JPH07143677A - Power supply - Google Patents

Power supply

Info

Publication number
JPH07143677A
JPH07143677A JP5282484A JP28248493A JPH07143677A JP H07143677 A JPH07143677 A JP H07143677A JP 5282484 A JP5282484 A JP 5282484A JP 28248493 A JP28248493 A JP 28248493A JP H07143677 A JPH07143677 A JP H07143677A
Authority
JP
Japan
Prior art keywords
batteries
battery
current
discharge
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5282484A
Other languages
Japanese (ja)
Inventor
Naoyuki Sugano
直之 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5282484A priority Critical patent/JPH07143677A/en
Publication of JPH07143677A publication Critical patent/JPH07143677A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To easily make uniform electric currents to flow between each secondary battery by variably controlling the resistance values of variable resistors connected to second batteries having smaller internal resistances, better heavy load characteristics, and larger rated capacities than first secondary batteries have while the second batteries have the same nominal voltage as the first secondary batteries have at levels lower than the resistance values of fixed resistors connected to the first second batteries. CONSTITUTION:Batteries (A) 1, 2, 3, and 4 in each of which two first secondary batteries are connected in series and another battery (B) in which two second secondary batteries which have smaller internal resistances, better heavy load characteristics, and larger rated capacities than the first second batteries have, while the second secondary batteries have the same nominal voltages as the first secondary batteries have, are arranged are connected in parallel with each other. In case the total value of electric currents which flow from the batteries is, for example, <=1,000mA (1C) when electricity is discharged to an output device from the batteries (A) and (B), a controller 15 sets the resistance value of a variable resistor 11 at the same value as that of the batteries (A) 1, 2, 3, and 4, for example, 1mOMEGA by controlling the movement of a sliding piece 12. When the total value is larger than 1,000mA, the resistance value of the resistor 11 i.s reduced in steps front 0.9nOMEGA to 0.1nOMEGA through 0.6nOMEGA, 0.4nOMEGA, and 0.2nOMEGA.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電源装置に関し、特に
放電負荷特性の異なる少なくとも2種類の二次電池を並
列に接続した電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device, and more particularly to a power supply device in which at least two types of secondary batteries having different discharge load characteristics are connected in parallel.

【0002】[0002]

【従来の技術】従来、複数の二次電池を並列使用し組電
池とする多セル並列組電池は、一般に、放電負荷を変え
た場合、均等な電流が流れるような組電池構造にするた
め、各二次電池を抵抗値の小さなリードを介して接続し
ている。したがって、電流はある範囲内で負荷に応じて
変化する。ただし、このような組電池構造は全ての電池
が均一な放電容量と内部抵抗であることを前提として成
り立っていた。
2. Description of the Related Art Conventionally, a multi-cell parallel assembled battery using a plurality of secondary batteries in parallel as an assembled battery generally has an assembled battery structure in which a uniform current flows when the discharge load is changed. Each secondary battery is connected via a lead having a small resistance value. Therefore, the current varies within a range depending on the load. However, such an assembled battery structure has been established on the assumption that all batteries have a uniform discharge capacity and internal resistance.

【0003】また、充放電条件から見て、多セル並列組
電池は、接続において出力側に近い二次電池の電流は大
きく、出力側から遠い二次電池セルの電流は少なくなる
傾向にあったり、各二次電池における内部抵抗値が異な
ることによって大電流での充放電で自らの抵抗成分によ
って電流量が異なる傾向にある。
In view of charge / discharge conditions, the multi-cell parallel assembled battery tends to have a large current in the secondary battery close to the output side in connection and a small current in the secondary battery cell far from the output side. Due to the difference in the internal resistance value of each secondary battery, the amount of current tends to vary depending on the resistance component of the secondary battery during charging and discharging with a large current.

【0004】このような充放電条件だけでなく、昨今
は、多セル並列組電池を使用する場合に、連続的に同一
負荷の状態で使用されるだけでなく、通常放電負荷時と
短時間に大電流を流す放電負荷条件での使用が組み合わ
された条件の重負荷放電を伴う放電条件が一般使用に際
し、頻繁に行われるようになってきた。
In addition to such charging / discharging conditions, recently, when a multi-cell parallel assembled battery is used, it is not only continuously used under the same load condition but also during normal discharge load and in a short time. In general use, discharge conditions involving heavy load discharge, which is a combination of use under discharge load conditions in which a large current is passed, have been frequently performed.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記多セル
並列組電池を上述した充放電条件下で充放電する場合、
各二次電池間に均一な電流を流すという制御が極めて難
しかったり、また、充放電性能の差が生ずることにな
る。
By the way, when charging and discharging the multi-cell parallel assembled battery under the above-mentioned charging and discharging conditions,
It is extremely difficult to control a uniform current to flow between the secondary batteries, and a difference in charge / discharge performance occurs.

【0006】また、上記多セル並列組電池を上述したよ
うに連続的に同一負荷の状態で使用しない場合には、全
ての電池に同様の負荷が掛かってしまい、1個の電池で
不良が発生すると組電池全体に影響が及んで、結局一式
の組電池としての寿命が短くなってしまう。
When the above-mentioned multi-cell parallel assembled batteries are not continuously used under the same load condition as described above, the same load is applied to all the batteries, and a defect occurs in one battery. As a result, the entire assembled battery is affected, and the service life of the assembled battery is eventually shortened.

【0007】これは、短時間に大出力を行うのは、電池
の用途に対しては酷なものであり、全ての電池が軽負荷
・重負荷の双方に優れた性能を有するものでなければな
らず、多セル並列使用を基本とする場合には、1つの二
次電池に不良が発生すると、その負担が他の電池全体に
掛かり極めて大なる影響が出るためである。
It is severe for a battery application to produce a large output in a short time, and all the batteries must have excellent performance under both light and heavy loads. This is because, in the case where multiple cells are used in parallel, if a defect occurs in one secondary battery, the burden is applied to the other batteries as a whole, resulting in an extremely large effect.

【0008】このような充放電負荷条件の充放電が繰り
返し行われ、かつ、このような不均一な状態で使用され
る多セル並列組電池を電源装置として用いた場合、電池
間の差が急速に拡大されてくるために早期に寿命に達す
る可能性が高く、実用上きわめて不利なものとなる虞が
ある。
When the multi-cell parallel assembled battery, which is repeatedly charged and discharged under such charging and discharging load conditions and used in such a non-uniform state, is used as a power supply device, the difference between the batteries is rapidly increased. Therefore, there is a high possibility of reaching the end of life at an early stage, and there is a possibility that it will be extremely disadvantageous in practical use.

【0009】このため、重負荷の放電条件が多い使用条
件で多セル並列組電池よりなる電源装置を使用する場合
について、十分に電池性能を保持するための改良方法が
種々検討されている。例えば全ての二次電池を同じ状態
まで放電させてから、再び充電を行うという方法などが
ある。しかしながら、この様な方法を行うとしても、軽
負荷の放電条件で放電させて、電池電圧を揃える事しか
出来ないために、各二次電池の基本的な性能改善は行う
ことができず、充放電サイクルに伴う急速な性能低下を
防ぐことは出来ない。
For this reason, various improvement methods for sufficiently maintaining the battery performance have been studied in the case of using a power supply device composed of a multi-cell parallel assembled battery under a use condition in which a heavy load discharge condition is large. For example, there is a method in which all the secondary batteries are discharged to the same state and then charged again. However, even if such a method is performed, it is only possible to make the battery voltage uniform by discharging under a light load discharge condition, and therefore it is not possible to improve the basic performance of each secondary battery. It is not possible to prevent the rapid deterioration of performance due to the discharge cycle.

【0010】本発明は、上述した実情に鑑みてなされた
ものであり、各二次電池間に均一な電流を流す制御を容
易に行うことができ、また、各二次電池間に充放電性能
の差を生じさせず、充放電サイクルに伴う急速な性能低
下を防ぐことができ、さらに、1個の二次電池が不良と
なっても組電池全体には影響を及ぼさず組電池としての
寿命を延ばすことができる電源装置の提供を目的とす
る。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to easily control the flow of a uniform current between the secondary batteries, and the charge / discharge performance between the secondary batteries. Does not cause a difference in battery performance and prevents a rapid decrease in performance due to charge / discharge cycles, and even if one secondary battery becomes defective, it does not affect the entire battery pack and the life of the battery pack It is an object of the present invention to provide a power supply device capable of extending the power supply.

【0011】[0011]

【課題を解決するための手段】本発明に係る電源装置
は、少なくとも、単数又は複数の第1の二次電池と、こ
れら第1の二次電池と公称電圧が同一ながら内部抵抗が
小さく、重負荷特性が良く、かつ定格容量の大きい第2
の二次電池とを並列に接続し、出力装置に出力電流を供
給する電源装置において、上記第1の二次電池には直列
に固定抵抗を接続し、上記第2の二次電池には直列に可
変抵抗を接続し、上記出力装置に流れる出力電流の変動
を検出する変動出力電流検出手段での検出値に応じて、
上記可変抵抗の可変抵抗値を上記固定抵抗の抵抗値以下
で0より大となる範囲で可変制御することを特徴として
上記課題を解決する。
A power supply device according to the present invention has at least one or a plurality of first secondary batteries, and a small internal resistance while having the same nominal voltage as those of the first secondary batteries. Second with good load characteristics and large rated capacity
A secondary battery is connected in parallel to supply an output current to an output device, a fixed resistor is connected in series to the first secondary battery, and a fixed resistor is connected in series to the second secondary battery. A variable resistor is connected to the output device according to the detection value of the fluctuation output current detecting means for detecting the fluctuation of the output current flowing through the output device.
The problem is solved by variably controlling the variable resistance value of the variable resistor within a range of less than or equal to the resistance value of the fixed resistor and greater than 0.

【0012】この場合、上記変動出力電流検出手段は、
出力電流の変動を直接検出することを特徴としてもよ
い。
In this case, the fluctuating output current detecting means is
It may be characterized in that the variation of the output current is directly detected.

【0013】また、上記変動出力電流検出手段は、上記
第1の二次電池の電流の変動を検出することを特徴とし
てもよい。
Further, the fluctuation output current detecting means may detect a fluctuation of the current of the first secondary battery.

【0014】[0014]

【作用】上記第2の二次電池に直列に接続した可変抵抗
の抵抗値を、第1の二次電池に直列に接続した固定抵抗
の抵抗値以下で0より大となる範囲で、上記変動出力電
流検出手段からの検出値に応じて、可変制御するので、
各セル間に均一な電流を流す制御を容易に行うことがで
き、また、各セル間に充放電性能の差を生じさせず、充
放電サイクルに伴う急速な性能低下を防ぐことができ、
さらに、1個のセルが不良となっても組電池全体には影
響を及ぼさず組電池としての寿命を延ばすことができ
る。
In the range in which the resistance value of the variable resistor connected in series with the second secondary battery is less than the resistance value of the fixed resistor connected in series with the first secondary battery and is larger than 0, Since it is variably controlled according to the detection value from the output current detection means,
It is possible to easily control the flow of a uniform current between the cells, and to prevent a difference in charge / discharge performance between the cells, and prevent a rapid decrease in performance associated with a charge / discharge cycle.
Further, even if one cell becomes defective, it does not affect the entire assembled battery and the life of the assembled battery can be extended.

【0015】[0015]

【実施例】以下、本発明に係る電源装置の好ましい実施
例を3つ(以下、第1実施例、第2実施例、第3実施例
と記す。)説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Three preferred embodiments (hereinafter, referred to as a first embodiment, a second embodiment and a third embodiment) of a power supply device according to the present invention will be described below.

【0016】先ず、第1実施例は、図1に示すように、
第1の二次電池をそれぞれ2個ずつ直列に接続した電池
(A)1、2、3及び4と、該第1の二次電池と公称電
圧が同一ながら内部抵抗が小さく、重負荷特性が良く、
かつ定格容量の大きい第2の二次電池を2個直列に接続
した電池(B)5とを並列に接続し、第1の二次電池よ
りなる電池(A)1、2、3及び4にはそれぞれ直列に
固定抵抗7、8、9及び10を接続し、第2の二次電池
よりなる電池(B)5には、可変抵抗11を接続し、出
力装置6に出力電流を供給する電源装置である。ここ
で、電池(A)1、2、3及び4は、正極活物質として
リチウムコバルト複合酸化物を用い、負極活物質として
石油ピッチを酸素雰囲気中1000℃で熱処理して得た
炭素を用いたLiCoO2 /Cロッキングチェア型非水
電解液二次電池の直径20mm、高さ50mmサイズ電
池を単セルとして用いており、電池容量は1000mA
hである。また、電池(B)5は、正極活物質としてリ
チウムコバルト複合酸化物を用い、負極活物質として石
油ピッチを酸素雰囲気中1000℃で熱処理して得た炭
素を用いたLiCoO2 /Cロッキングチェア型非水電
解液二次電池の直径18mm、高さ65mmサイズ電池
を単セルとして用いており、電池容量は1050mAh
である。また、上記固定抵抗7、8、9及び10は、電
流検出用の固定抵抗であり、第1の2次電池及び第2の
2次電池の内部抵抗よりも小さい抵抗値、例えば1mΩ
である。また、可変抵抗11は、抵抗値を摺動片12の
移動制御により、例えば0.1〜1mΩの間で任意に設
定する。
First, in the first embodiment, as shown in FIG.
Batteries (A) 1, 2, 3 and 4 each having two first secondary batteries connected in series, and having the same nominal voltage as the first secondary battery but a small internal resistance and a heavy load characteristic. well,
A battery (B) 5 in which two second secondary batteries each having a large rated capacity are connected in series is connected in parallel to form batteries (A) 1, 2, 3 and 4 made of the first secondary battery. Are connected in series to fixed resistors 7, 8, 9 and 10, respectively, and a variable resistor 11 is connected to the battery (B) 5 composed of the second secondary battery to supply an output current to the output device 6. It is a device. Here, in batteries (A) 1, 2, 3 and 4, lithium cobalt composite oxide was used as the positive electrode active material, and carbon obtained by heat-treating petroleum pitch at 1000 ° C. in an oxygen atmosphere was used as the negative electrode active material. LiCoO 2 / C rocking chair type non-aqueous electrolyte secondary battery with a diameter of 20 mm and a height of 50 mm is used as a single cell, and the battery capacity is 1000 mA.
h. Further, the battery (B) 5 is a LiCoO 2 / C rocking chair type using a lithium cobalt composite oxide as a positive electrode active material and carbon obtained by heat-treating petroleum pitch as a negative electrode active material in an oxygen atmosphere at 1000 ° C. A non-aqueous electrolyte secondary battery with a diameter of 18 mm and a height of 65 mm is used as a single cell, and the battery capacity is 1050 mAh.
Is. The fixed resistors 7, 8, 9 and 10 are fixed resistors for current detection and have a resistance value smaller than the internal resistance of the first secondary battery and the second secondary battery, for example, 1 mΩ.
Is. Further, the variable resistance 11 sets the resistance value arbitrarily by, for example, 0.1 to 1 mΩ by controlling the movement of the sliding piece 12.

【0017】この摺動片12の移動制御は、制御装置1
5により行われている。また、制御装置15は、摺動片
14の移動制御も行い、可変抵抗13の抵抗値を可変と
することで出力装置6に供給(放電)する電流の大きさ
の制御を行っている。また、制御装置15は、出力装置
6の出力電流の変動を検出する変動電流検出手段でもあ
る。この制御装置15が検出した出力電流の変動に応じ
て、摺動片12又は14が、該制御装置15により移動
制御される。また、この制御装置15には、固定抵抗
7、8、9及び10と、可変抵抗11のそれぞれ両端に
発生する電圧値(アナログ値)をディジタル信号に変換
するアナログ/ディジタル(A/D)コンバータ16が
接続されている。
The movement control of the sliding piece 12 is performed by the controller 1.
It is done by 5. In addition, the control device 15 also controls the movement of the sliding piece 14, and controls the magnitude of the current supplied (discharged) to the output device 6 by making the resistance value of the variable resistor 13 variable. Further, the control device 15 is also a fluctuating current detecting means for detecting a fluctuation in the output current of the output device 6. The movement of the sliding piece 12 or 14 is controlled by the control device 15 according to the fluctuation of the output current detected by the control device 15. Further, the control device 15 includes an analog / digital (A / D) converter for converting a voltage value (analog value) generated at both ends of the fixed resistors 7, 8, 9 and 10 and the variable resistor 11 into a digital signal. 16 are connected.

【0018】このように構成された第1実施例で出力装
置6に放電を行う場合について、以下に説明する。この
第1実施例では、全体に流れる電流値が1000mA
(1C)以下である場合、可変抵抗11の設定値を該制
御装置15が電池(A)1、2、3及び4と、同じ値す
なわち1mΩとする。一方、上記電流値が1000mA
(1C)を越える場合、可変抵抗11の設定値を該制御
装置15が例えば0.8、0.6、0.4、0.2、
0.1mΩというように段階的に小さくする。
The case of discharging the output device 6 in the first embodiment having the above-described structure will be described below. In the first embodiment, the current value flowing in the whole is 1000 mA.
When it is (1C) or less, the control device 15 sets the set value of the variable resistor 11 to the same value as the batteries (A) 1, 2, 3 and 4, that is, 1 mΩ. On the other hand, the current value is 1000 mA
If (1C) is exceeded, the control device 15 sets the set value of the variable resistor 11 to 0.8, 0.6, 0.4, 0.2,
It is gradually reduced to 0.1 mΩ.

【0019】上述したように、この第1実施例は、出力
装置6における電流値を制御装置15で検知し、この値
によって可変抵抗11の抵抗値を変化させることで、全
体に流れる電流値を1C容量以下の放電条件では、全て
の電池に均一な放電電流状態とし、1C容量以上の放電
負荷条件では電池(B)5に接続された可変抵抗器11
を、該電池(B)5からのみ予め設定された大きな電流
を流せるように変化させることができる。
As described above, according to the first embodiment, the current value in the output device 6 is detected by the control device 15, and the resistance value of the variable resistor 11 is changed by this value, so that the current value flowing through the entire device is changed. Under a discharge condition of 1 C capacity or less, a uniform discharge current state is set for all batteries, and under a discharge load condition of 1 C capacity or more, the variable resistor 11 connected to the battery (B) 5 is used.
Can be changed so that a large preset current can flow only from the battery (B) 5.

【0020】このため、この第1実施例は、常に、電流
の過度の集中化を防ぐことができ、大電流を要する重負
荷条件では、容量の大きい電池(B)5に電流をより多
く流すので、未然に不良電池の発生を予防できる。
Therefore, in the first embodiment, excessive concentration of current can be prevented at all times, and under heavy load conditions requiring a large current, a larger amount of current flows through the battery (B) 5 having a large capacity. Therefore, the occurrence of defective batteries can be prevented.

【0021】ここで、この第1実施例で一定の充放電サ
イクルを繰り返した回数に対する放電容量の変化につい
て説明しておく。この充放電サイクルは、放電を初めに
3Aの放電電流で1回、次に10Aの放電電流で2回、
次に5Aの放電電流で1回の各放電条件で2.5Vまで
行い、充電を全て6Aの電流で3時間4.20V終止電
圧まで行うサイクルとする。この時、可変抵抗11の設
定は3Aで1mΩに、10Aで0.4mΩ、5Aで1m
Ωに設定した。この充放電条件における第1実施例の3
A条件での電池(A)1個当りの放電容量特性を実線で
図2に示す。
Now, the change of the discharge capacity with respect to the number of times of repeating the constant charge / discharge cycle in the first embodiment will be described. In this charge / discharge cycle, the discharge is first performed once with a discharge current of 3 A, then twice with a discharge current of 10 A,
Next, a cycle is performed in which a discharge current of 5 A is applied up to 2.5 V under each discharge condition, and all charging is performed with a current of 6 A for 3 hours to a final voltage of 4.20 V. At this time, the variable resistor 11 is set to 1 mΩ at 3 A, 0.4 mΩ at 10 A, and 1 mΩ at 5 A.
Set to Ω. 3 of the first embodiment under these charge / discharge conditions
The discharge capacity characteristic per battery (A) under the condition A is shown by a solid line in FIG.

【0022】この図2には、比較のため、比較例1と比
較例2を示しておく。比較例1は、図3に示すように、
基本的には、第1実施例と同様の構成であるが、電池
(B)5に接続されていた可変抵抗器(図1では符号1
1)に代えて1mΩの固定抵抗17を接続した。その他
の構成は、全て第1実施例と同様であるので説明を省略
する。
FIG. 2 shows Comparative Example 1 and Comparative Example 2 for comparison. In Comparative Example 1, as shown in FIG.
Basically, the configuration is the same as that of the first embodiment, but the variable resistor (reference numeral 1 in FIG. 1 is connected to the battery (B) 5).
Instead of 1), a fixed resistance 17 of 1 mΩ was connected. The rest of the configuration is the same as that of the first embodiment, so its explanation is omitted.

【0023】この図3に示した比較例1を上記第1実施
例と同様の条件で充放電サイクル試験を繰り返して行
い、各サイクルでの放電容量を記録したのが、図2に破
線で示した放電容量特性である。
The comparative example 1 shown in FIG. 3 was repeatedly subjected to a charge / discharge cycle test under the same conditions as in the first example, and the discharge capacity in each cycle was recorded. And the discharge capacity characteristics.

【0024】また、第1実施例で用いたLiCoO2
Cロッキングチェア非水電解液二次電池であり、直径2
0mm、高さ50mmの二次電池を充電電流1Aで2.
5時間4.20V終止電圧、放電電流0.5Aで2.5
V終止電圧まで放電させる充放電サイクルを繰り返し行
ったときを比較例2とし、その電池(A)1個における
放電容量特性を図2に一点鎖線で示す。
Further, the LiCoO 2 / used in the first embodiment is used.
C Rocking chair Non-aqueous electrolyte secondary battery, diameter 2
1. A rechargeable battery with a height of 0 mm and a height of 50 mm is charged with a charging current of 1 A.
5 hours 4.20V final voltage, discharge current 0.5A 2.5
A case where the charge and discharge cycle in which the battery was discharged to the V cutoff voltage was repeated was set as Comparative Example 2, and the discharge capacity characteristics of one battery (A) thereof are shown in FIG.

【0025】この図2の特性図から得られた第1実施例
のサイクル回数毎の放電容量の値を比較例1と比較例2
のそれと共に表1に示す。
The values of the discharge capacity for each cycle number of the first embodiment obtained from the characteristic diagram of FIG. 2 are shown as Comparative Example 1 and Comparative Example 2.
It is shown in Table 1 together with that.

【0026】[0026]

【表1】 [Table 1]

【0027】この表からも分かるように、上記第1実施
例は、電池(B)5に接続する抵抗を可変抵抗とするこ
とにより、該抵抗を固定抵抗としている比較例1よりも
数倍良い放電性能を持ち、また、上記第1実施例は、該
第1実施例よりも緩い充放電条件の比較例2とほぼ同様
の放電性能を持つことがわかる。
As can be seen from this table, the first embodiment described above is several times better than Comparative Example 1 in which the resistance connected to the battery (B) 5 is a variable resistance so that the resistance is a fixed resistance. It is understood that the first embodiment has the discharge performance, and the first embodiment has substantially the same discharge performance as that of the comparative example 2 under the charging / discharging condition which is milder than the first embodiment.

【0028】すなわち、この第1実施例に係る電源装置
は、各電池間に均一な電流を流す制御を容易に行うこと
ができ、また、各セル間に充放電性能の差を生じさせ
ず、充放電サイクルに伴う急速な性能低下を防ぐことが
でき、さらに、1個のセルが不良となっても組電池全体
には影響を及ぼさず組電池としての寿命を延ばすことが
できる。
That is, in the power supply device according to the first embodiment, it is possible to easily control the flow of a uniform current between the batteries, and to prevent a difference in charge / discharge performance between the cells. It is possible to prevent a rapid deterioration in performance associated with charge / discharge cycles, and further, even if one cell becomes defective, the entire assembled battery is not affected and the life of the assembled battery can be extended.

【0029】次に、第2実施例について、図4を参照し
ながら説明する。この図4では、上記図1と同様の各部
には、同符号を配する。
Next, a second embodiment will be described with reference to FIG. In FIG. 4, the same symbols are assigned to the same units as in FIG.

【0030】この第2実施例が上記図1にその構成を示
した第1実施例と異なるのは、出力装置6の出力電流の
変動だけにより、可変抵抗11の抵抗値を設定している
点である。
The second embodiment differs from the first embodiment whose configuration is shown in FIG. 1 above in that the resistance value of the variable resistor 11 is set only by the fluctuation of the output current of the output device 6. Is.

【0031】すなわち、この第2実施例では、可変抵抗
11の値を制御して、出力装置6の電流の変動に応じて
放電を制御し、電池(A)と電池(B)との間に充放電
性能の差を生じさせず、充放電サイクルに伴う急速な性
能低下を防ぐことができる。
That is, in the second embodiment, the value of the variable resistor 11 is controlled to control the discharge according to the fluctuation of the current of the output device 6, and the discharge is controlled between the battery (A) and the battery (B). It is possible to prevent a rapid decrease in performance due to charge / discharge cycles without causing a difference in charge / discharge performance.

【0032】次に、第3実施例について、図5を参照し
ながら説明する。この図5でも、上記図1と同様の各部
には、同符号を配す。
Next, a third embodiment will be described with reference to FIG. In FIG. 5 as well, the same symbols are assigned to the same units as in FIG.

【0033】この第3実施例が上記図1にその構成を示
した第1実施例と異なるのは、出力装置側の出力電流に
よらないで、電池(A)側だけの電流の変化によって可
変抵抗11の抵抗値を可変している点である。
The third embodiment is different from the first embodiment whose configuration is shown in FIG. 1 above. It does not depend on the output current on the output device side, but can be changed by changing the current on the battery (A) side only. This is that the resistance value of the resistor 11 is variable.

【0034】すなわち、この第3実施例では、可変抵抗
11の値を制御して、電池(A)側の電流の変動に応じ
て放電を制御し、1個のセルが不良となっても組電池全
体には影響を及ぼすことがなく、寿命を延ばすことがで
きる。
That is, in the third embodiment, the value of the variable resistor 11 is controlled to control the discharge according to the fluctuation of the current on the battery (A) side, and even if one cell is defective, The entire battery is not affected and the life can be extended.

【0035】なお、上記第1、第2及び第3実施例で
は、電池サイズとして径20mm高さ50mmの電池を
電池(A)として用いているが、この時の電池内部抵抗
としては約40mΩであり、接続する抵抗器が1mΩで
あり電池の内部抵抗に対して十分に小さな抵抗値である
から影響はほとんどない。通常、この抵抗器の値として
は電池内部抵抗の1/10〜1/100を選定すること
が有効な方法である。
In the first, second and third embodiments, a battery having a diameter of 20 mm and a height of 50 mm is used as the battery (A), but the internal resistance of the battery at this time is about 40 mΩ. There is almost no effect because the connected resistor has a resistance value of 1 mΩ and is sufficiently small with respect to the internal resistance of the battery. Usually, it is an effective method to select 1/10 to 1/100 of the internal resistance of the battery as the value of this resistor.

【0036】一方、可変抵抗の値としては固定抵抗の値
の1〜1/20に可変的に設定できるものが有効であ
る。これによって、各電池の負荷電流を計測すると共に
1つの電池に大電流が集中して流れるのを制御装置で監
視並びに遮断し、適正電流に制限することを可能ならし
める。また、負荷装置において規定の設定電流値以上を
必要とする場合には、可変抵抗器を予め設定してある値
に変えることで大電流放電使用を可能ならしめるもので
ある。
On the other hand, it is effective that the variable resistance value can be variably set to 1/20 of the fixed resistance value. As a result, it becomes possible to measure the load current of each battery, monitor and shut off the flow of a large current concentrated in one battery by the control device, and limit the current to an appropriate value. Further, when the load device requires a predetermined set current value or more, the variable resistor is changed to a preset value so that the large current discharge can be used.

【0037】また、上記各実施例においては、充電に関
し、1C以下の電流によって、抵抗値を同一の状態にし
て行うが、電流が何らかの充電器異常によって1Cを越
えて行われた場合には電池群を充電回路から切り放すよ
う回路上の接続の切り替えができる様にするようにして
もよい。
Further, in each of the above-mentioned embodiments, with respect to charging, the resistance value is made the same with a current of 1 C or less, but when the current exceeds 1 C due to some charger abnormality, the battery is charged. The connection on the circuit may be switched so that the group is disconnected from the charging circuit.

【0038】また、第1実施例及び第2実施例では、可
変抵抗の設定方法としては出力装置の電流を制御装置で
検出し、この時の電流値によって可変抵抗の抵抗値を制
御しているが、該出力装置の電流値を抵抗器のスイッチ
ングに用いて、可変抵抗器の回路をON、OFFし、出
力が大きい場合には1/10の抵抗のみをON状態と
し、出力の小さい場合には全抵抗器をON状態とするよ
うに設定してもよい。
Further, in the first and second embodiments, as a method of setting the variable resistance, the current of the output device is detected by the control device, and the resistance value of the variable resistor is controlled by the current value at this time. However, by using the current value of the output device for switching the resistor, the variable resistor circuit is turned on and off. When the output is large, only 1/10 of the resistance is turned on, and when the output is small, May be set so that all resistors are turned on.

【0039】[0039]

【発明の効果】本発明に係る電源装置は、少なくとも、
単数又は複数の第1の二次電池と、これら第1の二次電
池と公称電圧が同一ながら内部抵抗が小さく、重負荷特
性が良く、かつ定格容量の大きい第2の二次電池とを並
列に接続し、出力装置に出力電流を供給する電源装置に
おいて、上記第1の二次電池には直列に固定抵抗を接続
し、上記第2の二次電池には直列に可変抵抗を接続し、
上記出力装置に流れる出力電流の変動を検出する変動出
力電流検出手段での検出値に応じて、上記可変抵抗の可
変抵抗値を上記固定抵抗の抵抗値以下で0より大となる
範囲で可変制御することを特徴とするので、各電池間に
均一な電流を流す制御を容易に行うことができ、また、
各電池間に充放電性能の差を生じさせず、充放電サイク
ルに伴う急速な性能低下を防ぐことができ、さらに、1
個の電池が不良となっても組電池全体には影響を及ぼさ
ず組電池としての寿命を延ばすことができる。
The power supply device according to the present invention is at least
A single or a plurality of first secondary batteries and a second secondary battery having the same nominal voltage as those of the first secondary batteries but a small internal resistance, good heavy load characteristics, and a large rated capacity are connected in parallel. In the power supply device for supplying an output current to the output device, a fixed resistor is connected in series to the first secondary battery, and a variable resistor is connected in series to the second secondary battery,
The variable resistance value of the variable resistor is variably controlled within a range of less than or equal to the resistance value of the fixed resistor and greater than 0 in accordance with the detection value of the fluctuation output current detecting means for detecting the fluctuation of the output current flowing through the output device. Since it is characterized by that, it is possible to easily control the flow of a uniform current between each battery,
It does not cause a difference in charge / discharge performance between each battery, and can prevent a rapid decrease in performance due to charge / discharge cycles.
Even if an individual battery becomes defective, the life of the battery pack can be extended without affecting the entire battery pack.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電源装置の第1実施例の回路図で
ある。
FIG. 1 is a circuit diagram of a first embodiment of a power supply device according to the present invention.

【図2】図1に示した第1実施例の充放電サイクル回数
に対する放電容量の特性図である。
FIG. 2 is a characteristic diagram of the discharge capacity with respect to the number of charge / discharge cycles of the first embodiment shown in FIG.

【図3】図2で第1実施例の放電容量特性と比較するた
めに用いられた比較例1の回路図である。
FIG. 3 is a circuit diagram of Comparative Example 1 used for comparison with the discharge capacity characteristic of the first embodiment in FIG.

【図4】本発明に係る電源装置の第2実施例の回路図で
ある。
FIG. 4 is a circuit diagram of a second embodiment of the power supply device according to the present invention.

【図5】本発明に係る電源装置の第3実施例の回路図で
ある。
FIG. 5 is a circuit diagram of a third embodiment of the power supply device according to the present invention.

【符号の説明】[Explanation of symbols]

1、2、3、4・・・・・電池(A) 5・・・・・電池(B) 6・・・・・出力装置 7、8、9、10・・・・・固定抵抗 11、13・・・・・可変抵抗 15・・・・・制御装置 16・・・・・アナログ/ディジタル(A/D)コンバ
ータ
1, 2, 3, 4 ... Battery (A) 5 ... Battery (B) 6 ... Output device 7, 8, 9, 10 ... Fixed resistance 11, 13 ... Variable resistance 15 ... Control device 16 ... Analog / digital (A / D) converter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、単数又は複数の第1の二次
電池と、これら第1の二次電池と公称電圧が同一ながら
内部抵抗が小さく、重負荷特性が良く、かつ定格容量の
大きい第2の二次電池とを並列に接続し、出力装置に出
力電流を供給する電源装置において、 上記第1の二次電池には直列に固定抵抗を接続し、上記
第2の二次電池には直列に可変抵抗を接続し、上記出力
装置に流れる出力電流の変動を検出する変動出力電流検
出手段での検出値に応じて、上記可変抵抗の可変抵抗値
を上記固定抵抗の抵抗値以下で0より大となる範囲で可
変制御することを特徴とする電源装置。
1. At least one or a plurality of first secondary batteries, and a second secondary battery having the same nominal voltage as those of the first secondary batteries but small internal resistance, good heavy load characteristics, and large rated capacity. A secondary battery is connected in parallel to supply an output current to the output device, a fixed resistor is connected in series to the first secondary battery, and a fixed resistor is connected to the second secondary battery in series. A variable resistor is connected to the variable resistor, and the variable resistance value of the variable resistor is set to 0 or less than 0 of the fixed resistor according to the value detected by the variable output current detecting means for detecting the fluctuation of the output current flowing in the output device. A power supply device that is variably controlled within a large range.
【請求項2】 上記変動出力電流検出手段は、出力電流
の変動を直接検出することを特徴とする請求項1記載の
電源装置。
2. The power supply device according to claim 1, wherein the fluctuating output current detecting means directly detects a fluctuation in the output current.
【請求項3】 上記変動出力電流検出手段は、上記第1
の二次電池の電流の変動を検出することを特徴とするこ
とを特徴とする請求項1記載の電源装置。
3. The fluctuating output current detecting means is the first
2. The power supply device according to claim 1, wherein a change in current of the secondary battery is detected.
JP5282484A 1993-11-11 1993-11-11 Power supply Withdrawn JPH07143677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5282484A JPH07143677A (en) 1993-11-11 1993-11-11 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5282484A JPH07143677A (en) 1993-11-11 1993-11-11 Power supply

Publications (1)

Publication Number Publication Date
JPH07143677A true JPH07143677A (en) 1995-06-02

Family

ID=17653042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5282484A Withdrawn JPH07143677A (en) 1993-11-11 1993-11-11 Power supply

Country Status (1)

Country Link
JP (1) JPH07143677A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099492A (en) * 2006-10-13 2008-04-24 Fujitsu Ltd Battery unit control method and battery unit controller
JP2010142040A (en) * 2008-12-12 2010-06-24 Hitachi Ltd Power accumulation device having current balance function
KR101008755B1 (en) * 2008-07-22 2011-01-14 엘지전자 주식회사 Apparatus and Method for controlling Power
US7915859B2 (en) 2008-05-07 2011-03-29 Lg Electronics Inc. Apparatus and method for controlling power
US20160172888A1 (en) * 2014-12-11 2016-06-16 Samsung Sdi Co., Ltd. Battery pack
JP2017175758A (en) * 2016-03-23 2017-09-28 株式会社デンソー Power storage system
CN113330626A (en) * 2020-09-03 2021-08-31 宁德新能源科技有限公司 Electrochemical device and electronic device
US11569765B2 (en) 2019-10-11 2023-01-31 Black & Decker Inc. Power tool receiving different capacity battery packs

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099492A (en) * 2006-10-13 2008-04-24 Fujitsu Ltd Battery unit control method and battery unit controller
US7915859B2 (en) 2008-05-07 2011-03-29 Lg Electronics Inc. Apparatus and method for controlling power
KR101008755B1 (en) * 2008-07-22 2011-01-14 엘지전자 주식회사 Apparatus and Method for controlling Power
JP2010142040A (en) * 2008-12-12 2010-06-24 Hitachi Ltd Power accumulation device having current balance function
US20160172888A1 (en) * 2014-12-11 2016-06-16 Samsung Sdi Co., Ltd. Battery pack
US10361573B2 (en) * 2014-12-11 2019-07-23 Samsung Sdi Co., Ltd. Battery pack
JP2017175758A (en) * 2016-03-23 2017-09-28 株式会社デンソー Power storage system
US11569765B2 (en) 2019-10-11 2023-01-31 Black & Decker Inc. Power tool receiving different capacity battery packs
CN113330626A (en) * 2020-09-03 2021-08-31 宁德新能源科技有限公司 Electrochemical device and electronic device

Similar Documents

Publication Publication Date Title
KR101664641B1 (en) Discharging device for electricity storage device
JP5349021B2 (en) Battery system
JP3922655B2 (en) Power supply control system and power supply control method
JP4888041B2 (en) Battery voltage regulator
US7923969B2 (en) State of charge equalizing device and assembled battery system including same
JP4865103B2 (en) Charging apparatus and charging method
US7626359B2 (en) Apparatus and method for charging and discharging serially-connected batteries
US8476869B2 (en) Battery voltage equalizer circuit and method for using the same
EP2717415A1 (en) Electricity storage system
US10418827B2 (en) Electricity storage system and method for controlling electricity storage system
KR101720960B1 (en) Apparatus and Method For Equalizing Charge of a Battery Pack
JP2010035337A (en) Battery pack monitoring controller
US20100261083A1 (en) Power supply apparatus
JPH06253463A (en) Charging method for battery
US8102155B2 (en) Discharge controller
KR20200095490A (en) Battery management device and method
US20150048795A1 (en) Charge control apparatus and charge control method
JPH07143677A (en) Power supply
US5604418A (en) Method of charging a lithium storage cell having a carbone anode
JP3709766B2 (en) Battery capacity adjustment method
WO2019008367A1 (en) Battery management
JPH06133465A (en) Method and apparatus for charging secondary battery
JP2005151679A (en) Regulating method for voltage of battery pack
JPH06233468A (en) Charging method and charger for secondary battery
TWI548179B (en) Range extension from active discharging balance device and controlling method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130