JPH07141713A - Optical information recording and reproducing device - Google Patents

Optical information recording and reproducing device

Info

Publication number
JPH07141713A
JPH07141713A JP5287853A JP28785393A JPH07141713A JP H07141713 A JPH07141713 A JP H07141713A JP 5287853 A JP5287853 A JP 5287853A JP 28785393 A JP28785393 A JP 28785393A JP H07141713 A JPH07141713 A JP H07141713A
Authority
JP
Japan
Prior art keywords
reproducing
power
reproduction
layer
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5287853A
Other languages
Japanese (ja)
Other versions
JP3249000B2 (en
Inventor
Tomoyuki Hiroki
知之 廣木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28785393A priority Critical patent/JP3249000B2/en
Priority to ES94308432T priority patent/ES2161240T3/en
Priority to DE69428178T priority patent/DE69428178T2/en
Priority to EP94308432A priority patent/EP0653749B1/en
Priority to CA002135986A priority patent/CA2135986C/en
Priority to KR1019940030011A priority patent/KR100283632B1/en
Priority to AU78864/94A priority patent/AU684560B2/en
Publication of JPH07141713A publication Critical patent/JPH07141713A/en
Priority to US08/781,141 priority patent/US5703841A/en
Application granted granted Critical
Publication of JP3249000B2 publication Critical patent/JP3249000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To stably record and reproduce information by adjusting a reproduction power by using the differential signal of reproduced signals at the time of mounting a disk. CONSTITUTION:A CPU 1 sets data in a DA converter 3 for setting the reproducing power and drives a laser driver circuit 5 to light the laser diode in an optical head 6 according to a set value at the time of reproduction operation. This exit light is condensed onto the optical disk 11 and the information is reproduced in accordance with this reflected light. The output A of a preamplifier 7 is sent to a reproducing system and is simultaneously differentiated by a differentiating circuit 8. The level of the output B is taken into the CPU 1 from the differential output B by using a peak detector 9 and an A/D converter 10. The reproducing power is so adjusted as to maximize the level of the output B in the CPU 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学的情報記録再生装置
に係り、特に光磁気相互作用を利用して記録情報の再生
を行う光学的情報記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording / reproducing apparatus, and more particularly to an optical information recording / reproducing apparatus for reproducing recorded information by utilizing magneto-optical interaction.

【0002】[0002]

【従来の技術】従来、光磁気相互作用(極カー効果)を
利用してディスク状の情報記録媒体(以下光ディスクと
称する)に情報を記録再生する方法が知られている。中
でも、再生光の光学的な分解能以上の記録密度を実現す
る超解像技術として、図5に示すような媒体構成が提案
されている。
2. Description of the Related Art Conventionally, there is known a method of recording / reproducing information on / from a disc-shaped information recording medium (hereinafter referred to as an optical disc) by utilizing magneto-optical interaction (polar Kerr effect). Among them, a medium configuration as shown in FIG. 5 has been proposed as a super-resolution technique for realizing a recording density higher than the optical resolution of reproduction light.

【0003】図5(a)は、超解像技術の一例である光
ディスクの断面図を示している。基板20は通常ガラス
あるいはポリカーボネートの様な透明な材料であり、基
板20上に第1の誘電体層(エンハンス層)21、再生
層22、記録層23、第2の誘電体層(保護層)24の
順に積層する。磁性体中の矢印は、膜中の磁化の向きを
表す。
FIG. 5A shows a cross-sectional view of an optical disc, which is an example of the super-resolution technique. The substrate 20 is usually a transparent material such as glass or polycarbonate, and a first dielectric layer (enhancement layer) 21, a reproducing layer 22, a recording layer 23, and a second dielectric layer (protection layer) are formed on the substrate 20. Stack in the order of 24. The arrow in the magnetic material represents the direction of magnetization in the film.

【0004】記録層23は例えばTbFeCoやDyF
eCoなどの垂直磁気異方性の高い膜で、記録情報はこ
の層の磁区が上向きか下向きかで保持される。再生層2
2は飽和磁化Msが大きく垂直磁気異方性が小さい材料
で構成され、室温では面内磁化膜だが所定温度Tthに
達すると飽和磁化Msが小さくなるために垂直磁化膜と
なる。
The recording layer 23 is made of, for example, TbFeCo or DyF.
With a film having a high perpendicular magnetic anisotropy such as eCo, recorded information is held depending on whether the magnetic domain of this layer is upward or downward. Reproduction layer 2
No. 2 is made of a material having a large saturation magnetization Ms and a small perpendicular magnetic anisotropy, and is an in-plane magnetization film at room temperature, but becomes a perpendicular magnetization film because the saturation magnetization Ms becomes small when the temperature reaches a predetermined temperature Tth.

【0005】このような構成の磁性膜に基板側から情報
再生用の光を照射すると、データトラックの中心では図
5(c)に示すような温度勾配となり、これを基板20
側から見ると図5(b)の様にスポット内に所定温度T
thの等温線が存在することになる。すると、再生層2
2は先述のように所定温度Tth以下では面内磁化膜と
なるため極カー効果には寄与せず、再生光側からは記録
層23の情報はマスクされて見えなくなる。一方所定温
度Tth以上の部分は再生層22が垂直磁化膜になる
が、この時の磁化の向きは記録層23からの交換結合に
より記録情報と同じ向きとなる。結果として、スポット
の大きさに比べて小さいアパーチャ部分だけに記録層2
3の情報が転写されるので、超解像が実現する。このよ
うな構成は、ディスク上をスポットが進む向きに対して
後側にアパーチャが出来るのでRAD(Rear Ap
erture Detection)と呼ばれる。
When the information reproducing light is irradiated from the substrate side to the magnetic film having such a structure, a temperature gradient as shown in FIG.
When viewed from the side, as shown in FIG.
There will be an isotherm of th. Then, the reproduction layer 2
As described above, No. 2 does not contribute to the polar Kerr effect because it becomes an in-plane magnetized film at a temperature equal to or lower than the predetermined temperature Tth, and the information of the recording layer 23 is masked and invisible from the reproducing light side. On the other hand, the reproducing layer 22 becomes a perpendicularly magnetized film at a portion having a temperature equal to or higher than the predetermined temperature Tth. As a result, the recording layer 2 is formed only in the aperture portion which is smaller than the spot size.
Since the information of 3 is transferred, super-resolution is realized. In such a configuration, since an aperture can be formed on the rear side with respect to the direction in which the spot advances on the disc, RAD (Rear Ap
This is called "Error Detection".

【0006】図6は、スポットが進む向きに対して前側
にアパーチャが出来るFAD(Front Apert
ure Detection)の構成の一例を示す。こ
の場合の再生層22はRADに比べて面内異方性が弱
く、室温では交換結合により中間層25を介して記録層
23の磁区が再生層22に転写されている。また中間層
25のキュリー温度は100℃前後に設定されており、
媒体が再生光により加熱されて中間層25のキュリー温
度に達すると交換結合が切れるために再生層22の磁化
の向きは面内となる。したがって中間層25のキュリー
温度を所定温度Tthに設定すると、図6(b)に示す
所定温度Tthの等温線を境にスポットの前側だけは記
録層23の磁区が転写されて超解像となる。
FIG. 6 shows an FAD (Front Apert) which has an aperture on the front side with respect to the direction in which the spot advances.
An example of the configuration of the ure Detection) is shown. In this case, the reproducing layer 22 has weaker in-plane anisotropy than RAD, and at room temperature, the magnetic domain of the recording layer 23 is transferred to the reproducing layer 22 through the intermediate layer 25 by exchange coupling. The Curie temperature of the intermediate layer 25 is set to around 100 ° C,
When the medium is heated by the reproducing light and reaches the Curie temperature of the intermediate layer 25, the exchange coupling is broken, so that the magnetization direction of the reproducing layer 22 becomes in-plane. Therefore, when the Curie temperature of the intermediate layer 25 is set to the predetermined temperature Tth, the magnetic domain of the recording layer 23 is transferred only on the front side of the spot with the isothermal line of the predetermined temperature Tth shown in FIG. .

【0007】さらに別の超解像を行う方法として、図7
に示すような構成も提案されている。図7(a)の再生
層22は保磁力が低い垂直磁化膜であり、室温で初期化
磁界Hbを印加することにより記録層23の向きに関わ
らず初期化磁界の方向に磁化が揃う。すなわち記録層2
3の磁化の向きと初期化磁界の向きが逆の部分では磁壁
が生じる。このようにして再生層22の磁化を初期化し
た状態で初期化磁界と逆向きの再生磁界Hrを印加しな
がら再生光を照射する。この時再生光スポットの中の低
温部分では記録層23からの交換力と再生磁界により再
生層22の磁化を反転させようとするエネルギーよりも
再生層22の保磁力の方が大きいように再生磁界の大き
さを設定しておく。つまり、低温部分では再生層22の
磁化が初期化磁界の方向を向いているので記録層23の
磁化はマスクされた状態になっており、信号再生には寄
与しない。ところが再生光の照射により次第に高温にな
ると再生層22の保磁力が低下し、磁壁が存在する部分
では記録層23からの交換力と再生磁界により、再生層
22の磁化が反転する。すなわち記録層23の磁化が再
生層22に転写される。このようにして、図7(b)で
スポット中の温度が所定温度Tth以上の部分だけが信
号再生に寄与する超解像が実現できる。
Another method for performing super-resolution is shown in FIG.
A configuration as shown in is also proposed. The reproducing layer 22 in FIG. 7A is a perpendicular magnetization film having a low coercive force, and by applying the initialization magnetic field Hb at room temperature, the magnetization is aligned in the direction of the initialization magnetic field regardless of the orientation of the recording layer 23. That is, recording layer 2
A domain wall is generated in a portion where the magnetization direction of 3 and the direction of the initialization magnetic field are opposite. With the magnetization of the reproducing layer 22 thus initialized, reproducing light is emitted while applying a reproducing magnetic field Hr in the direction opposite to the initializing magnetic field. At this time, in the low temperature portion of the reproducing light spot, the reproducing magnetic field is so adjusted that the coercive force of the reproducing layer 22 is larger than the energy for reversing the magnetization of the reproducing layer 22 due to the exchange force from the recording layer 23 and the reproducing magnetic field. Set the size of. That is, since the magnetization of the reproducing layer 22 is oriented in the direction of the initializing magnetic field in the low temperature portion, the magnetization of the recording layer 23 is masked and does not contribute to signal reproduction. However, when the temperature of the reproducing layer 22 is gradually increased by the irradiation of the reproducing light, the coercive force of the reproducing layer 22 is lowered, and the magnetization of the reproducing layer 22 is reversed in the portion where the domain wall exists due to the exchange force from the recording layer 23 and the reproducing magnetic field. That is, the magnetization of the recording layer 23 is transferred to the reproducing layer 22. In this way, it is possible to realize super-resolution in FIG. 7B, in which only the portion in the spot where the temperature is equal to or higher than the predetermined temperature Tth contributes to signal reproduction.

【0008】また、実際には再生層22と記録層23と
の間に磁壁エネルギーをコントロールするために中間層
を設ける場合もあるが、原理的には図7と同一のもので
ある。
In practice, an intermediate layer may be provided between the reproducing layer 22 and the recording layer 23 to control the domain wall energy, but the principle is the same as that shown in FIG.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来例においては再生光スポット中の温度分布が超解像に
寄与しているため、以下のような問題点があった。
However, in the above-mentioned conventional example, the temperature distribution in the reproduction light spot contributes to the super-resolution, so that there are the following problems.

【0010】図8はRADの場合を例に取って、再生パ
ワーが最適な場合、小さい場合、大きい場合のスポット
付近の温度分布を示している。図8の場合、最適パワー
(図8(b))で所定温度Tthの等温線がスポット中
心あたりまで伸びており、超解像効果としては最適なレ
ベルになっている。ところが再生パワーが小さすぎると
図8(a)に示すように最高温度が低くなり、所定温度
Tthの等温線はスポットの後縁側に近くなるのでアパ
ーチャが小さすぎて情報再生が出来なくなる。また一方
再生パワーが大きすぎると、図8(c)に示すように、
所定温度Tthの等温線はスポットの前側まで伸びてく
るので結果としてアパーチャが大きくなりすぎて最適パ
ワーの時ほど小さいピットを再生することが出来なくな
る。
FIG. 8 shows the temperature distribution near the spot when the reproduction power is optimum, small, and large, taking the case of RAD as an example. In the case of FIG. 8, the isotherm of the predetermined temperature Tth extends to around the center of the spot at the optimum power (FIG. 8B), which is at the optimum level as the super-resolution effect. However, if the reproducing power is too small, the maximum temperature becomes low as shown in FIG. 8A, and the isotherm of the predetermined temperature Tth is close to the trailing edge side of the spot, so that the aperture is too small to reproduce information. On the other hand, if the reproducing power is too high, as shown in FIG.
Since the isotherm of the predetermined temperature Tth extends to the front side of the spot, as a result, the aperture becomes too large, and it becomes impossible to reproduce a smaller pit at the optimum power.

【0011】したがって、ディスクの温度特性のばらつ
きや動作温度、レーザパワー制御の誤差によって再生信
号のレベルに差が生じて、正確な情報再生が行えない場
合があるという問題があった。
Therefore, there is a problem in that there are cases in which accurate reproduction of information cannot be performed due to differences in reproduction signal levels due to variations in disk temperature characteristics, operating temperatures, and errors in laser power control.

【0012】[0012]

【課題を解決するための手段】本発明の光学的情報記録
再生装置は、情報を磁気的に保持する垂直磁化膜からな
る記録層と、前記記録層との磁気的な結合状態が温度に
よって変化する再生層とを少なくとも積層して成る光学
的情報記録媒体を用い、前記光学的情報記録媒体に再生
光を照射して記録情報を再生する光学的情報記録再生装
置において、前記再生光を受光するセンサと、前記セン
サからの信号を微分する微分手段とを備え、前記微分手
段の出力の大きさに応じて前記再生光の強度を変化させ
ることを特徴とする。
According to the optical information recording / reproducing apparatus of the present invention, the magnetic coupling state between a recording layer made of a perpendicularly magnetized film for magnetically retaining information and the recording layer changes with temperature. In the optical information recording / reproducing apparatus, which reproduces recorded information by irradiating the optical information recording medium with a reproducing light, using the optical information recording medium having at least a reproducing layer for A sensor and a differentiating means for differentiating a signal from the sensor are provided, and the intensity of the reproduction light is changed according to the magnitude of the output of the differentiating means.

【0013】[0013]

【作用】本発明は、再生光を受光するセンサと、このセ
ンサからの信号を微分する微分手段とを設けて、該微分
手段の出力の大きさに応じて前記再生光の強度を変化さ
せることにより、安定した情報記録再生を提供するもの
である。
According to the present invention, the sensor for receiving the reproduction light and the differentiating means for differentiating the signal from the sensor are provided, and the intensity of the reproduction light is changed according to the magnitude of the output of the differentiating means. Thus, stable information recording / reproducing is provided.

【0014】即ち、ディスクの温度特性のばらつきや動
作温度、レーザパワー制御の誤差等によって再生パワー
が適正な値でなくなっても、再生信号の微分信号のレベ
ルが大きくなるように再生パワーを調整して、安定した
情報記録再生を行うものである。
That is, the reproduction power is adjusted so that the level of the differential signal of the reproduction signal becomes large even if the reproduction power is not an appropriate value due to variations in the temperature characteristics of the disk, operating temperature, errors in laser power control, and the like. Thus, stable information recording / reproducing is performed.

【0015】[0015]

【実施例】以下、本発明の一実施例について図面を用い
て詳細に説明する。 [第1の実施例]図1は本発明の第1の実施例を説明す
る構成図である。図中、1はCPU、2,3はDAコン
バータ、4はスイッチ、5はレーザドライバ回路、6は
情報記録再生用光ヘッド、7はプリアンプ、8は微分手
段となる微分回路、9はピーク検出器、10はA/Dコ
ンバータ、11は光ディスクである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. [First Embodiment] FIG. 1 is a block diagram for explaining the first embodiment of the present invention. In the figure, 1 is a CPU, 2 and 3 are DA converters, 4 is a switch, 5 is a laser driver circuit, 6 is an information recording / reproducing optical head, 7 is a preamplifier, 8 is a differentiating circuit serving as differentiating means, and 9 is peak detection. A container, 10 is an A / D converter, and 11 is an optical disk.

【0016】再生動作を行うときには、CPU1は、後
述の手順に従い再生パワー設定用DAコンバータ3にデ
ータをセットし、設定値に従ってレーザドライバ回路5
を駆動して光ヘッド6中のレーザダイオードを点灯させ
る。レーザダイオードから出射した光は光ヘッド6によ
り光ディスク11上に集光され、反射光は記録情報に従
って変調される。光ヘッド6内のセンサで受光した光は
プリアンプ7で電圧に変換され、情報信号となる。この
信号は図示しない再生系の復調回路によって復調され
て、光ディスク11に記録されている情報を再生する。
When performing the reproducing operation, the CPU 1 sets data in the reproducing power setting DA converter 3 according to the procedure described later, and the laser driver circuit 5 according to the set value.
To turn on the laser diode in the optical head 6. The light emitted from the laser diode is condensed on the optical disk 11 by the optical head 6, and the reflected light is modulated according to the recorded information. The light received by the sensor in the optical head 6 is converted into a voltage by the preamplifier 7 and becomes an information signal. This signal is demodulated by a reproduction system demodulation circuit (not shown) to reproduce the information recorded on the optical disk 11.

【0017】また記録動作を行うときには、CPU1で
記録パワー設定用DAコンバータ2にデータをセットし
ておき、スイッチ4を介してDAコンバータ2の出力の
レーザドライバ回路5への入力を制御してやる。スイッ
チ4の制御信号としては図示しない変調回路からの記録
信号を用い、記録信号のデータに従ってレーザが変調さ
れて光ディスク11上に記録が行われる。記録パワーの
設定については、最適な記録条件で情報記録を行うため
に通常次のような方法が取られている。
When performing the recording operation, the CPU 1 sets data in the recording power setting DA converter 2 and controls the output of the DA converter 2 to the laser driver circuit 5 via the switch 4. A recording signal from a modulation circuit (not shown) is used as a control signal for the switch 4, and the laser is modulated in accordance with the data of the recording signal to record on the optical disc 11. Regarding the setting of the recording power, the following method is usually adopted in order to record information under the optimum recording conditions.

【0018】図3は一般的な光ディスクにおける情報領
域の構成の一例を表す。図3の各部分は以下のような役
割を持っている。 (a)Lead−in Zone(リード・イン領域)
…再生ビームを光ディスク上の情報トラックに追従させ
るための焦点制御、トラッキング制御の引き込みやサー
ボ調整を行うための領域。 (b)Inner Test Zone(内周テスト領
域)…内周側で記録パワー調整などを行うテスト領域。 (c)Inner Control Zone(内周コ
ントロール領域)…ディスクに関する情報を記録してあ
る領域で、サーボ情報や最大再生パワー、消去条件など
が書いてある。 (d)Data Zone(データ領域)…データ記憶
として有効な領域。 (e)Outer Control Zone(外周コ
ントロール領域)…(c)と同じ情報が書いてある外周
側の領域。 (f)Outer Test Zone(外周テスト領
域)…外周側で記録パワー調整などを行うテスト領域。 (g)Lead−out Zone(リード・アウト領
域)…外周側のバッファ領域。
FIG. 3 shows an example of the structure of the information area in a general optical disc. Each part of FIG. 3 has the following roles. (A) Lead-in Zone (lead-in area)
An area for performing focus control, tracking control pull-in, and servo adjustment for making the reproduction beam follow the information track on the optical disk. (B) Inner Test Zone (inner circumference test area) ... A test area in which the recording power is adjusted on the inner circumference side. (C) Inner Control Zone (inner peripheral control area): An area in which information about the disk is recorded, in which servo information, maximum reproduction power, erasing conditions, etc. are written. (D) Data Zone: An area effective for data storage. (E) Outer Control Zone (outer peripheral control area) ... An area on the outer peripheral side in which the same information as in (c) is written. (F) Outer Test Zone (peripheral test area) ... A test area for recording power adjustment on the outer peripheral side. (G) Lead-out Zone (buffer area on the outer peripheral side).

【0019】このように、(b)(f)のテストゾーン
が記録パワーのテストに用いられている。すなわちディ
スクが装着されると、この領域で再生パワーは一定のま
ま記録パワーを数段階に振り、もっとも再生信号レベル
の高い記録パワーを最適記録パワーとしている。
As described above, the test zones (b) and (f) are used for the recording power test. That is, when the disc is loaded, the recording power is varied in several steps while keeping the reproducing power constant in this area, and the recording power with the highest reproducing signal level is set as the optimum recording power.

【0020】次に本発明の特徴である再生パワー設定の
方法について説明する。本発明ではテストゾーンにおい
て記録パワーの調整を行なった後、今度は記録パワーは
最適値に固定して最短ピットをテストゾーンに記録して
おいて、再生パワーを数段階に振りながらそのピットを
再生して最適再生パワーを求めようというものである。
又、最適再生パワーに従って記録パワーを再調整するこ
とで更に調整精度が上げられる。
Next, a method of setting the reproducing power, which is a feature of the present invention, will be described. In the present invention, after adjusting the recording power in the test zone, the recording power is fixed to the optimum value, the shortest pit is recorded in the test zone, and the pit is reproduced while the reproducing power is varied in several steps. Then, the optimum reproducing power is obtained.
Further, the read power is readjusted according to the optimum read power, so that the adjustment accuracy can be further improved.

【0021】図1において、プリアンプ7の出力Aは再
生系に送られると同時に微分回路8で微分され、微分出
力Bからピーク検出器9とA/Dコンバータ10を使っ
て微分出力BのレベルをCPU1に取り込む構成となっ
ている。図2は、RADディスクに対して孤立ピットを
記録しておき、同じピットに対してパワーを変化させて
再生したときのプリアンプ出力Aと微分出力Bの変化を
表している。図2(b)は再生パワーを最適値に設定し
たときのプリアンプ出力Aと微分出力Bを示す。ここ
で、再生信号が立ち上がりと立ち下がりで非対称になっ
ている理由は、次の事実による。
In FIG. 1, the output A of the preamplifier 7 is sent to the reproducing system and simultaneously differentiated by the differentiating circuit 8, and the level of the differential output B is converted from the differential output B by using the peak detector 9 and the A / D converter 10. It is configured to be taken into the CPU 1. FIG. 2 shows changes in the preamplifier output A and the differential output B when an isolated pit is recorded on the RAD disk and the same pit is reproduced by changing the power. FIG. 2B shows the preamplifier output A and the differential output B when the reproduction power is set to the optimum value. Here, the reason why the reproduced signal is asymmetrical at the rising and falling edges is as follows.

【0022】ディスク上における再生光の強度分布は通
常ガウシアン分布の形を取っているので、超解像でない
一般のディスクでの再生波形のエッジは緩やかになる。
RADディスクの場合のアパーチャも、立ち下がり側は
一般のディスクと同じと考えられるので緩やかになる
が、図8(b)から明らかなように立ち上がり側でのア
パーチャの境界は充分光量が得られているところである
ので、立ち上がり波形は図2(b)に示すように鋭く立
ち上がる。したがってその微分波形は正側は大きく、負
側は小さくなる。
Since the intensity distribution of the reproducing light on the disc usually takes the form of a Gaussian distribution, the edge of the reproducing waveform on a general disc that is not super-resolution becomes gentle.
The aperture in the case of a RAD disc also becomes gentle because the fall side is considered to be the same as an ordinary disc, but as is clear from FIG. 8B, a sufficient amount of light is obtained at the aperture boundary on the rise side. The rising waveform sharply rises as shown in FIG. Therefore, the differential waveform is large on the positive side and small on the negative side.

【0023】次に再生パワーが小さく図8(a)の様な
アパーチャの場合は、アパーチャが小さすぎるので再生
信号振幅も小さくなり、また立ち上がりも鈍くなってく
るのでプリアンプ出力Aと微分出力Bは図2(a)に示
すように小さいレベルとなる。
Next, in the case where the reproduction power is small and the aperture as shown in FIG. 8A, the reproduction signal amplitude becomes small because the aperture is too small, and the rising becomes slow, so that the preamplifier output A and the differential output B become The level becomes small as shown in FIG.

【0024】逆に再生パワーが大きくなると、アパーチ
ャは図8(c)のように大きくなりすぎるために最小ピ
ットに対する解像力は低下し、プリアンプ出力Aの振幅
は光量の増加ほどには増加しない。さらに、アパーチャ
が大きくなるほど立ち上がりも鈍くなってくるので、微
分信号Bの振幅は逆に減少していく。再生パワー調整に
当たり最短ピットを用いるのは、アパーチャの必要以上
の広がりに対する解像力の低下を利用するからである。
On the contrary, when the reproducing power becomes large, the aperture becomes too large as shown in FIG. 8 (c), so that the resolution for the minimum pit decreases and the amplitude of the preamplifier output A does not increase as the light quantity increases. Further, the larger the aperture, the slower the rising edge, so the amplitude of the differential signal B decreases conversely. The reason why the shortest pit is used for adjusting the reproduction power is that the reduction in resolution with respect to the unnecessary expansion of the aperture is used.

【0025】以上のことから、ディスク装着時にテスト
ゾーンにおいて記録パワーの調整を行う際に、再生信号
の微分信号BのピークレベルをA/Dコンバータ10を
用いてCPU1に取り込み、そのレベルが最大になるよ
うに再生パワーを調整することにより、ディスクの違い
やレーザパワー制御の誤差に左右されない安定した情報
再生が可能になる。
From the above, when the recording power is adjusted in the test zone when the disc is mounted, the peak level of the differential signal B of the reproduction signal is taken into the CPU 1 by using the A / D converter 10 and the level is maximized. By adjusting the reproduction power so as to achieve stable information reproduction that is not affected by disc differences or laser power control errors.

【0026】また、本実施例はRADを例に取って説明
したが、FADのタイプのディスクを再生する場合は、
再生信号の立ち下がりに注目して微分信号が最大レベル
になるように調整することにより、同様の効果が得られ
ることはもちろんである。さらに本実施例では再生層に
面内磁化膜を用い、マスク部分では再生層が面内磁化膜
になる場合について説明したが、本発明はこのような膜
構成に限定されるものではないことは明らかである。し
たがって例えば、図7に示したように、垂直磁化膜から
なる再生層の磁化の向きを初期化磁界により一方向に揃
えてマスクとし、高温部分のみ記録層の磁化を転写して
再生するような場合であっても、本発明の特徴であると
ころの、膜の温度によって磁化の転写状態を変化させな
がら情報再生を行うという思想の範囲を逸脱するもので
はない。すなわち、図7の場合も本実施例で説明したよ
うにディスク装着時に再生信号の微分信号レベルが最大
になるように再生パワーを調整するような構成にするこ
とで同様の効果が得られることは言うまでもない。
Although the present embodiment has been described by taking the RAD as an example, when reproducing a disc of the FAD type,
Obviously, the same effect can be obtained by paying attention to the trailing edge of the reproduction signal and adjusting the differential signal so as to have the maximum level. Further, although the case where the in-plane magnetized film is used for the reproducing layer and the reproducing layer is the in-plane magnetized film in the mask portion has been described in the present embodiment, the present invention is not limited to such a film structure. it is obvious. Therefore, for example, as shown in FIG. 7, the magnetization direction of the reproducing layer made of a perpendicularly magnetized film is aligned in one direction by the initialization magnetic field to form a mask, and the magnetization of the recording layer is transferred and reproduced only in the high temperature portion. Even in such a case, it does not depart from the scope of the idea of performing information reproduction while changing the transfer state of magnetization depending on the temperature of the film, which is a feature of the present invention. That is, in the case of FIG. 7 as well, similar effects can be obtained by adjusting the reproduction power so that the differential signal level of the reproduction signal becomes maximum when the disc is mounted as described in the present embodiment. Needless to say.

【0027】なお、図5〜図7に示したような、第1の
誘電体層はカー効果を高めるため、第2の誘電体層は磁
性層の保護のために用いられるもので、本発明の本質と
は無関係であるので省略しても差し支えない。 [第2の実施例]次に、本発明の第2の実施例について
図4を用いて詳細に説明する。但し、図1で示した部材
と同様の働きをするものは同一の番号を付し、詳細な説
明は省略する。図1との違いはプリアンプ出力Aを微分
手段となるA/Dコンバータ10に直接取り込んでいる
点である。
The first dielectric layer as shown in FIGS. 5 to 7 enhances the Kerr effect, and the second dielectric layer is used to protect the magnetic layer. It is irrelevant to the essence of and can be omitted. [Second Embodiment] Next, a second embodiment of the present invention will be described in detail with reference to FIG. However, members having the same functions as those shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. The difference from FIG. 1 is that the preamplifier output A is directly taken into the A / D converter 10 serving as differentiating means.

【0028】近年、再生信号の処理をデジタルで処理す
る手法がいくつか提案されている。その場合、再生信号
の周波数(10〜50MHz程度)とほぼ同等の変換速
度を持つA/Dコンバータを用いて信号処理を行う。一
般的なA/Dコンバータの実力はこれより数倍(数百M
Hz)の速度を持つものも多いので、これら高速のA/
Dコンバータを用いることにより最短の孤立ピットに対
して数ポイントのA/D変換を行うことができる。した
がって、A/D変換毎のデータの差が第1実施例におけ
る微分信号に相当するので、その最大値をモニタしなが
ら再生パワー調整を行うことで第1実施例と同様の効果
が得られる。
In recent years, some methods for digitally processing the reproduction signal have been proposed. In that case, signal processing is performed using an A / D converter having a conversion speed almost equal to the frequency of the reproduced signal (about 10 to 50 MHz). The power of a general A / D converter is several times higher than this (several hundred M
Since many of them have a speed of Hz), these high-speed A /
By using the D converter, it is possible to perform A / D conversion of several points on the shortest isolated pit. Therefore, since the data difference for each A / D conversion corresponds to the differential signal in the first embodiment, the same effect as in the first embodiment can be obtained by adjusting the reproduction power while monitoring the maximum value.

【0029】[0029]

【発明の効果】以上詳細に説明したように、本発明では
記録層と再生層の磁気的な結合状態が温度によって変化
するような光学的情報記録媒体から情報再生する場合に
おいて、ディスク装着時に再生信号の微分信号を用いて
再生パワーの調整を行う構成としたので、ディスクの違
いやレーザパワー制御の誤差によらず安定した情報記録
再生が実現できるという効果がある。
As described in detail above, according to the present invention, when information is reproduced from an optical information recording medium in which the magnetic coupling state of the recording layer and the reproducing layer changes depending on the temperature, reproduction is carried out when the disc is mounted. Since the reproduction power is adjusted by using the differential signal of the signal, there is an effect that stable information recording / reproduction can be realized irrespective of disc difference and laser power control error.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を説明するための構成図で
ある。
FIG. 1 is a configuration diagram for explaining a first embodiment of the present invention.

【図2】本発明の第1実施例における各部波形図であ
る。
FIG. 2 is a waveform chart of each part in the first embodiment of the present invention.

【図3】ディスク上のフォーマット図である。FIG. 3 is a format diagram on a disc.

【図4】本発明の第2実施例を説明するための構成図で
ある。
FIG. 4 is a configuration diagram for explaining a second embodiment of the present invention.

【図5】従来のRADタイプのディスクの原理図であ
る。
FIG. 5 is a principle diagram of a conventional RAD type disc.

【図6】従来のFADタイプのディスクの原理図であ
る。
FIG. 6 is a principle diagram of a conventional FAD type disc.

【図7】従来の垂直磁化膜を使ったRADタイプの原理
図である。
FIG. 7 is a principle diagram of a RAD type using a conventional perpendicular magnetization film.

【図8】従来の問題点を説明するための図である。FIG. 8 is a diagram for explaining a conventional problem.

【符号の説明】[Explanation of symbols]

1 CPU 2,3 D/Aコンバータ 4 スイッチ 5 レーザドライバ回路 6 光ヘッド 7 プリアンプ 8 微分回路 9 ピーク検出器 10 A/Dコンバータ 11 光ディスク 1 CPU 2,3 D / A converter 4 Switch 5 Laser driver circuit 6 Optical head 7 Preamplifier 8 Differentiation circuit 9 Peak detector 10 A / D converter 11 Optical disk

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 情報を磁気的に保持する垂直磁化膜から
なる記録層と、前記記録層との磁気的な結合状態が温度
によって変化する再生層とを少なくとも積層して成る光
学的情報記録媒体を用い、 前記光学的情報記録媒体に再生光を照射して記録情報を
再生する光学的情報記録再生装置において、 前記再生光を受光するセンサと、 前記センサからの信号を微分する微分手段とを備え、 前記微分手段の出力の大きさに応じて前記再生光の強度
を変化させることを特徴とする光学的情報記録再生装
置。
1. An optical information recording medium comprising at least a recording layer made of a perpendicular magnetization film for magnetically retaining information and a reproducing layer in which a magnetic coupling state with the recording layer changes with temperature. In the optical information recording / reproducing apparatus for irradiating the optical information recording medium with reproduction light to reproduce recorded information, a sensor for receiving the reproduction light and a differentiating means for differentiating a signal from the sensor are used. An optical information recording / reproducing apparatus, comprising: the intensity of the reproducing light is changed according to the magnitude of the output of the differentiating means.
JP28785393A 1993-11-17 1993-11-17 Optical information recording / reproducing device Expired - Fee Related JP3249000B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP28785393A JP3249000B2 (en) 1993-11-17 1993-11-17 Optical information recording / reproducing device
DE69428178T DE69428178T2 (en) 1993-11-17 1994-11-15 Optical information recording / reproducing apparatus and method with a function for setting the reproducing power
EP94308432A EP0653749B1 (en) 1993-11-17 1994-11-15 Optical information recording/reproducing apparatus and method with function of adjusting reproducing power
ES94308432T ES2161240T3 (en) 1993-11-17 1994-11-15 RECORDING SYSTEM / OPTICAL INFORMATION AND METHOD PLAYBACK WITH ADJUSTMENT FUNCTION OF PLAYBACK POWER.
CA002135986A CA2135986C (en) 1993-11-17 1994-11-16 Optical information recording/reproducing apparatus and method with function of adjusting reproducing power
KR1019940030011A KR100283632B1 (en) 1993-11-17 1994-11-16 Optical information recording / playback apparatus and method with regenerative power adjustment
AU78864/94A AU684560B2 (en) 1993-11-17 1994-11-16 Optical information recording/reproducing apparatus and method with function of adjusting reproducing power
US08/781,141 US5703841A (en) 1993-11-17 1997-01-09 Optical information recording/reproducing apparatus and method with function of adjusting reproducing power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28785393A JP3249000B2 (en) 1993-11-17 1993-11-17 Optical information recording / reproducing device

Publications (2)

Publication Number Publication Date
JPH07141713A true JPH07141713A (en) 1995-06-02
JP3249000B2 JP3249000B2 (en) 2002-01-21

Family

ID=17722626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28785393A Expired - Fee Related JP3249000B2 (en) 1993-11-17 1993-11-17 Optical information recording / reproducing device

Country Status (1)

Country Link
JP (1) JP3249000B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030266A (en) * 2012-09-07 2013-02-07 Hitachi Ltd Optical information recording and reproduction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030266A (en) * 2012-09-07 2013-02-07 Hitachi Ltd Optical information recording and reproduction method

Also Published As

Publication number Publication date
JP3249000B2 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
US5703841A (en) Optical information recording/reproducing apparatus and method with function of adjusting reproducing power
JPH056590A (en) Magneto-optical recorder
US6249490B1 (en) Magneto-optical recording/reproducing method and apparatus
JPH05144106A (en) Magneto-optical disk and reproducing method
JP3491191B2 (en) Tilt correction method for magneto-optical recording medium, apparatus used for implementing the method, and magneto-optical recording medium
EP0327315B1 (en) Magneto-optic recording medium and method for magneto-optically recording on said medium
EP0220023B1 (en) Optical magnetic memory device
JPS61260438A (en) Optical information recording medium
US5357493A (en) Magneto-optic memory device for overwriting information on magneto-optic recording medium by using a pair of light spots without using an external magnetic field
JP3249000B2 (en) Optical information recording / reproducing device
JPH0991787A (en) Information recording method and device therefor
JPH1139803A (en) Optical recording medium, optical recording method and optical recorder
JPH07192337A (en) Optical information recording and reproduing device
JPH0714170A (en) Optical disk device
JP2872801B2 (en) Magneto-optical recording / reproducing device
JPH07192338A (en) Optical information recording and reproducing device
JPH08161788A (en) Optical apparatus
JP3102714B2 (en) Magneto-optical recording device
JP2636694B2 (en) Recording / reproducing method and recording / reproducing apparatus for magneto-optical recording medium
JPH01191330A (en) Optical information processor
JPH0226281B2 (en)
JP2000276808A (en) Magneto-optical recording medium and its reproducing method and reproducing device
JP2815122B2 (en) Information recording device
JPH0573977A (en) Magneto-optical recording medium and magneto-optical reproducing mehtod
JPH05182269A (en) Magneto-optical recording medium and magneto-optical recording system and magneto-optical reproducing system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees