JPH0714340Y2 - Molten metal nozzle for producing metal powder - Google Patents

Molten metal nozzle for producing metal powder

Info

Publication number
JPH0714340Y2
JPH0714340Y2 JP6233990U JP6233990U JPH0714340Y2 JP H0714340 Y2 JPH0714340 Y2 JP H0714340Y2 JP 6233990 U JP6233990 U JP 6233990U JP 6233990 U JP6233990 U JP 6233990U JP H0714340 Y2 JPH0714340 Y2 JP H0714340Y2
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
flow
gas
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6233990U
Other languages
Japanese (ja)
Other versions
JPH0421523U (en
Inventor
弘幸 堀村
憲治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6233990U priority Critical patent/JPH0714340Y2/en
Publication of JPH0421523U publication Critical patent/JPH0421523U/ja
Application granted granted Critical
Publication of JPH0714340Y2 publication Critical patent/JPH0714340Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【考案の詳細な説明】 A.考案の目的 (1)産業上の利用分野 本考案は金属粉末製造用溶湯ノズル、特に、金属粉末を
ガスアトマイズ法の適用下で製造する際に用いられる溶
湯ノズルの改良に関する。
[Detailed Description of the Invention] A. Purpose of the Invention (1) Industrial Application Field The present invention relates to a molten metal nozzle for producing metal powder, and in particular, to a molten metal nozzle used when producing metal powder under the application of the gas atomization method. Regarding improvement.

(2)従来の技術 従来、この種溶湯ノズルとしては、金属粉末の微細化を
狙って、絞りを流路の流出口に設け、またガス流を流出
口回りに接触させるようにして使用される拘束型溶湯ノ
ズルが知られている。
(2) Conventional Technology Conventionally, as this kind of molten metal nozzle, a throttle is provided at the outlet of the flow path and a gas flow is contacted around the outlet in order to make the metal powder finer. A restraint type molten metal nozzle is known.

(3)考案が解決しようとする課題 しかしながら、前記溶湯ノズルにおいては、その流出口
近傍部がガス流により冷却され、また絞りに起因して流
出口の溶湯量が少ないこともあって、溶湯が溶湯ノズル
内で凝固してノズル詰りを発生し易い、といった問題が
ある。
(3) Problems to be Solved by the Invention However, in the above-mentioned molten metal nozzle, the vicinity of the molten metal outlet is cooled by the gas flow, and the amount of molten metal at the molten metal outlet is small due to the throttling. There is a problem that the nozzle is likely to be clogged by solidifying in the molten metal nozzle.

本考案は前記に鑑み、ノズル詰りを確実に回避し得る前
記溶湯ノズルを提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide the molten metal nozzle capable of reliably avoiding nozzle clogging.

B.考案の構成 (1)課題を解決するための手段 本考案は、金属粉末をガスアトマイズ法の適用下で製造
する際に用いられる溶湯ノズルであって、上下方向に延
びる流路の中間部に、溶湯流を溶滴流に変えて滴下させ
るための絞りを設けたことを特徴とする。
B. Configuration of the Invention (1) Means for Solving the Problems The present invention is a molten metal nozzle used when a metal powder is manufactured under the application of the gas atomizing method, and is provided in an intermediate portion of a vertically extending flow path. It is characterized in that a throttle for changing the molten metal flow into a droplet flow for dropping is provided.

(2)作用 前記のように構成すると、溶湯ノズルの流出口からは溶
滴流が流路内周面に付着することなく滴下するので、金
属粉末の微細化を狙ってガス流を流出口回りに接触させ
ても、溶湯の凝固に伴うノズル詰りを確実に回避するこ
とができる。
(2) Action With the above-mentioned configuration, the droplet flow is dropped from the outlet of the molten metal nozzle without adhering to the inner peripheral surface of the flow path, so that the gas flow around the outlet is aimed at making the metal powder finer. It is possible to reliably avoid the nozzle clogging caused by the solidification of the molten metal even when the molten metal is brought into contact with.

(3)実施例 第1,第2図において、Heガスアトマイズ法を実施するた
めの金属粉末用製造装置は、粉末製造部1と粉末回収部
2とを備え、粉末製造部1は、上部の溶解チャンバ3と
下部の噴霧チャンバ4とよりなり、また粉末回収部2は
上部のサイクロン5と下部の回収ポット6とよりなる。
噴霧チャンバ4とサイクロン5とは導管7を介して接続
される。
(3) Example In FIGS. 1 and 2, a metal powder manufacturing apparatus for carrying out the He gas atomization method comprises a powder manufacturing section 1 and a powder collecting section 2, and the powder manufacturing section 1 melts the upper part. It comprises a chamber 3 and a spray chamber 4 at the bottom, and the powder recovery part 2 comprises a cyclone 5 at the top and a recovery pot 6 at the bottom.
The atomization chamber 4 and the cyclone 5 are connected via a conduit 7.

溶解チャンバ3内にるつぼ8が配設され、そのるつぼ8
の底壁に取付けられた溶湯ノズル9が噴霧チャンバ4内
上部に位置する。溶湯ノズル9は上下方向に延びる流路
10を有し、その流入口11はるつぼ8内に向けて開口し、
また流出口12は溶湯ノズル9の下方に向けて開口する。
溶湯ノズル9の下部外周面に環状ガスノズル14が取付け
られ、そのガスノズル14にガス導入管15が接続される。
るつぼ8内にはストッパ16が挿入され、そのストッパ16
により溶湯ノズル9の流入口11を閉鎖し得るようになっ
ている。
A crucible 8 is provided in the melting chamber 3, and the crucible 8 is
The melt nozzle 9 attached to the bottom wall of the spray chamber is located in the upper part of the spray chamber 4. The melt nozzle 9 is a flow path extending in the vertical direction.
10 has its inlet 11 opening into the crucible 8;
The outlet 12 opens downward from the melt nozzle 9.
An annular gas nozzle 14 is attached to the outer peripheral surface of the lower portion of the molten metal nozzle 9, and a gas introduction pipe 15 is connected to the gas nozzle 14.
A stopper 16 is inserted into the crucible 8 and the stopper 16
Thus, the inflow port 11 of the molten metal nozzle 9 can be closed.

溶湯ノズル9は、その流出口12外周縁から下部外周面の
所定位置までを先細りのテーパ面17に形成される。ガス
ノズル14によるガス流gは、テーパ面16に沿った後、流
出口12の中心延長線上で収斂するように円錐シェル形に
形成される。その結果、ガス流gは溶湯ノズル9の流出
口12外周縁に接触することになる。
The molten metal nozzle 9 is formed with a taper surface 17 that is tapered from the outer peripheral edge of the outlet 12 to a predetermined position on the lower outer peripheral surface. The gas flow g by the gas nozzle 14 is formed in a conical shell shape so as to converge along the center extension line of the outlet 12 after following the tapered surface 16. As a result, the gas flow g comes into contact with the outer peripheral edge of the outlet 12 of the molten metal nozzle 9.

溶湯ノズル9において、流路10の中間部、図示例では流
入口11側に偏った位置に絞り18が設けられ、溶湯流は絞
り18により減圧されて溶滴流に変えられる。また溶湯ノ
ズル9の、絞り18を囲む外周面には保温(または加熱)
ブロック19が付設される。このように絞り18を、つるぼ
8内の溶湯熱および保温(または加熱)ブロック19の熱
を受ける流路10の高温域に配設すると、絞り18に存する
溶湯流の凝固が阻止される。
In the melt nozzle 9, a throttle 18 is provided at an intermediate portion of the flow path 10, that is, at a position biased toward the inflow port 11 side in the illustrated example, and the melt flow is decompressed by the throttle 18 and converted into a droplet flow. Also, the outer peripheral surface of the melt nozzle 9 surrounding the throttle 18 is kept warm (or heated).
Block 19 is attached. When the throttle 18 is arranged in the high temperature region of the flow path 10 that receives the heat of the molten metal in the crucible 8 and the heat of the heat retaining (or heating) block 19 in this way, solidification of the molten metal flow existing in the throttle 18 is prevented.

金属粉末の製造に当っては、第2図に示すようにつるぼ
8内で、例えばアルミニウム合金の溶湯mを調製し、そ
の溶湯mを、それに背圧を作用させることによって溶湯
ノズル9の流路10に導入する。またガス導入管15にアト
マイズガスとしてのHeガスを供給し、そのHeガスをガス
ノズル14から噴射させることによってガス流gを形成す
る。
In the production of the metal powder, a molten metal m of, for example, an aluminum alloy is prepared in a crucible 8 as shown in FIG. 2, and the molten metal m is made to flow through a molten metal nozzle 9 by applying a back pressure thereto. Introduce to road 10. Further, He gas as an atomizing gas is supplied to the gas introduction pipe 15, and the He gas is ejected from the gas nozzle 14 to form a gas flow g.

溶湯ノズル9に導入された溶湯流m1は、絞り18を通過す
ることにより減圧されて溶滴流m2に変えられる。これに
より溶湯ノズル9の流出口12からは溶滴流m2が流路10内
周面に付着することなく滴下して、ガス流gにより微細
な金属粉末Pmに切断される。この場合、溶滴流m2は、そ
の滴下中に冷却されるので粉末化された後における粉末
相互の接合を回避して粉末化された時の微細状態を維持
することができる。
The molten metal flow m 1 introduced into the molten metal nozzle 9 is reduced in pressure by passing through the restrictor 18 and converted into a droplet flow m 2 . As a result, the droplet flow m 2 is dropped from the outlet 12 of the molten metal nozzle 9 without adhering to the inner peripheral surface of the flow channel 10, and is cut into fine metal powder Pm by the gas flow g. In this case, since the droplet flow m 2 is cooled during the dropping, it is possible to avoid the mutual bonding of the powders after being pulverized and maintain the fine state when pulverized.

このような溶滴流m2の滴下を現出させると、金属粉末Pm
の微細化を狙ってガス流gを流出口12回りに接触させて
もノズル詰りを発生することがない。
When such a drop of the droplet flow m 2 is revealed, the metal powder Pm
No nozzle clogging occurs even if the gas flow g is brought into contact with the periphery of the outlet 12 for the purpose of miniaturization.

前記のような作用を得るためには、溶湯ノズル9等に次
のような各種要件が課される。たゞし、第3図におい
て、aは絞り18の内径、bは絞り18の長さ、cは流路10
における絞り18下流側の内径、αは絞り18の出口20側に
おける延長母線と、流路10の絞り18との連設面21とがな
す角度、第2図において、dは絞り18の出口20と流出口
12との間の長さである。
In order to obtain the above action, the molten metal nozzle 9 and the like are required to have the following various requirements. However, in FIG. 3, a is the inner diameter of the diaphragm 18, b is the length of the diaphragm 18, and c is the flow path 10.
In FIG. 2, α is the inner diameter of the downstream side of the throttle 18, α is the angle formed by the extended busbar on the outlet 20 side of the throttle 18 and the continuous surface 21 of the flow passage 10 with the throttle 18, and in FIG. And outlet
It is between 12 and the length.

(i)b/a≧1 (ii)α≧45°、好ましくはα≧90° (iii)2a≦c (iv)d/c≦15 (v)少なくとも噴霧チャンバ4内はアトマイズガスと
同じガスにて置換すること。
(I) b / a ≧ 1 (ii) α ≧ 45 °, preferably α ≧ 90 ° (iii) 2a ≦ c (iv) d / c ≦ 15 (v) At least the same gas as the atomizing gas in the spray chamber 4. Replace with.

このような要件(i)〜(v)が求められる理由は次の
通りである。
The reason why these requirements (i) to (v) are required is as follows.

要件(i):b/a<1では、絞り18により形成された溶滴
流m2の滴下状態が不安定となって、その溶滴流m2が流路
10内周面に付着し易くなる。
Requirement (i): When b / a <1, the droplet state of the droplet flow m 2 formed by the aperture 18 becomes unstable, and the droplet flow m 2 becomes a flow path.
10 Easily adheres to the inner surface.

要件(ii):α<45°では、溶湯流m1の粘性、アトマイ
ズ中の圧力変動等に起因して溶湯流m1が連設面21に付着
して溶滴流m2を形成することが困難となる。α≧45°で
あれば、このような問題を略解決し得る。α≧90°であ
れば、溶湯流m1に対する付着防止作用は万全である。
Requirement (ii): When α <45 °, the molten metal flow m 1 must adhere to the continuous surface 21 to form a droplet flow m 2 due to the viscosity of the molten metal flow m 1 and the pressure fluctuation during atomization. Will be difficult. If α ≧ 45 °, such a problem can be almost solved. When α ≧ 90 °, the anti-adhesion effect on the molten metal flow m 1 is perfect.

要件(iii):流路10の内径cは絞り18の内径aに比べ
て大きい方が良く、2a>cでは、絞り18の内径に対して
流路10の内径cが小さくなるため溶滴流m2の僅かな振れ
によって、その溶滴流m2が流路10の内周面に付着する。
Requirement (iii): The inner diameter c of the flow channel 10 is preferably larger than the inner diameter a of the throttle 18. When 2a> c, the inner diameter c of the flow channel 10 becomes smaller than the inner diameter of the throttle 18, so that the droplet flow. Due to a slight swing of m 2 , the droplet flow m 2 adheres to the inner peripheral surface of the flow channel 10.

要件(iv):d/c>15では、前記同様に溶滴流m2の僅かな
振れによって、その溶滴流m2が流路10の内周面に付着す
る。
When the requirement (iv): d / c> 15, the droplet flow m 2 adheres to the inner peripheral surface of the flow channel 10 due to the slight fluctuation of the droplet flow m 2 as described above.

要件(v):噴霧チャンバ4が、アトマイズガスと異な
るガスで置換されていると、その噴霧チャンバ4内がア
トマイズガスで置換されるまでの間、両ガスの粘性の差
等に起因して噴霧チャンバ4内が非常に不安定となり、
ノズル詰りが発生し易くなるからである。
Requirement (v): When the atomizing chamber 4 is replaced with a gas different from the atomizing gas, atomization is caused due to a difference in the viscosity of the both gases until the inside of the atomizing chamber 4 is replaced with the atomizing gas. The chamber 4 becomes very unstable,
This is because nozzle clogging is likely to occur.

アトマイズガスがHeガスの場合、溶解チャンバ3はArガ
ス置換とするのが良い。何故ならば、溶解チャンバ3を
噴霧チャンバ4同様にHeガス置換にすると、Heガスの熱
伝導率が良すぎるため、溶湯mの昇温に長時間を要する
等エネルギー効率が極端に低下するからである。この場
合、Heガスは再使用のため回収しなければならないの
で、Arガスの混入を防ぐため、アトマイズ終了に伴い噴
霧チャンバ4と溶解チャンバ3とが溶湯ノズル9を通じ
て連通する前に、ストッパ16により溶湯ノズル9の流入
口11を閉鎖するとか、溶湯mを僅かに残してアトマイズ
を終了する等の工夫が必要である。
When the atomizing gas is He gas, the melting chamber 3 is preferably replaced with Ar gas. This is because if the melting chamber 3 is replaced with He gas as in the spray chamber 4, the thermal conductivity of He gas is too good, and it takes a long time to raise the temperature of the molten metal m, resulting in an extremely low energy efficiency. is there. In this case, since He gas must be recovered for reuse, in order to prevent mixing of Ar gas, a stopper 16 is used before the atomizing chamber 4 and the melting chamber 3 communicate with each other through the melt nozzle 9 in order to prevent atomization. It is necessary to take measures such as closing the inflow port 11 of the melt nozzle 9 or leaving the melt m slightly and ending atomization.

C.考案の効果 本考案によれば、流路の中間部に絞りを設けるといった
極めて簡単な手段を採用することによって溶湯流を溶滴
流に変え、これにより溶湯の凝固に伴うノズル詰りを確
実に回避し得る溶湯ノズルを提供することができる。
C. Effect of the Invention According to the present invention, the molten metal flow is changed to a droplet flow by adopting an extremely simple means such as providing a restriction in the middle part of the flow path, thereby ensuring nozzle clogging caused by solidification of the molten metal. It is possible to provide a molten metal nozzle that can be avoided.

【図面の簡単な説明】[Brief description of drawings]

第1図は金属粉末用製造装置の全体正面図、第2図は第
1図の要部縦断正面図、第3図は溶湯ノズルにおける絞
り部分の拡大縦断正面図である。 m1…溶湯流、m2…溶滴流、9…溶湯ノズル、10…流路、
18…絞り
FIG. 1 is an overall front view of a metal powder manufacturing apparatus, FIG. 2 is a longitudinal sectional front view of an essential part of FIG. 1, and FIG. 3 is an enlarged vertical sectional front view of a throttle portion of a molten metal nozzle. m 1 ... melt flow, m 2 ... droplet flow, 9 ... melt nozzle, 10 ... flow path,
18 ... Aperture

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】金属粉末をガスアトマイズ法の適用下で製
造する際に用いられる溶湯ノズルであって、上下方向に
延びる流路(10)の中間部に、溶湯流(m1)を溶滴流
(m2)に変えて滴下させるための絞り(18)を設けたこ
とを特徴とする金属粉末製造用溶湯ノズル。
1. A molten metal nozzle used when a metal powder is produced under the application of a gas atomizing method, wherein a molten metal flow (m 1 ) is applied to an intermediate portion of a vertically extending flow channel (10). A molten metal nozzle for producing a metal powder, characterized in that a diaphragm (18) for dropping in place of (m 2 ) is provided.
【請求項2】前記流路(10)の高温域に前記絞り(18)
を配設した、第(1)項記載の金属粉末製造用溶湯ノズ
ル。
2. The throttle (18) in the high temperature region of the flow path (10).
The molten metal nozzle for producing metal powder according to item (1), wherein
JP6233990U 1990-06-13 1990-06-13 Molten metal nozzle for producing metal powder Expired - Lifetime JPH0714340Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6233990U JPH0714340Y2 (en) 1990-06-13 1990-06-13 Molten metal nozzle for producing metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6233990U JPH0714340Y2 (en) 1990-06-13 1990-06-13 Molten metal nozzle for producing metal powder

Publications (2)

Publication Number Publication Date
JPH0421523U JPH0421523U (en) 1992-02-24
JPH0714340Y2 true JPH0714340Y2 (en) 1995-04-05

Family

ID=31591396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6233990U Expired - Lifetime JPH0714340Y2 (en) 1990-06-13 1990-06-13 Molten metal nozzle for producing metal powder

Country Status (1)

Country Link
JP (1) JPH0714340Y2 (en)

Also Published As

Publication number Publication date
JPH0421523U (en) 1992-02-24

Similar Documents

Publication Publication Date Title
JPH0819446B2 (en) Device and method for atomizing an unstable melt stream
US4778516A (en) Process to increase yield of fines in gas atomized metal powder
JPH03183706A (en) Manufacture of titanium particles
JPH03505896A (en) Atomization equipment and manufacturing method
KR20200007911A (en) Metal Powder Manufacturing Equipment And Its Gas Injector And Crucible
CN206662279U (en) A kind of preparation facilities of submicron metal
JP4181234B2 (en) Method and apparatus for producing amorphous metal powder
JPH0714340Y2 (en) Molten metal nozzle for producing metal powder
JPH0819445B2 (en) Atomizing nozzle with boron nitride surface
CA3061799C (en) Metal powder production apparatus
JPH03502545A (en) Method for spraying a melt and apparatus for using the method
US4784302A (en) Gas atomization melt tube assembly
CN115255375A (en) Nozzle for preparing metal powder by vacuum gas atomization
CA2088054C (en) Method of and apparatus for producing metal powder
US7093463B1 (en) Method and device for producing powders that consist of substantially spherical particles
JP2672056B2 (en) Method and apparatus for producing metal powder
CN217858799U (en) Nozzle for preparing metal powder by vacuum gas atomization
CN217433047U (en) Spray disk of vacuum atomizing furnace for refining powder
JP7296998B2 (en) Metal powder manufacturing equipment
JPH0441063A (en) Spray forming method
JPH04141509A (en) Device for manufacturing gas atomized metal powder
JP2905402B2 (en) Method for producing composite powder
JPH0441607A (en) Manufacture of metal powder
JPH02115307A (en) Method for atomizing molten metal and pouring apparatus used to this method
CN208853715U (en) A kind of Anti-blocking structure of 3D printing metal powder process units