Therefore, in order to prevent such overcharge, it is common to provide a function for preventing overcharge. Is done in a regular manner. Therefore, also in the charging device shown in FIG. 6, when the storage battery 5 is fully charged, switching to trickle charging in which the storage battery 5 is charged with a small current that supplements the self-discharging current of the storage battery 5 prevents overcharging of the storage battery 5. is doing.

【0006】図6に示す充電装置においては、上記充電
電流の切り換えをタイマ部14のタイマ動作によって行
っており、蓄電池5と並列にトランスTの2次側に接続
されている外部電源検出部6において充電装置に外部電
源1が接続されているか否かを検出し、外部電源1が接
続されている場合にはその検出信号をタイマ部14に送
り、タイマ部14はその検出信号を受けて蓄電池5の充
電を開始してからの経過時間(充電時間)を計時して積
算している。そして、蓄電池5の充電が連続して、ある
いは連続せずに行われるかに関わらず、充電時間の総時
間が所定の時間に達すれば、タイマ部14は制御信号を
送ってトランジスタQ4 をオンさせ、それによってホト
カプラPCの発光ダイオードに電流が流れてホトトラン
ジスタQ 3 がオンとなる。その結果、充電制御部13の
出力電流端子Io の電流が大きくなって充電制御部13
の出力パルスのデューティ比が小さくなるので、充電モ
ードがトリクル充電モードに切り換わり、蓄電池5の充
電電流が低下するのである。
In the charging device shown in FIG.
Switching of the current is performed by the timer operation of the timer unit 14.
Connected to the secondary side of the transformer T in parallel with the storage battery 5.
In the external power supply detection unit 6 that is being operated, the charging device is supplied with external power.
Detects whether the source 1 is connected or not, and connects the external power source 1
If it continues, the detection signal is sent to the timer unit 14.
The timer unit 14 receives the detection signal and charges the storage battery 5.
The elapsed time (charging time) from the start of charging is measured and the product
I am calculating. Then, the storage battery 5 is continuously charged.
The total charging time, regardless of whether it is performed continuously or discontinuously.
When the time reaches a predetermined time, the timer unit 14 sends a control signal.
Send transistor QFourTurn on and thereby
Current flows through the light emitting diode of the coupler PC, and
Dista Q 3Turns on. As a result, the charge controller 13
Output current terminal IoCurrent of the charging controller 13 increases
The duty ratio of the output pulse of the
Mode switches to trickle charge mode and the storage battery 5 is charged.
The electric current is reduced.

【0007】また、タイマ部14は蓄電池5の電池電圧
を抵抗R6 ,R7 で分圧して検出しており、外部電源1
が接続されていないときの蓄電池5から負荷2への電源
供給や蓄電池5の自己放電等によって蓄電池5の電池電
圧が所定の値より低下すると、タイマ部14は充電時間
の積算値をゼロにリセットするとともに、充電モードを
トリクル充電モードから急速充電モードに切り換えるの
である。
Further, the timer unit 14 detects the battery voltage of the storage battery 5 by dividing the voltage of the storage battery 5 by the resistors R 6 and R 7.
When the battery voltage of the storage battery 5 falls below a predetermined value due to power supply from the storage battery 5 to the load 2 or self-discharge of the storage battery 5 when is not connected, the timer unit 14 resets the integrated value of the charging time to zero. At the same time, the charge mode is switched from the trickle charge mode to the quick charge mode.

【0008】[0008]

【発明が解決しようとする課題】上記従来例の構成で
は、蓄電池5の電池電圧が所定値以下に低下すると、タ
イマ部14における充電時間の積算値が所定値に達する
まで急速充電が行われ、充電時間の積算値が所定値に達
すると充電モードがトリクル充電モードに切り換えられ
て蓄電池5が過充電になるのを防止することができる。
In the configuration of the above-mentioned conventional example, when the battery voltage of the storage battery 5 drops below a predetermined value, rapid charging is performed until the integrated value of the charging time in the timer section 14 reaches a predetermined value, When the integrated value of the charging time reaches the predetermined value, the charging mode is switched to the trickle charging mode, and it is possible to prevent the storage battery 5 from being overcharged.

【0009】ところで、タイマ部14において設定され
ている所定値は、蓄電池5の電池容量と急速充電モード
における充電電流とによって決まるものであり、通常充
電電流と充電時間との積として求められる充電量は蓄電
池5の電池容量Capに対して1.5倍程度の値に設定さ
れる。したがって、急速充電モードにおける充電電流を
Icとすれば、タイマ部14において設定される急速充
電モードにおける充電時間tc は、tc =1.5×Cap
/Icと表される。
By the way, the predetermined value set in the timer section 14 is determined by the battery capacity of the storage battery 5 and the charging current in the quick charging mode, and the charging amount obtained as the product of the normal charging current and the charging time. Is set to a value about 1.5 times the battery capacity C ap of the storage battery 5. Therefore, if the charging current in the rapid charging mode is Ic, the charging time t c in the rapid charging mode set by the timer unit 14 is t c = 1.5 × C ap
/ Ic.

【0010】上式の充電時間tc は、蓄電池5を空の状
態から満充電するまでに要する満充電時間を示すもので
あり、トリクル充電モードから急速充電モードに切り換
わった直後に再度充電を行うと、蓄電池5は空になるま
で放電されていないにも関わらず上式で示される充電時
間tc をタイマ部14において計時するまで急速充電が
行われるので、蓄電池5は満充電された後も急速充電モ
ードにおける比較的大きな充電電流で充電されてしまい
蓄電池5が過充電になるという問題がある。
The charging time t c in the above equation indicates the full charging time required for the storage battery 5 to be fully charged from an empty state, and is charged again immediately after switching from the trickle charging mode to the quick charging mode. When it is performed, the storage battery 5 is not completely discharged until it is empty, but the quick charging is performed until the timer unit 14 measures the charging time t c shown by the above formula. Therefore, after the storage battery 5 is fully charged. However, there is a problem that the storage battery 5 is overcharged by being charged with a relatively large charging current in the rapid charging mode.

【0011】ここで、トリクル充電と急速充電との充電
モードの切り換えは、蓄電池5の電池電圧を検出するこ
とにより、電池電圧から蓄電池5の残容量を推定して充
電モードを切り換える方法が一般的に採られている。図
7に充電時間に基づく蓄電池5の残容量と、負荷2への
電源供給による放電時間との関係を示す。蓄電池5の充
放電が一定の電流で行われる場合、蓄電池5の残容量と
充電時間及び放電時間とは比例関係にあるので、図7に
示すように、満充電の状態(残容量がCap)にある蓄電
池5から、ある時間ta だけ負荷2に電源供給したとす
ると、その時点での蓄電池5の残容量はC1 となる。そ
こからさらに負荷2へ電源供給することができる時間
(その時点における蓄電池5の残容量)をtd とする
と、逆にその時点から蓄電池5を満充電になるまで充電
するのに要する充電時間はtc となる(図7参照)。こ
こで、既に説明したように時間tc と時間td との間に
はtc=1.5×td なる関係がある。
Here, the charging mode is switched between trickle charging and rapid charging by generally detecting the battery voltage of the storage battery 5 and estimating the remaining capacity of the storage battery 5 from the battery voltage to switch the charging mode. Has been adopted by. FIG. 7 shows the relationship between the remaining capacity of the storage battery 5 based on the charging time and the discharging time due to the power supply to the load 2. When the storage battery 5 is charged and discharged at a constant current, the remaining capacity of the storage battery 5 and the charging time and the discharging time are in a proportional relationship, and as shown in FIG. 7, the state of full charge (the remaining capacity is C ap from the battery 5 in), when there was only power supplied to the load 2 time t a, the remaining capacity of the storage battery 5 at that time becomes C 1. Time can be further power supply to the load 2 therefrom when the (storage battery remaining capacity of 5 at that time) and t d, the charging time required to charge from that point to the opposite until the battery 5 is fully charged the t c (see FIG. 7). Here, as described above, there is a relationship of t c = 1.5 × t d between the time t c and the time t d .

【0012】よって、充電モードの切り換えを行う蓄電
池5の残容量のレベルを低いレベルに設定すると、蓄電
池5の残容量が僅かしかない場合でも充電モードはトリ
クル充電モードになってしまい蓄電池5を満充電にまで
充電することができないので、通常は負荷2を支障なく
駆動することができる時間tb と放電電流Id2との積に
より求められる残容量Cap2 で切り換わるように設定さ
れている(図8参照)。このため、充電モードがトリク
ル充電から急速充電に切り換わった直後に再度蓄電池5
の充電が行われると、図8に示すように、その残容量の
大小に関わらず常に一定の時間tk をタイマ部14にお
いて計時するまで急速充電が行われるために、蓄電池5
が過充電されてしまい、蓄電池5が劣化したり寿命が短
くなるという問題がある。
Therefore, if the level of the remaining capacity of the storage battery 5 for switching the charging mode is set to a low level, the charging mode becomes the trickle charging mode even if the remaining capacity of the storage battery 5 is very small, and the storage battery 5 is fully charged. Since it cannot be charged up to charging, it is normally set to switch with the remaining capacity C ap2 obtained by the product of the time t b for which the load 2 can be driven without trouble and the discharge current I d2 . (See FIG. 8). Therefore, immediately after the charge mode is switched from trickle charge to quick charge, the storage battery
When the charge of is performed, in order, as shown in FIG. 8, the quick charge is always constant time t k regardless of the remaining capacity to counting in the timer unit 14 is performed, the storage battery 5
Are overcharged, and there is a problem that the storage battery 5 deteriorates and the life is shortened.

【0013】本発明は上記問題に鑑みてなされたもので
あり、蓄電池の残容量が少ないときには急速充電を行う
ことによって短時間での蓄電池の回復を図るとともに、
蓄電池の過充電を防止することができる充電装置の提供
を目的とするものである。
The present invention has been made in view of the above problems, and when the remaining capacity of the storage battery is small, quick charging is performed to recover the storage battery in a short time.
An object of the present invention is to provide a charging device capable of preventing overcharge of a storage battery.

【0014】[0014]

【課題を解決するための手段】請求項1の発明は、上記
目的を達成するために、負荷に電源供給する蓄電池と、
負荷に接続される外部電源を検出する外部電源検出部
と、外部電源検出部において外部電源を検出した場合に
のみ外部電源からの充電電流を制御して蓄電池を充電す
る充電制御部と、蓄電池の充電時間を検出して検出した
充電時間によって蓄電池の充電量を算出する充電量算出
部と、蓄電池の放電時間を検出して検出した放電時間に
よって蓄電池の放電量を算出する放電量算出部と、充電
量算出部において算出される充電量と放電量算出部にお
いて算出される放電量とから蓄電池の残容量を算出する
残容量算出部とを備え、残容量算出部において算出され
る蓄電池の残容量に応じて充電制御部が蓄電池の充電モ
ードを蓄電池の自己放電の電流に近い小電流で充電する
トリクル充電モードと上記小電流よりも大きな電流で充
電する急速充電モードとに切り換えることを特徴とす
る。
In order to achieve the above object, a storage battery for supplying power to a load is provided.
An external power supply detection unit that detects the external power supply connected to the load, a charging control unit that controls the charging current from the external power supply to charge the storage battery only when the external power supply detection unit detects the external power supply, and a storage battery A charge amount calculation unit that calculates the charge amount of the storage battery by the charge time detected by detecting the charge time, and a discharge amount calculation unit that calculates the discharge amount of the storage battery by the discharge time detected by detecting the discharge time of the storage battery, The remaining capacity of the storage battery calculated by the remaining capacity calculation unit is provided with a remaining capacity calculation unit that calculates the remaining capacity of the storage battery from the charge amount calculated by the charge amount calculation unit and the discharge amount calculated by the discharge amount calculation unit. The charging control unit responds to the trickle charge mode in which the charging mode of the storage battery is charged with a small current close to the self-discharge current of the storage battery and the rapid charging mode in which the charging mode is charged with a current larger than the above small current. Wherein the switch to and.

【0015】請求項2の発明は、請求項1の発明におい
て、満充電された蓄電池から負荷に電源供給している状
態における蓄電池の残容量を所定のしきい値と比較し、
残容量がしきい値より小さくなければ充電モードの切り
換えを禁止する残容量比較部を備えたことを特徴とす
る。請求項3の発明は、請求項1の発明において、充電
制御部が急速充電モードの充電開始時における蓄電池の
残容量と電池容量との差に充電電流が比例するように充
電電流を制御することを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention, the remaining capacity of the storage battery in a state where the fully charged storage battery is supplying power to the load is compared with a predetermined threshold value,
If the remaining capacity is not smaller than the threshold value, the remaining capacity comparison unit for prohibiting switching of the charging mode is provided. According to a third aspect of the present invention, in the first aspect of the invention, the charging control unit controls the charging current so that the charging current is proportional to the difference between the remaining capacity of the storage battery and the battery capacity at the start of charging in the quick charging mode. Is characterized by.

【0016】[0016]

【作用】請求項1の発明の構成では、負荷に電源供給す
る蓄電池と、負荷に接続される外部電源を検出する外部
電源検出部と、外部電源検出部において外部電源を検出
した場合にのみ外部電源からの充電電流を制御して蓄電
池を充電する充電制御部と、蓄電池の充電時間を検出し
て検出した充電時間によって蓄電池の充電量を算出する
充電量算出部と、蓄電池の放電時間を検出して検出した
放電時間によって蓄電池の放電量を算出する放電量算出
部と、充電量算出部において算出される充電量と放電量
算出部において算出される放電量とから蓄電池の残容量
を算出する残容量算出部とを備え、残容量算出部におい
て算出される蓄電池の残容量に応じて充電制御部が蓄電
池の充電モードを蓄電池の自己放電の電流に近い小電流
で充電するトリクル充電モードと上記小電流よりも大き
な電流で充電する急速充電モードとに切り換えるので、
蓄電池の残容量が蓄電池の電池容量に満たないときには
急速充電モードで充電して蓄電池を満充電するまでの充
電時間を短縮し、蓄電池の残容量が蓄電池の電池容量に
近い満充電の状態にあるときには、充電モードをトリク
ル充電モードに切り換えて蓄電池の過充電を防止するこ
とができるのである。
According to the structure of the invention of claim 1, the storage battery for supplying power to the load, the external power source detecting unit for detecting the external power source connected to the load, and the external power source only when the external power source is detected by the external power source detecting unit. A charge control unit that controls the charging current from the power supply to charge the storage battery, a charge amount calculation unit that calculates the charge amount of the storage battery by detecting the charging time of the storage battery, and a discharge time of the storage battery The remaining capacity of the storage battery is calculated from the discharge amount calculation unit that calculates the discharge amount of the storage battery based on the detected discharge time, and the charge amount calculated by the charge amount calculation unit and the discharge amount calculated by the discharge amount calculation unit. And a charge control unit that charges the storage battery charging mode with a small current close to the self-discharge current of the storage battery according to the remaining capacity of the storage battery calculated by the remaining capacity calculation unit. Since than the charging mode and the small current switched between quick charging mode for charging with a large current,
When the remaining capacity of the storage battery is less than the battery capacity of the storage battery, the charging time until the storage battery is fully charged by charging in the quick charge mode is shortened, and the remaining capacity of the storage battery is in a fully charged state close to the battery capacity of the storage battery. At times, the charge mode can be switched to the trickle charge mode to prevent overcharge of the storage battery.

【0017】請求項2の発明の構成では、満充電された
蓄電池から負荷に電源供給している状態における蓄電池
の残容量を所定のしきい値と比較し、残容量がしきい値
より小さくなければ充電モードの切り換えを禁止する残
容量比較部を備えたので、蓄電池の残容量が充分あるよ
うな不完全な放電と充電とが繰り返されるような場合で
も、蓄電池の残容量がしきい値より小さくなければトリ
クル充電モードのまま急速充電モードに切り換わらない
ため、蓄電池にかかる負担を軽減することができるので
ある。
In the configuration of the invention of claim 2, the remaining capacity of the storage battery in a state where the fully charged storage battery is supplying power to the load is compared with a predetermined threshold value, and the remaining capacity must be smaller than the threshold value. For example, since the remaining capacity comparison unit that prohibits switching of the charging mode is provided, the remaining capacity of the storage battery is below the threshold even when incomplete discharge and charging are repeated such that the remaining capacity of the storage battery is sufficient. Unless it is smaller, the trickle charge mode is not switched to the quick charge mode, so that the load on the storage battery can be reduced.

【0018】請求項3の発明の構成では、充電制御部が
急速充電モードの充電開始時における蓄電池の残容量と
電池容量との差に充電電流が比例するように充電電流を
制御するので、蓄電池の残容量が少ないときには大きな
充電電流で充電することによって充電時間を短縮し、残
容量が多いときには小さな充電電流で充電することによ
って蓄電池にかかる負担を軽減することができるもので
ある。
According to the third aspect of the invention, the charging control unit controls the charging current so that the charging current is proportional to the difference between the remaining capacity of the storage battery and the battery capacity at the start of charging in the quick charging mode. When the remaining capacity is small, the charging time is shortened by charging with a large charging current, and when the remaining capacity is large, the burden on the storage battery can be reduced by charging with a small charging current.

【0019】[0019]

【実施例】(実施例1)本実施例の概略回路図を図1に
示す。図1に示すように、本実施例の充電装置の外部電
源端子1a,1aには直流の外部電源1が接続されてい
る。また、外部電源端子1aには逆流阻止用のダイオー
ドD1 を介して負荷2が接続され、外部電源1から負荷
2に電源供給が行われる。また、外部電源端子1aには
トランジスタQ1 のエミッタが接続され、トランジスタ
1 のベースに充電制御部3が接続されており、トラン
ジスタQ1 は充電制御部3によってPWM(パルス幅変
調)制御されるのである。このトランジスタQ1 は、ダ
イオードD2 ,インダクタL及びコンデンサC1 ととも
に降圧型チョッパ回路4を構成しており、充電制御部3
がトランジスタQ1 をPWM制御することによって外部
電源1の電源電圧が降圧型チョッパ回路4で降圧されて
蓄電池5を充電している。
EXAMPLE 1 FIG. 1 shows a schematic circuit diagram of this example. As shown in FIG. 1, a DC external power supply 1 is connected to the external power supply terminals 1a, 1a of the charging device of this embodiment. Further, the load 2 is connected to the external power supply terminal 1a via the diode D 1 for preventing backflow, and power is supplied from the external power supply 1 to the load 2. Further, the external power source terminal 1a is the emitter of the transistor Q 1 is connected, is connected to the charging control unit 3 to the base of the transistor Q 1, the transistor Q 1 is controlled PWM (Pulse Width Modulation) by the charge control unit 3 It is. The transistor Q 1 constitutes a step-down chopper circuit 4 together with the diode D 2 , the inductor L and the capacitor C 1 , and the charge control unit 3
Performs PWM control of the transistor Q 1 to reduce the power supply voltage of the external power supply 1 by the step-down chopper circuit 4 to charge the storage battery 5.

【0020】蓄電池5と直列に充電電流検出用の抵抗R
1 が接続され、この抵抗R1 で検出される充電電流の大
きさが充電制御部3に入力されていて、充電電流が略一
定になるように充電制御部3でPWM制御が行われるの
である。ところで、本実施例における負荷2はほぼ抵抗
成分で近似できるものであり、したがって、外部電源1
の電源電圧が略一定であれば、負荷2には定電流が流れ
ることになり、蓄電池5から負荷2へ電源供給される場
合にも、蓄電池5はほぼ定電圧源とみなせるので蓄電池
5が完全放電するまで略一定の放電電流がながれ、蓄電
池5の放電特性は図2に示すような特性を示す。
A resistor R for detecting a charging current is connected in series with the storage battery 5.
1 is connected, the magnitude of the charging current detected by the resistor R 1 is input to the charging control unit 3, and the charging control unit 3 performs PWM control so that the charging current becomes substantially constant. . By the way, the load 2 in this embodiment can be approximated by a resistance component, and therefore, the external power supply 1
If the power supply voltage of is approximately constant, a constant current will flow through the load 2, and even when power is supplied from the storage battery 5 to the load 2, the storage battery 5 can be regarded as a substantially constant voltage source, so the storage battery 5 is completely A substantially constant discharge current flows until the battery is discharged, and the discharge characteristic of the storage battery 5 exhibits the characteristic shown in FIG.

【0021】また、降圧型チョッパ回路4の出力側には
蓄電池5と並列に外部電源検出部6が接続されており、
外部電源端子1a,1aに外部電源1が接続されている
か否かを検出し、その検出出力を昇圧制御部7と充電量
算出部8とに送る。上記検出出力に基づき、外部電源1
が接続されている場合には、昇圧制御部7は昇圧回路9
の動作を停止させて蓄電池5から負荷2への電源供給を
断っている。一方、充電量算出部8は、外部電源1が接
続されている場合に蓄電池5の充電が開始されてからの
充電時間を検出し、検出した充電時間と充電電流との積
から充電量を算出している。
An external power source detection unit 6 is connected in parallel with the storage battery 5 on the output side of the step-down chopper circuit 4,
It is detected whether or not the external power supply 1 is connected to the external power supply terminals 1a, 1a, and the detected output is sent to the boost control unit 7 and the charge amount calculation unit 8. External power supply 1 based on the above detection output
Is connected, the step-up control unit 7 operates the step-up circuit 9
Is stopped and the power supply from the storage battery 5 to the load 2 is cut off. On the other hand, the charge amount calculation unit 8 detects the charge time after the charging of the storage battery 5 is started when the external power supply 1 is connected, and calculates the charge amount from the product of the detected charge time and the charge current. is doing.

【0022】蓄電池5には過放電防止回路10が並列に
接続されていて、この過放電防止回路10は蓄電池5の
電池電圧を検出し、蓄電池5の電池電圧が所定値以下に
まで低下すれば昇圧制御部7に停止信号を送る。一方昇
圧制御部7は、その停止信号を受けて昇圧回路9の動作
を停止させ、蓄電池5から負荷2への電源供給を断つこ
とによって蓄電池5の過放電を防止しているのである。
また、上記の場合に過放電防止回路10は充電量算出部
8にリセット信号を送り、そのリセット信号に応じて充
電量算出部8の充電時間をリセットしている。
An over-discharge prevention circuit 10 is connected in parallel to the storage battery 5, and this over-discharge prevention circuit 10 detects the battery voltage of the storage battery 5 and if the battery voltage of the storage battery 5 drops below a predetermined value. A stop signal is sent to the boost controller 7. On the other hand, the boost control unit 7 receives the stop signal and stops the operation of the boost circuit 9 to cut off the power supply from the storage battery 5 to the load 2 to prevent the storage battery 5 from being over-discharged.
In the above case, the over-discharge prevention circuit 10 sends a reset signal to the charge amount calculation unit 8 and resets the charge time of the charge amount calculation unit 8 according to the reset signal.

【0023】また、昇圧制御部7は、外部電源検出部6
及び過放電防止回路10からの検出信号並びに昇圧制御
部7に接続されたスイッチSWの状態に基づいて、外部
電源1が外部電源端子1a,1aに接続されておらず、
かつ、過放電防止回路10が動作しておらず、かつ、ス
イッチSWがオンの時にのみ、昇圧回路9を動作させて
蓄電池5からの供給電源を昇圧して負荷2を駆動するの
である。また、昇圧回路9の動作中には、昇圧制御部7
からの制御信号によって放電量算出部11が動作してお
り、放電量算出部11は、蓄電池5の放電を開始してか
らの放電時間を検出してその放電時間と放電電流との積
より蓄電池5の放電量を算出するものである。
Further, the booster control unit 7 includes an external power source detection unit 6
Based on the detection signal from the overdischarge prevention circuit 10 and the state of the switch SW connected to the boost control unit 7, the external power supply 1 is not connected to the external power supply terminals 1a and 1a,
Moreover, the booster circuit 9 is operated to boost the power supply from the storage battery 5 to drive the load 2 only when the overdischarge prevention circuit 10 is not operating and the switch SW is ON. Further, during operation of the booster circuit 9, the booster control unit 7
The discharge amount calculation unit 11 is operating according to the control signal from the storage battery, and the discharge amount calculation unit 11 detects the discharge time after the discharge of the storage battery 5 and calculates the storage battery from the product of the discharge time and the discharge current. The amount of discharge of No. 5 is calculated.

【0024】さらに、充電量算出部8において算出され
た蓄電池5の充電量と、放電量算出部11において算出
された蓄電池5の放電量とのデータが残容量算出部12
に入力され、この残容量算出部12において、上記充電
量と放電量とからその時点での蓄電池5の残容量が算出
されるのである。そして、算出された残容量のデータは
充電制御部3に送られ、充電制御部3はその残容量の値
に応じて降圧型チョッパ回路4のトランジスタQ1 をP
WM制御することによって充電電流の電流値を変えて、
蓄電池5を充電する充電モードをトリクル充電モードと
急速充電モードとに切り換えるのである。
Further, data of the charge amount of the storage battery 5 calculated by the charge amount calculation unit 8 and the discharge amount of the storage battery 5 calculated by the discharge amount calculation unit 11 is used as the remaining capacity calculation unit 12.
The remaining capacity of the storage battery 5 at that time is calculated by the remaining capacity calculator 12 based on the charge amount and the discharge amount. Then, the calculated remaining capacity data is sent to the charging control unit 3, and the charging control unit 3 sets the transistor Q 1 of the step-down chopper circuit 4 to P in accordance with the value of the remaining capacity.
By changing the current value of the charging current by WM control,
The charge mode for charging the storage battery 5 is switched between the trickle charge mode and the quick charge mode.

【0025】以下に、充電制御部3による充電モードの
切り換えについてさらに詳しく説明する。蓄電池5の電
池容量をCapとし、急速充電モードにおける充電電流を
Ic、また蓄電池5から負荷2への電源供給時おける放
電電流をIdとすれば、蓄電池5の残容量がほどんどな
い状態から蓄電池5が満充電されるまでの満充電時間t
max と電池容量Capとの関係は次式で表される。
The switching of the charging mode by the charging control unit 3 will be described in more detail below. If the battery capacity of the storage battery 5 is C ap , the charging current in the quick charge mode is Ic, and the discharge current when the power is supplied from the storage battery 5 to the load 2 is Id, the remaining capacity of the storage battery 5 is almost zero. Full charge time t until the storage battery 5 is fully charged
The relationship between max and the battery capacity C ap is expressed by the following equation.

【0026】 tmax =1.5×Cap/Ic ・・・(式1) よって、任意の充電時間tc に対する蓄電池5の充電量
c は、 Cc =Ic/1.5×tc ・・・(式2) によって算出することができる。逆に、任意の放電時間
d に対する蓄電池5の放電量Cd は、 Cd =Id×td ・・・(式3) によって算出することができる。したがって、充電時間
c と放電時間td とが等しい場合には、上記(式2)
及び(式3)より、 Cd /Cc =1.5×Id/Ic ・・・(式4) となり、放電量Cd は充電量Cc の1.5×Id/Ic
倍となる。
The t max = 1.5 × C ap / Ic ··· ( Equation 1) Thus, the charge amount C c of the battery 5 for any charge time t c, C c = Ic / 1.5 × t c It can be calculated by (Equation 2). Conversely, the discharge amount C d of the battery 5 for an arbitrary discharge time t d can be calculated by C d = Id × t d ··· ( Equation 3). Therefore, when the charging time t c is equal to the discharging time t d , the above (formula 2)
From (Equation 3), C d / C c = 1.5 × Id / Ic (Equation 4), and the discharge amount C d is 1.5 × Id / Ic of the charge amount C c.
Doubled.

【0027】すなわち、充電時間tc 及び放電時間td
を検出し、充電量Cc と放電量Cdとの差を求めること
によって、蓄電池5の残容量を算出することができ、蓄
電池5の残容量の変化を推定して蓄電池5が満充電され
るまで急速充電モードにて充電するものである。本実施
例においては、過放電防止回路10が動作すると昇圧制
御部7から充電量算出部8及び放電量算出部11にリセ
ット信号が送られ、充電量算出部8及び放電量算出部1
1にて検出している充電時間及び放電時間の積算値をリ
セットするようになっているので、過放電防止回路10
が動作する毎に蓄電池5の残容量の推定値を補正するこ
とができる。また、蓄電池5の充電と、蓄電池5から負
荷2への電源供給は同時には行われないので、充電量算
出部8における充電時間の検出と、放電量算出部11に
おける放電時間の検出とがそれぞれ切り換えられて行わ
れるのである。
That is, the charging time t c and the discharging time t d
Is detected and the difference between the charge amount C c and the discharge amount C d is obtained, the remaining capacity of the storage battery 5 can be calculated, and the change in the remaining capacity of the storage battery 5 is estimated to fully charge the storage battery 5. The battery is charged in the quick charge mode until it reaches the end. In the present embodiment, when the over-discharge prevention circuit 10 operates, a reset signal is sent from the boost control unit 7 to the charge amount calculation unit 8 and the discharge amount calculation unit 11, and the charge amount calculation unit 8 and the discharge amount calculation unit 1
Since the integrated value of the charging time and the discharging time detected in 1 is reset, the overdischarge prevention circuit 10
It is possible to correct the estimated value of the remaining capacity of the storage battery 5 every time the is operated. Further, since the charging of the storage battery 5 and the supply of power from the storage battery 5 to the load 2 are not performed at the same time, the detection of the charging time by the charging amount calculation unit 8 and the detection of the discharging time by the discharging amount calculation unit 11 are performed respectively. It is performed by switching.

【0028】いま、充電が開始されてからの充電時間と
放電時間との積算値をtr とし、それからΔt時間さら
に充電した後の積算値ts は ts =tr +Δt ・・・(式5) で表される。また、Δt時間の放電が行われた後の積算
値ts とその直前の積算値tr との関係は、(式1)に
より、 ts =tr −1.5×Id/Ic×Δt ・・・(式6) と表される。つまり、上記積算値ts は蓄電池5の残容
量に比例した値となる。したがって、上記積算値ts
蓄電池5を空の状態から満充電するまでに要する満充電
時間tmax に等しくなったときに蓄電池5は満充電状態
にあると推定されるので、その時点で充電制御部3にお
いて充電モードを急速充電モードからトリクル充電モー
ドに切り換えばよい。その後、トリクル充電モードにお
いては充電量算出部8及び放電量算出部11における充
電時間及び放電時間の検出を停止して上記積算値ts
満充電時間tmax のままに保持しておく。その状態か
ら、蓄電池5より負荷2へ電源供給が行われて蓄電池5
の残容量が減少する場合にも、上述のようにして残容量
の推定を行い、残容量の値が所定の値以下になれば、充
電モードをトリクル充電モードから急速充電モードに切
り換えるのである。つまり、充電電流Icが放電電流I
dに等しいとすれば、充電量及び放電量はそれぞれ充電
時間及び放電時間によって表されるので、残容量算出部
12においては、上記充電時間及び放電時間の積算値t
s を算出して蓄電池5の残容量を推定することになる。
Now, the integrated value of the charging time and the discharging time after the start of charging is set to t r, and the integrated value t s after further charging for Δt time is t s = t r + Δt (equation 5) The relationship between the integrated value t s and accumulated value t r of the preceding after the discharge of Delta] t time is performed by (Equation 1), t s = t r -1.5 × Id / Ic × Δt ... (Equation 6) That is, the integrated value t s becomes a value proportional to the remaining capacity of the storage battery 5. Therefore, when the integrated value t s becomes equal to the full-charge time t max required to fully charge the storage battery 5 from the empty state, it is estimated that the storage battery 5 is in the full-charged state, and the battery is charged at that time. The control unit 3 may switch the charging mode from the quick charging mode to the trickle charging mode. After that, in the trickle charge mode, the detection of the charging time and the discharging time in the charging amount calculating unit 8 and the discharging amount calculating unit 11 is stopped and the integrated value t s is held as the full charging time t max . From that state, power is supplied from the storage battery 5 to the load 2 and the storage battery 5
Even when the remaining capacity decreases, the remaining capacity is estimated as described above, and when the value of the remaining capacity becomes equal to or less than the predetermined value, the charging mode is switched from the trickle charging mode to the quick charging mode. That is, the charging current Ic is equal to the discharging current I
If it is equal to d, the charge amount and the discharge amount are represented by the charge time and the discharge time, respectively. Therefore, in the remaining capacity calculation unit 12, the integrated value t of the charge time and the discharge time is calculated.
s is calculated and the remaining capacity of the storage battery 5 is estimated.

【0029】上述のようにして蓄電池5の残容量に応じ
て急速充電を行う充電時間を決めているので、蓄電池5
の残容量が少なくなった時には急速充電によって短時間
で蓄電池5を満充電するとともに、急速充電が必要以上
に行われて蓄電池5が過充電となるのを防止できるので
ある。さらに、上記の動作を図3に示すフローチャート
により説明する。まず。蓄電池5が完全に放電された状
態を初期状態として、残容量算出部12における充電時
間と放電時間の積算値ts をts =0とする(S1)。
次に、外部電源検出部6によって外部電源1の接続の有
無を検出し(S2)、外部電源1が接続されていれば外
部電源1からの充電電流によって蓄電池5を充電する
(S3及びS4)。充電中は、充電制御部3において残
容量算出部12の積算値ts と蓄電池5の満充電時間t
max とが比較され(S5)、積算値ts が満充電時間t
max よりも小さいときには充電モードを急速充電モード
として急速充電を行い(S6)、積算値ts に1を加算
してts =ts +1として(S7)再び外部電源1の検
出(S2)に戻り、以後蓄電池5が満充電されるか、あ
るいは外部電源1が取り除かれるまで上記のステップが
繰り返される(S2〜S7)。
As described above, since the charging time for performing rapid charging is determined according to the remaining capacity of the storage battery 5, the storage battery 5
When the remaining capacity of the storage battery becomes low, the storage battery 5 can be fully charged in a short time by rapid charging, and the storage battery 5 can be prevented from being overcharged by performing excessive rapid charging. Further, the above operation will be described with reference to the flowchart shown in FIG. First. The state in which the storage battery 5 is fully discharged as an initial state, the accumulated value t s of the charging time and discharging time of the residual capacity calculation unit 12 and t s = 0 (S1).
Next, the external power supply detection unit 6 detects whether or not the external power supply 1 is connected (S2), and if the external power supply 1 is connected, the storage battery 5 is charged by the charging current from the external power supply 1 (S3 and S4). . During charging, the integrated value t s of the remaining capacity calculator 12 and the full charge time t of the storage battery 5 in the charge controller 3
max is compared (S5), and the integrated value t s is the full charge time t
when less than max perform quick charge the charging mode as the rapid charge mode (S6), to as t s = t s +1 adds 1 to the integrated value t s (S7) again detecting the external power source 1 (S2) After returning, the above steps are repeated until the storage battery 5 is fully charged or the external power source 1 is removed (S2 to S7).

【0030】そして、蓄電池5が満充電されると、すな
わち積算値ts が満充電時間tmax以上になれば、充電
制御部3は充電モードをトリクル充電モードに切り換え
(S8)、それ以後は外部電源1が取り除かれて負荷2
への放電が行われるまでトリクル充電モードによる充電
が継続される(S2〜S8)。一方、外部電源1が接続
されていないときには充電制御部3において蓄電池5の
電池電圧VB の検出が行われ(S9)、過放電防止回路
10の動作開始のしきい値電圧V1 と比較され(S1
0)、電池電圧VB がしきい値電圧V1 以下で過放電防
止回路10が動作している場合には初期状態に戻る(S
1)。逆に、電池電圧VB がしきい値電圧V1 よりも大
きければ、昇圧制御部7においてスイッチSWの状態検
出が行われ(S11)、スイッチSWがオンであれば昇
圧制御部7は昇圧回路9を動作させて蓄電池5から負荷
2への放電を行い(S13)、積算値ts をts =ts
−1.5×Id/Icとし(S14)、外部電源1の接
続の有無の検出(S2)に再度戻る。そして、スイッチ
SWがオフの場合には昇圧制御部7は昇圧回路9の動作
を行わせずに待機状態となり(S15)、再び外部電源
1の接続の有無の検出を行う(S2)のである。
When the storage battery 5 is fully charged, that is, when the integrated value t s is equal to or longer than the full charge time t max , the charging control unit 3 switches the charging mode to the trickle charging mode (S8), and thereafter. External power supply 1 is removed and load 2
The charging in the trickle charge mode is continued until the discharge is performed (S2 to S8). On the other hand, when the external power supply 1 is not connected, the charging control unit 3 detects the battery voltage V B of the storage battery 5 (S9) and compares it with the threshold voltage V 1 for starting the operation of the over-discharge prevention circuit 10. (S1
0), when the battery voltage V B is equal to or lower than the threshold voltage V 1 and the overdischarge prevention circuit 10 is operating, the state returns to the initial state (S
1). On the contrary, if the battery voltage V B is higher than the threshold voltage V 1 , the boost control unit 7 detects the state of the switch SW (S11), and if the switch SW is on, the boost control unit 7 causes the boost circuit. 9 is operated to discharge the storage battery 5 to the load 2 (S13), and the integrated value t s is changed to t s = t s
The value is set to −1.5 × Id / Ic (S14), and the process returns to the detection of the presence or absence of the connection of the external power source 1 (S2). When the switch SW is off, the booster control unit 7 does not operate the booster circuit 9 and enters a standby state (S15), and again detects whether or not the external power supply 1 is connected (S2).

【0031】なお、蓄電池5を充電する充電回路の回路
構成及び蓄電池5の電池電圧を昇圧して負荷2へ電源供
給を行う昇圧回路9の回路構成は、本実施例のものに限
定するものではなく、蓄電池5を充電する際の充電時間
及び蓄電池5が放電される際の放電時間が検出できるよ
うな回路構成であればよい。また、本実施例においては
昇圧回路9で蓄電池5の電池電圧を昇圧して負荷2へ供
給しているが、昇圧せずに蓄電池5の電池電圧を直接負
荷2へ供給してもよく、さらにまた、負荷2は一つに限
らず複数の負荷へ電源供給するものでもよく、蓄電池5
の充電が可能で、充電時以外は蓄電池5から負荷2へ電
源供給が行われるものであれば、本発明の技術思想を適
用することができる。そして、本実施例では過放電防止
回路10からの信号により昇圧制御部7が蓄電池5から
負荷2への電源供給を停止させるとともに残容量算出部
12における積算値ts を零にリセットしているが、過
放電防止回路10を用いずに積算値ts がts =0とな
ったときに蓄電池5が過放電になったものとみなし、蓄
電池5から負荷2への電源供給を停止させるようにして
もよい。
The circuit configuration of the charging circuit for charging the storage battery 5 and the circuit configuration of the booster circuit 9 for boosting the battery voltage of the storage battery 5 to supply power to the load 2 are not limited to those of this embodiment. Instead, the circuit configuration may be such that the charging time for charging the storage battery 5 and the discharging time for discharging the storage battery 5 can be detected. Further, in the present embodiment, the battery voltage of the storage battery 5 is boosted and supplied to the load 2 by the booster circuit 9, but the battery voltage of the storage battery 5 may be directly supplied to the load 2 without being boosted. Further, the load 2 is not limited to one, and may be one that supplies power to a plurality of loads.
The technical idea of the present invention can be applied as long as it can be charged and the power is supplied from the storage battery 5 to the load 2 except during charging. Then, in the present embodiment, the boosting control unit 7 stops the power supply from the storage battery 5 to the load 2 and resets the integrated value t s in the remaining capacity calculation unit 12 to zero by the signal from the overdischarge prevention circuit 10. However, when the integrated value t s becomes t s = 0 without using the over-discharge prevention circuit 10, it is considered that the storage battery 5 is over-discharged, and the power supply from the storage battery 5 to the load 2 is stopped. You may

【0032】(実施例2)本実施例における回路構成は
実施例1のものと共通であるので回路構成についての説
明は省略する。本実施例においては、蓄電池5が一度蓄
電池5の電池容量Capまで満充電され、その満充電の状
態から蓄電池5の放電が行われる場合、充電制御部3に
おいて蓄電池5の残容量が所定のしきい値と比較され、
残容量がそのしきい値より小さくなければ充電制御部3
は充電モードをトリクル充電モードから急速充電モード
に切り換えないようにしている。つまり、本実施例にお
いては、上記のような場合に充電モードの切り換えを禁
止する残容量比較部を充電制御部3によって兼用してい
るのである。
(Embodiment 2) Since the circuit configuration of this embodiment is the same as that of the first embodiment, the description of the circuit configuration will be omitted. In the present embodiment, when the storage battery 5 is once fully charged to the battery capacity C ap of the storage battery 5 and the storage battery 5 is discharged from the fully charged state, the charge control unit 3 determines that the remaining capacity of the storage battery 5 is a predetermined value. Compared to a threshold,
If the remaining capacity is not smaller than the threshold value, the charge control unit 3
Does not switch the charging mode from trickle charging mode to fast charging mode. That is, in the present embodiment, the charge control unit 3 also serves as the remaining capacity comparing unit that prohibits switching of the charging mode in the above case.

【0033】すなわち、充電制御部3による充電モード
の切り換えにヒステリシス特性を持たせたものであっ
て、蓄電池5から負荷2へ連続的に電源供給が可能な時
間を表す積算値ts と、負荷2の種類に応じて支障なく
連続して負荷2を駆動させ得る保証時間としてのしきい
値t1 とを比較して、積算値ts がしきい値t1 よりも
小さくない場合には充電モードをトリクル充電モードと
することによって、負荷2を通常通り駆動させるととも
に蓄電池5にかかる負担を軽減することができるのであ
る。
That is, the charging control unit 3 switches the charging mode to have a hysteresis characteristic, and the integrated value t s representing the time during which power can be continuously supplied from the storage battery 5 to the load 2 and the load If the integrated value t s is not smaller than the threshold value t 1 , charge is performed by comparing the threshold value t 1 as a guaranteed time that can continuously drive the load 2 depending on the type of 2 By setting the mode to the trickle charge mode, it is possible to drive the load 2 as usual and reduce the load on the storage battery 5.

【0034】本実施例における実際の動作を図4に示す
フローチャートによって説明する。ただし、基本的な動
作は実施例1のものと共通であるので、共通する部分の
説明は省略する。すなわち、本実施例における動作にお
いて実施例1の動作と異なる点は、蓄電池5から負荷2
への放電を行っている場合に積算値ts をts =ts
1.5×Id/Icとした(S14)後、その積算値t
s を充電制御部3において上記しきい値t1 と比較し
(S14’)、積算値ts がしきい値t1 よりも大きい
場合には外部電源1の検出に戻る(S2)。一方、積算
値ts がしきい値t1 以下の場合には、変数XをX=0
に設定する(S16)。
The actual operation of this embodiment will be described with reference to the flow chart shown in FIG. However, since the basic operation is the same as that of the first embodiment, the description of the common part will be omitted. That is, the operation of this embodiment is different from that of the first embodiment in that the storage battery 5 is connected to the load 2
Integrated value t s If you are doing a discharge to the t s = t s -
After setting 1.5 × Id / Ic (S14), the integrated value t
The s in the charge control unit 3 compared with the threshold value t 1 (S14 '), when the integrated value t s is greater than the threshold value t 1 is returned to the detection of the external power source 1 (S2). On the other hand, when the integrated value t s is the threshold value t 1 or less, the variable X is set to X = 0.
(S16).

【0035】そして、外部電源1が接続されて蓄電池5
が充電されると、充電制御部3において積算値ts と蓄
電池5の満充電時間tmax とが比較され(S5)、積算
値t s が満充電時間tmax よりも小さいときには、充電
制御部3において上記変数Xの値がゼロであるか否かを
判別し、変数X=0のとき、すなわち積算値ts がしき
い値t1 以下の時には充電モードを急速充電モードとし
て急速充電を行い(S6)、逆に、変数X≠0の時には
充電モードをトリクル充電モードに切り換えて(S
8)、変数XをX=1に設定して(S8’)、外部電源
1の検出に戻る(S2)という動作を行うのである。
The external battery 1 is connected to the storage battery 5
Is charged, the integrated value tsAnd storage
Full charge time t of battery 5maxAnd are compared (S5), and integrated
Value t sIs the full charge time tmaxCharge when smaller than
Whether or not the value of the variable X is zero in the control unit 3
If the variable X = 0, that is, the integrated value tsGashiki
Value t1In the following cases, charge mode is set to quick charge mode.
Quick charging is performed (S6). Conversely, when the variable X ≠ 0,
Switch the charging mode to the trickle charging mode (S
8), set the variable X to X = 1 (S8 '), and use the external power supply.
The operation of returning to the detection of 1 (S2) is performed.

【0036】(実施例3)本実施例における回路構成は
実施例1のものと共通であるので回路構成についての説
明は省略する。本実施例においては、蓄電池5が充電さ
れる際に、その時点での蓄電池5の残容量に応じて充電
制御部3によって充電電流を調節し、蓄電池5の充電を
開始した時点での蓄電池5の残容量に関わらず、常に一
定の急速充電時間で蓄電池5を満充電にできるものであ
る。つまり、蓄電池5の満充電時間tmax と蓄電池5の
充電が開始される時の積算値ts との差を取り、予め定
めた上記一定の急速充電tc0で除した値((tmax −t
s )/tc0)に比例した充電電流によって蓄電池5の急
速充電が行われるように充電制御部3が充電電流を制御
することによって、蓄電池5の残容量が少ないときには
大きな充電電流を流すことで満充電までの充電時間を短
縮し、残容量が多いときには充電電流を小さくすること
によって蓄電池5にかかる負担を軽減することができる
のである。
(Third Embodiment) Since the circuit configuration of this embodiment is the same as that of the first embodiment, the description of the circuit configuration will be omitted. In the present embodiment, when the storage battery 5 is charged, the charging current is adjusted by the charging control unit 3 according to the remaining capacity of the storage battery 5 at that time, and the storage battery 5 at the time when charging of the storage battery 5 is started. Regardless of the remaining capacity of the storage battery 5, the storage battery 5 can be fully charged at a constant constant rapid charging time. That is, the difference between the full charge time t max of the storage battery 5 and the integrated value t s when the storage battery 5 starts to be charged is divided by the predetermined constant rapid charge t c0 ((t max − t
By controlling the charging current so that the storage battery 5 is rapidly charged by the charging current proportional to s ) / t c0 ), a large charging current can be supplied when the remaining capacity of the storage battery 5 is small. The load on the storage battery 5 can be reduced by shortening the charging time until full charge and reducing the charging current when the remaining capacity is large.

【0037】上記動作を図5に示すフローチャートによ
って説明すると、充電中に充電制御部3において積算値
s と満充電時間tmax とが比較され(S5)、積算値
sが満充電時間tmax よりも小さいときには、充電制
御部3は充電電流Icを次式で示す値になるように充電
電流を調節する(S6’)。 Ic=k×(tmax −ts )/tc0 なお、kは定数である。そして、積算値ts を ts =ts +k/Ic1 ×(tmax −ts )/tc0 と設定し(S7’)、この積算値ts が満充電時間t
max 以上になるまで積算値ts 、すなわち蓄電池5の残
容量に応じた充電電流で急速充電を行うのである(S2
〜S7’)。なお、Ic1 は基準となる充電電流であ
る。
The above operation will be described with reference to the flow chart shown in FIG. 5. During charging, the charge controller 3 compares the integrated value t s with the full charge time t max (S5), and the integrated value t s is compared with the full charge time t max. When it is smaller than max , the charging control unit 3 adjusts the charging current Ic so that the charging current Ic becomes a value shown by the following equation (S6 ′). Ic = k × (t max −t s ) / t c0 where k is a constant. Then, the integrated value t s t s = t s + k / Ic 1 × (t max -t s) / t c0 and set (S7 '), the integrated value t s is fully charged time t
The rapid charging is performed with the integrated value t s , that is, the charging current according to the remaining capacity of the storage battery 5 until it becomes equal to or more than max (S2
~ S7 '). Note that Ic 1 is a reference charging current.

【0038】[0038]

【発明の効果】請求項1の発明は、負荷に電源供給する
蓄電池と、負荷に接続される外部電源を検出する外部電
源検出部と、外部電源検出部において外部電源を検出し
た場合にのみ外部電源からの充電電流を制御して蓄電池
を充電する充電制御部と、蓄電池の充電時間を検出して
検出した充電時間によって蓄電池の充電量を算出する充
電量算出部と、蓄電池の放電時間を検出して検出した放
電時間によって蓄電池の放電量を算出する放電量算出部
と、充電量算出部において算出される充電量と放電量算
出部において算出される放電量とから蓄電池の残容量を
算出する残容量算出部とを備え、残容量算出部において
算出される蓄電池の残容量に応じて充電制御部が蓄電池
の充電モードを蓄電池の自己放電の電流に近い小電流で
充電するトリクル充電モードと上記小電流よりも大きな
電流で充電する急速充電モードとに切り換えるので、蓄
電池の残容量が蓄電池の電池容量に満たないときには急
速充電モードで充電して蓄電池を満充電するまでの充電
時間を短縮することができるという効果がある。また、
蓄電池の残容量が蓄電池の電池容量に近い満充電の状態
にあるときには、充電モードをトリクル充電モードに切
り換えて蓄電池の過充電を防止して蓄電池の長寿命化を
図ることができるという効果がある。
According to the first aspect of the present invention, a storage battery for supplying power to a load, an external power source detecting unit for detecting an external power source connected to the load, and an external power source only when the external power source is detected by the external power source detecting unit. A charge control unit that controls the charging current from the power supply to charge the storage battery, a charge amount calculation unit that calculates the charge amount of the storage battery by detecting the charging time of the storage battery, and a discharge time of the storage battery The remaining capacity of the storage battery is calculated from the discharge amount calculation unit that calculates the discharge amount of the storage battery based on the detected discharge time, and the charge amount calculated by the charge amount calculation unit and the discharge amount calculated by the discharge amount calculation unit. A trickle that includes a remaining capacity calculation unit, and the charging control unit charges the storage battery charge mode with a small current close to the self-discharge current of the storage battery according to the remaining capacity of the storage battery calculated by the remaining capacity calculation unit. The charging time is until the battery is fully charged by charging in the quick charge mode when the remaining capacity of the storage battery is less than the battery capacity of the storage battery, as it switches between the charging mode and the quick charging mode in which the battery is charged with a current larger than the above small current. There is an effect that can be shortened. Also,
When the remaining capacity of the storage battery is in a fully charged state close to the battery capacity of the storage battery, there is an effect that the charging mode is switched to the trickle charge mode to prevent overcharging of the storage battery and the life of the storage battery can be extended. .

【0039】請求項2の発明は、満充電された蓄電池か
ら負荷に電源供給している状態における蓄電池の残容量
を所定のしきい値と比較し、残容量がしきい値より小さ
くなければ充電モードの切り換えを禁止する残容量比較
部を備えたので、蓄電池の残容量が充分あるような不完
全な放電と充電とが繰り返されるような場合でも、蓄電
池の残容量がしきい値より小さくなければトリクル充電
モードのまま急速充電モードに切り換わらない。その結
果、蓄電池にかかる負担を軽減することができるという
効果がある。
According to a second aspect of the present invention, the remaining capacity of the storage battery in a state where the fully charged storage battery is supplying power to the load is compared with a predetermined threshold value, and if the remaining capacity is not smaller than the threshold value, the battery is charged. Since the remaining capacity comparison unit that prohibits mode switching is provided, the remaining capacity of the storage battery must be smaller than the threshold even when incomplete discharge and charging are repeated such that the remaining capacity of the storage battery is sufficient. For example, it does not switch to the quick charge mode as it is in the trickle charge mode. As a result, there is an effect that the load on the storage battery can be reduced.

【0040】請求項3の発明は、充電制御部が急速充電
モードの充電開始時における蓄電池の残容量と電池容量
との差に充電電流が比例するように充電電流を制御する
ので、蓄電池の残容量が少ないときには大きな充電電流
で充電することによって急速充電モードにおける充電時
間を短縮することができ、さらに残容量が多いときには
小さな充電電流で充電することによって蓄電池にかかる
負担を軽減することができるという効果がある。
According to the third aspect of the present invention, the charge control unit controls the charging current so that the charging current is proportional to the difference between the remaining capacity of the storage battery and the battery capacity at the start of charging in the quick charging mode. When the capacity is small, charging with a large charging current can shorten the charging time in the quick charging mode, and when the remaining capacity is large, charging with a small charging current can reduce the load on the storage battery. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1を示す概略回路構成図である。FIG. 1 is a schematic circuit configuration diagram showing a first embodiment.

【図2】同上の蓄電池の放電時間と電池電圧との関係を
示す電圧波形図である。
FIG. 2 is a voltage waveform diagram showing the relationship between the discharge time of the storage battery and the battery voltage of the same.

【図3】同上の動作を説明するためのフローチャートで
ある。
FIG. 3 is a flowchart for explaining the operation of the above.

【図4】実施例2の動作を説明するためのフローチャー
トである。
FIG. 4 is a flowchart for explaining the operation of the second embodiment.

【図5】実施例3の動作を説明するためのフローチャー
トである。
FIG. 5 is a flowchart for explaining the operation of the third embodiment.

【図6】従来例を示す概略回路構成図である。FIG. 6 is a schematic circuit configuration diagram showing a conventional example.

【図7】同上の蓄電池の残容量と放電時間との関係を示
す波形図である。
FIG. 7 is a waveform diagram showing the relationship between the remaining capacity of the storage battery and the discharge time of the same.

【図8】同上の蓄電池の残容量と放電時間との関係を示
す別の波形図である。
FIG. 8 is another waveform diagram showing the relationship between the remaining capacity and the discharge time of the above storage battery.

【符号の説明】[Explanation of symbols]

1 外部電源 2 負荷 3 充電制御部 5 蓄電池 6 外部電源検出部 7 昇圧制御部 8 充電量算出部 10 過放電防止回路 11 放電量算出部 12 残容量算出部 DESCRIPTION OF SYMBOLS 1 External power supply 2 Load 3 Charging control unit 5 Storage battery 6 External power supply detection unit 7 Boost control unit 8 Charge amount calculation unit 10 Overdischarge prevention circuit 11 Discharge amount calculation unit 12 Remaining capacity calculation unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負荷に電源供給する蓄電池と、負荷に接
続される外部電源を検出する外部電源検出部と、外部電
源検出部において外部電源を検出した場合にのみ外部電
源からの充電電流を制御して蓄電池を充電する充電制御
部と、蓄電池の充電時間を検出して検出した充電時間に
よって蓄電池の充電量を算出する充電量算出部と、蓄電
池の放電時間を検出して検出した放電時間によって蓄電
池の放電量を算出する放電量算出部と、充電量算出部に
おいて算出される充電量と放電量算出部において算出さ
れる放電量とから蓄電池の残容量を算出する残容量算出
部とを備え、残容量算出部において算出される蓄電池の
残容量に応じて充電制御部が蓄電池の充電モードを蓄電
池の自己放電の電流に近い小電流で充電するトリクル充
電モードと上記小電流よりも大きな電流で充電する急速
充電モードとに切り換えることを特徴とする充電装置。
1. A storage battery that supplies power to a load, an external power supply detection unit that detects an external power supply connected to the load, and a charging current from the external power supply is controlled only when the external power supply is detected by the external power supply detection unit. Then, the charge control unit that charges the storage battery, the charge amount calculation unit that calculates the charge amount of the storage battery by the charge time that is detected by detecting the charge time of the storage battery, and the discharge time that is detected by detecting the discharge time of the storage battery A discharge amount calculation unit that calculates the discharge amount of the storage battery, and a remaining capacity calculation unit that calculates the remaining capacity of the storage battery from the charge amount calculated by the charge amount calculation unit and the discharge amount calculated by the discharge amount calculation unit The trickle charge mode in which the charging control unit charges the storage battery charging mode with a small current close to the self-discharge current of the storage battery according to the remaining capacity of the storage battery calculated by the remaining capacity calculation unit A charging device characterized by switching to a quick charging mode in which a current larger than the current is charged.
【請求項2】 満充電された蓄電池から負荷に電源供給
している状態における蓄電池の残容量を所定のしきい値
と比較し、残容量がしきい値より小さくなければ充電モ
ードの切り換えを禁止する残容量比較部を備えたことを
特徴とする請求項1記載の充電装置。
2. The remaining capacity of the storage battery in a state where the fully charged storage battery is supplying power to the load is compared with a predetermined threshold value, and if the remaining capacity is not smaller than the threshold value, switching of the charging mode is prohibited. The charging device according to claim 1, further comprising: a remaining capacity comparing unit for performing the charging.
【請求項3】 充電制御部は、急速充電モードの充電開
始時における蓄電池の残容量と電池容量との差に充電電
流が比例するように充電電流を制御することを特徴とす
る請求項1記載の充電装置。
3. The charging control unit controls the charging current so that the charging current is proportional to the difference between the remaining capacity of the storage battery and the battery capacity at the start of charging in the quick charging mode. Charging device.
JP28529593A 1993-11-15 1993-11-15 Battery charger Withdrawn JPH07143687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28529593A JPH07143687A (en) 1993-11-15 1993-11-15 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28529593A JPH07143687A (en) 1993-11-15 1993-11-15 Battery charger

Publications (1)

Publication Number Publication Date
JPH07143687A true JPH07143687A (en) 1995-06-02

Family

ID=17689680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28529593A Withdrawn JPH07143687A (en) 1993-11-15 1993-11-15 Battery charger

Country Status (1)

Country Link
JP (1) JPH07143687A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259633A (en) * 2006-03-24 2007-10-04 Nec Personal Products Co Ltd Charging circuit and charging control method
JP2011097669A (en) * 2009-10-27 2011-05-12 Ricoh Co Ltd Charging circuit and charging method
US7965062B2 (en) 2007-02-20 2011-06-21 Kabushiki Kaisha Toshiba Method and apparatus for charging nonaqueous electrolyte secondary battery
JP2011239641A (en) * 2010-05-13 2011-11-24 Mitsubishi Motors Corp Dc/dc converter controller
EP2571136A1 (en) 2011-09-13 2013-03-20 Panasonic Corporation Power supply device
KR20150097330A (en) * 2014-02-18 2015-08-26 삼성전자주식회사 Method and Apparatus for Controlling Battery Charging
KR101718453B1 (en) * 2015-09-15 2017-03-21 (주)비엔피시스템 test apparatus for quality of battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259633A (en) * 2006-03-24 2007-10-04 Nec Personal Products Co Ltd Charging circuit and charging control method
US7965062B2 (en) 2007-02-20 2011-06-21 Kabushiki Kaisha Toshiba Method and apparatus for charging nonaqueous electrolyte secondary battery
JP2011097669A (en) * 2009-10-27 2011-05-12 Ricoh Co Ltd Charging circuit and charging method
US9048676B2 (en) 2009-10-27 2015-06-02 Ricoh Electronic Devices Co., Ltd. Charging circuit and charging method
JP2011239641A (en) * 2010-05-13 2011-11-24 Mitsubishi Motors Corp Dc/dc converter controller
EP2571136A1 (en) 2011-09-13 2013-03-20 Panasonic Corporation Power supply device
JP2013062922A (en) * 2011-09-13 2013-04-04 Panasonic Corp Power supply
US9013150B2 (en) 2011-09-13 2015-04-21 Panasonic Intellectual Property Management Co., Ltd. Power supply device
KR20150097330A (en) * 2014-02-18 2015-08-26 삼성전자주식회사 Method and Apparatus for Controlling Battery Charging
KR101718453B1 (en) * 2015-09-15 2017-03-21 (주)비엔피시스템 test apparatus for quality of battery

Similar Documents

Publication Publication Date Title
US8829864B2 (en) Current driver circuit
US8860372B2 (en) Multiple cell battery charger configured with a parallel topology
JP3747381B2 (en) Power supply control circuit for electronic devices with built-in batteries
US9667094B1 (en) Battery backup system for uninterrupted power supply
US8599582B2 (en) Method and apparatus for implementing an unregulated dormant mode with output reset in a power converter
US8908395B2 (en) Method and apparatus for implementing an unregulated dormant mode with an event counter in a power converter
US20050017676A1 (en) Portable device and semiconductor device
JPH11196541A (en) Power supply unit
US20090195221A1 (en) Capacitor charger with a modulated current varying with an input voltage and method thereof
JPH10243567A (en) Device and method for charging secondary battery
US7394225B2 (en) Pseudo constant current multiple cell battery charger configured with a parallel topology
JPH1014127A (en) Multifunctional battery charger self-aligned as supply voltage regulator for device receiving power from the battery
JP2015154606A (en) Power storage state regulating circuit, power storage state regulating system, and battery pack
JP3312422B2 (en) Secondary battery protection device and secondary battery pack
JPH09320785A (en) Flash charger
US7227337B2 (en) Battery charger with dual use microprocessor
JPH07143687A (en) Battery charger
JP3208270B2 (en) Rechargeable battery charging method
JP3239513B2 (en) Power supply
JP2001169474A (en) Secondary battery charging device and battery pack with charge-controlling function using the same
CN113726175B (en) Conversion device, controller and power supply control method thereof
JPH05103430A (en) Battery charging circuit
JP3002934B2 (en) Solar cell power system control circuit
KR101058351B1 (en) Circuit for controlling battery's charge/discharge with regulator and inverter
GB2243961A (en) DC-DC Power supply circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130