JPH07140161A - Wind velocity sensor using surface roughness and wind vane/anemometer employing it - Google Patents

Wind velocity sensor using surface roughness and wind vane/anemometer employing it

Info

Publication number
JPH07140161A
JPH07140161A JP29047693A JP29047693A JPH07140161A JP H07140161 A JPH07140161 A JP H07140161A JP 29047693 A JP29047693 A JP 29047693A JP 29047693 A JP29047693 A JP 29047693A JP H07140161 A JPH07140161 A JP H07140161A
Authority
JP
Japan
Prior art keywords
wind
wind speed
wind velocity
velocity sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29047693A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Kumofuji
勝義 雲藤
Hiroshi Kubokawa
弘 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP29047693A priority Critical patent/JPH07140161A/en
Publication of JPH07140161A publication Critical patent/JPH07140161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE:To provide a more easy-to-handle anemometer by employing a lightweight, high response, inexpensive and convenient structure. CONSTITUTION:A wind velocity sensor 1 measures the velocity of wind flow by stretching a string having outer diameter, equal to or less than 1/11 that of a columnar object, across the entire surface of the columnar object and detecting a specific vibration or noise frequency having high Strouhal umber. The sensor 1 is set perpendicularly to the direction of an impeller 2 for detecting the direction of wind thus detecting the direction and velocity of wind based on the vibration or noise frequency of the wind velocity sensor 1. Alternatively, a plurality of wind velocity sensors 8 are set radially at a constant interval on a horizontal plane and one more wind velocity sensor 7 is set vertically in the center. Wind velocity components are detected from the vibration or noise frequency of respective wind velocity sensors and then they are combined in order to calculate the wind direction and wind velocity simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は形状指数(d/D)が1
/11以下の表面形状を有する棒状の、表面粗さを利用
した風速センサーとこれを用いた風向風速計に関するも
のである。
The present invention has a shape index (d / D) of 1
TECHNICAL FIELD The present invention relates to a rod-shaped wind speed sensor having a surface shape of / 11 or less and utilizing surface roughness, and an anemometer using the wind speed sensor.

【0002】[0002]

【従来の技術】一般に風速計として良く用いられている
ものに、プロペラ式風速計、超音波風速計等がある。前
者のプロペラ式風速計は、プロペラが風を受ける事によ
って、プロペラを回転させ内蔵する発電機を回し、発電
機から発生する起電力を風速値に換算表示記録する方式
のものである。最近では光センサを用いたプロペラ式風
速計も実用化され、高圧電線付近の強い誘導を受ける場
所に於いても使用できる等の利点をもつ風速計もある。
後者の超音波風速計は、一定の間隔をおいてセンサーが
取付けられていて、空気の移動があると到達時間に差が
生じることを利用して風速に換算するものである。
2. Description of the Related Art Propeller anemometers and ultrasonic anemometers are commonly used as anemometers. The former propeller-type anemometer is a method in which when the propeller receives wind, the propeller is rotated to rotate a built-in generator, and the electromotive force generated from the generator is converted into a wind speed value and recorded. Recently, a propeller-type anemometer using an optical sensor has also been put into practical use, and there are anemometers that have the advantage that they can be used even in places subject to strong induction near high-voltage wires.
The latter ultrasonic anemometer is equipped with sensors at regular intervals, and it is converted into wind speed by utilizing the difference in arrival time when air moves.

【0003】その他、柱状体の後方にできるカルマン渦
の発生から風速を求めるものがある。風の流れの中に流
線形でないものを入れると、その下流に流れの渦が生じ
る。この流れをカルマン渦といい、ある条件では、安定
して連続的に現われる。流れの中の円柱の幅をD、流速
をVとすると、渦の発生周波数(脈動)fは次の式で表
される。f=St(V/D)、ここでStはストロハル
数といい、物体の形状やレイノルズ数(Re)で決まる
が、風の吹く実用範囲では一定とみてよい(図4(B)
参照)ので、発生周波数(脈動)fを検出して、St数
に対して流速を知る事ができる。この場合、従来のSt
数は0.18〜0.2である。
There is another method in which the wind speed is obtained from the generation of Karman vortices formed behind the columnar body. When a non-streamlined object is put in the wind flow, a flow vortex is generated downstream of it. This flow is called Karman vortex, and it appears stably and continuously under certain conditions. When the width of the cylinder in the flow is D and the flow velocity is V, the vortex generation frequency (pulsation) f is expressed by the following equation. f = St (V / D), where St is called the Strouhal number, which is determined by the shape of the object and the Reynolds number (Re), but can be considered to be constant in the practical range where the wind blows (Fig. 4 (B)).
Therefore, the generated frequency (pulsation) f can be detected and the flow velocity can be known with respect to the St number. In this case, the conventional St
The number is 0.18-0.2.

【0004】[0004]

【発明が解決しようとする課題】しかしながらプロペラ
式風速計に於いては、発電機を回す必要があり、また、
プロペラに慣性力が働くためプロペラの惰性によって実
際の風速より大きく表示されたり小さく表示されたりし
応答性(レスポンス)に問題があった。また、重量的に
も15kg〜20kgの重さがあり高所への取付作業時に取
り扱いにくい等の問題があった。
However, in the propeller type anemometer, it is necessary to turn the generator, and
Since the inertial force acts on the propeller, it is displayed larger or smaller than the actual wind speed depending on the inertia of the propeller, and there is a problem in response (response). In addition, the weight is 15 to 20 kg, and there is a problem that it is difficult to handle when mounting to a high place.

【0005】一方、超音波風速計はプロペラ式よりレス
ポンスは良いが、超音波技術を駆使するために価格が高
くなる問題がある。また、センサー部間の距離が問題と
なるため強固に作る必要があり重量的にも重くなる。ま
た、漁業無線等による妨害電波の影響を強く受けるた
め、使用箇所にその様な妨害電波を出す施設が有るか無
いかを確認してからでないと使えない。つまり場所の制
約を受ける。更に、超音波帯域の周波数が対象となって
いるため、信号の減衰を少しでも小さくする必要があ
り、外径の太い信号ケーブルを用いなければならない。
On the other hand, although the ultrasonic anemometer has a better response than the propeller type, there is a problem that the price becomes high because the ultrasonic technology is fully utilized. In addition, since the distance between the sensor parts becomes a problem, it needs to be made strong, and the weight becomes heavy. Also, since it is strongly affected by jamming radio waves from fishing radio, etc., it cannot be used until it is confirmed whether there is a facility emitting such jamming radio waves at the place of use. In other words, it is restricted by the place. Further, since the frequency in the ultrasonic band is targeted, it is necessary to reduce the signal attenuation as much as possible, and a signal cable with a large outer diameter must be used.

【0006】カルマン渦を利用した渦センサーの場合に
は、前述の通りSt数が0.18〜0.2と小さく、周
波数が低く騒音(振動)のレベルも小さい事から周囲の
暗騒音に埋もれてしまい判別が難しい。つまり、St数
が小さいために周波数の分解能力が余り良くなかった。
In the case of the vortex sensor utilizing the Karman vortex, the St number is as small as 0.18 to 0.2, the frequency is low, and the noise (vibration) level is small as described above, so that it is buried in the background noise. It is difficult to determine because it has been lost. That is, since the St number is small, the frequency resolving ability is not so good.

【0007】本発明の目的は、上記したような従来技術
の欠点を解消し、応答性がよく、且つ重量的に軽く、安
価で且つ簡便で、より扱い易い風速計を提供することに
ある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide an anemometer which is excellent in responsiveness, light in weight, inexpensive, simple and easy to handle.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は、 円柱状物体の外周全面を、該円柱状物体の外径の1
/11以下の外径を有する線状体を撚合せまたは螺旋巻
した形状に構成し、ストロハル数が大きい特異な振動な
いし騒音を発生することを特徴とする表面粗さ利用の風
速センサー 前記請求項1に記載の風速センサーを風向検出用矢
羽根の方向に直角に配置し、前記風速センサーが発した
振動ないし騒音の周波数から風速を検知することを特徴
とする風向風速計 前記請求項1に記載の風速センサーの複数本を水平
面上に等間隔に設置し前記放射の中心に更に鉛直に前記
風速センサーを配置し、前記各風速センサーが発した振
動ないし騒音の周波数から風速を検知し、この風速成分
の合成値から風向を検知することを特徴とする風向風速
計 により達成される。
SUMMARY OF THE INVENTION The above object of the present invention is to provide a cylindrical object having an outer peripheral surface with an outer diameter of 1 mm.
A wind velocity sensor utilizing surface roughness, characterized in that a linear body having an outer diameter of / 11 or less is formed into a twisted or spirally wound shape, and peculiar vibration or noise with a large Strouhal number is generated. The wind speed anemometer according to claim 1, wherein the wind speed sensor described in 1 is arranged at right angles to the direction of the wind direction detecting arrow blade, and the wind speed is detected from the frequency of vibration or noise emitted by the wind speed sensor. A plurality of wind speed sensors are installed at equal intervals on a horizontal plane and the wind speed sensors are arranged vertically at the center of the radiation, and the wind speed is detected from the frequency of vibration or noise emitted by each wind speed sensor. This is achieved by the wind direction anemometer characterized by detecting the wind direction from the combined value of the components.

【0009】すなわち、形状指数(d/D)が1/11
以下の表面粗度を有する円柱状物体を風速センサーとし
て用い、当該センサーが風を受けた時に発生する音の周
波数を風速及び必要に応じ風向に換算して検出するもの
で、その風速センサーに起因して発生する渦の周波数が
これまでのカルマン渦による振動ないし騒音の周波数よ
り高く、周波数と風速の関係が明瞭に現われ、風速の読
み取り精度が向上するのである。
That is, the shape index (d / D) is 1/11.
A cylindrical object having the following surface roughness is used as a wind speed sensor, and the frequency of the sound generated when the sensor receives wind is converted into the wind speed and, if necessary, detected in the wind direction and detected. The frequency of the generated vortex is higher than the frequency of vibration or noise due to the Karman vortex so far, the relationship between the frequency and the wind speed appears clearly, and the accuracy of reading the wind speed is improved.

【0010】風速と渦の発生周波数の関係はSt=f・
D/V・・・(1) で表すことができる。ここでfは渦の
発生周波数(HZ)、Dは外径(m)、Vは風速(m/
s)、Stはストロハル数である。
The relationship between wind speed and vortex generation frequency is St = f.
It can be represented by D / V (1). Here, f is the vortex generation frequency (HZ), D is the outer diameter (m), and V is the wind speed (m /
s) and St are Strouhal numbers.

【0011】一般に円柱の場合のSt数は(Re数10
4 〜106 では)0.2〜0.18となる。送電線など
もこれに従い0.2程度とされている。ただし、電線の
外径をD、最外層を構成する素線の外径をdとしたとき
の表面粗度を表わす形状指数(d/D)が1/11以下
の比較的表面粗度の小さな電線に於いては、この他に
0.5〜0.7程度のストロハル数の存在が認められる
(図4(A),(B)参照)。1/9の形状指数を持つ
電線について別途確認した処によれば、この様な現象は
見られない。上記形状指数が1/11以下の電線で大き
なSt数が認められるのは、図5(B)に示すように、
大きなカルマン渦発生による脈動の他に電線表面の小さ
なくぼみ(素線間の外側に出現するV字状のくぼみ)が
一種の空孔として働き、素線で剥離形成された小さな渦
が共鳴を起こすエッジトーンとなるためと推測される。
本発明はこの性質を風速センサーとして用いるものであ
る。
Generally, the St number in the case of a cylinder is (Re number 10
It becomes 0.2 to 0.18 (for 4 to 10 6 ). In accordance with this, transmission lines are also set at around 0.2. However, when the outer diameter of the electric wire is D and the outer diameter of the wire forming the outermost layer is d, the shape index (d / D) representing the surface roughness is 1/11 or less, and the surface roughness is relatively small. In addition to this, the existence of the Strouhal number of about 0.5 to 0.7 is recognized in the electric wire (see FIGS. 4A and 4B). According to a separate confirmation of an electric wire having a shape index of 1/9, such a phenomenon is not observed. As shown in FIG. 5 (B), a large St number is recognized in the electric wire whose shape index is 1/11 or less.
In addition to the pulsation due to the generation of a large Karman vortex, a small dent on the surface of the wire (a V-shaped dent appearing on the outer side between the wires) acts as a kind of hole, and a small vortex separated by the wire causes resonance. It is presumed that this is an edge tone.
The present invention uses this property as a wind speed sensor.

【0012】[0012]

【実施例】図1は風速センサーを示し、この風速センサ
ー1は複数本の金属素線、例えばアルミニウム線を同心
状に複数層撚り合わせてなる電線から所定の長さLを切
り出し、端部がばらけないように最外層の各素線の少な
くとも端部を固定したもので、最外層を構成する素線の
外径dが電線の外径Dの1/11以下となるように形成
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a wind speed sensor. This wind speed sensor 1 cuts a predetermined length L from an electric wire formed by twisting a plurality of metal element wires, for example, aluminum wires concentrically in a plurality of layers, At least the ends of the outermost layer wires are fixed so that they do not come apart, and the outer diameter d of the wires forming the outermost layer is 1/11 or less than the outer diameter D of the wire. There is.

【0013】形状指数(d/D)が異なる電線のサンプ
ルについて、風洞実験装置を用いて風速と発生する渦の
振動周波数の関係を調査すると、図4(A)に示すよう
に、表面粗度(d/D)が1/11以下の電線において
は高レベルの周波数の振動が発生しており、そのような
電線から発する音の騒音レベルは図5(A)に示す通
り、電線風音より高く、騒音計や振動計による判別が十
分に行える領域に分布している。
When the relationship between the wind speed and the vibration frequency of the generated vortices was investigated by using a wind tunnel experimental apparatus for electric wire samples having different shape indices (d / D), the surface roughness was as shown in FIG. 4 (A). A high-level frequency vibration is generated in an electric wire whose (d / D) is 1/11 or less, and the noise level of the sound emitted from such an electric wire is as shown in Fig. 5 (A). It is high, and it is distributed in the area where it can be sufficiently discriminated by a noise meter or a vibrometer.

【0014】従って、形状指数が1/11以下の電線か
ら切り出した所定長さLのものをセンサーとして用い、
その風速センサー1を図2(A)に示すように直立固定
し、その風下に周波数分析器に接続された騒音振動計6
を配置し、風速センサー1から発せられるレベルの高い
振動ないし騒音を騒音振動計6を通して検出し、分析器
で周波数の分析を行ってそのピーク値を風速に換算する
ことで風速を検知することができる。
Therefore, a wire having a shape index of 1/11 or less and having a predetermined length L is used as a sensor.
The wind speed sensor 1 is fixed upright as shown in FIG. 2 (A), and the noise and vibration meter 6 connected to the frequency analyzer downwind thereof.
Is arranged to detect high-level vibration or noise emitted from the wind speed sensor 1 through the noise vibrometer 6, analyze the frequency with an analyzer, and convert the peak value into the wind speed to detect the wind speed. it can.

【0015】図2(B)は、風速センサー1の別の使用
例を示し、風向計の風向検出用の矢羽根2の先端側に風
速センサー1を水平に取付けると共に、風速センサー1
の風下側のセンサー把持部5に騒音振動計6を取付け、
騒音振動計6を通して風速を検知すると共に、架台4上
の円筒3に内蔵されたホテンショメータを用いて風向も
検知できるようにしたものである。この場合、暗騒音の
影響を少なくするため、騒音振動計6のセンサ部をセン
サー把持部5に内蔵するようにしても差し支えない。
FIG. 2 (B) shows another example of use of the wind speed sensor 1. The wind speed sensor 1 is mounted horizontally on the tip side of the arrow blade 2 for detecting the wind direction of the wind vane, and the wind speed sensor 1 is used.
Attach the noise vibration meter 6 to the sensor grip 5 on the leeward side of
The wind speed is detected through the noise vibrometer 6 and the wind direction can be detected by using a potentiometer built in the cylinder 3 on the pedestal 4. In this case, in order to reduce the influence of background noise, the sensor part of the noise vibration meter 6 may be built in the sensor grip part 5.

【0016】図3は、風速センサーの更に別な使用例を
示すものである。この例は図1に示す風速センサー4本
を用い、そのうちの1本を架台9に鉛直に取付け、残る
3本を夫々θ=120°のピッチで水平方向に等間隔に
配置し、各々の風速センサー7及び8から発せられる振
動ないし騒音を検出することで風速と風向を同時に検知
しようとするもので、図示は省略したが、風速センサー
7及び8の近傍には夫々騒音振動計が配置されることは
いうまでもない。この場合、鉛直に取付けた風速センサ
ー7を用いて検知された真の風速と水平に取付けた風速
センサー8を用いて検知した各風速との合成を使うこと
で風向も検知することができる。
FIG. 3 shows another example of use of the wind speed sensor. In this example, four wind speed sensors shown in FIG. 1 are used, one of them is vertically attached to the gantry 9, and the remaining three are arranged at equal intervals in the horizontal direction at a pitch of θ = 120 °. The wind speed and the wind direction are simultaneously detected by detecting the vibration or noise emitted from the sensors 7 and 8. Although not shown, noise vibrometers are arranged near the wind speed sensors 7 and 8, respectively. Needless to say. In this case, the wind direction can also be detected by using a combination of the true wind speed detected by using the vertically mounted wind speed sensor 7 and each wind speed detected by using the horizontally mounted wind speed sensor 8.

【0017】風速センサーに相当する電線のサンプルに
ついての実験によれば、風が斜めに当たると、図6に示
すように、風の当たる角度が小さくなるにしたがって騒
音レベルが減少する傾向を示す。従って、この傾向を利
用することで風向が容易に検知できる。
According to an experiment on a sample of an electric wire corresponding to a wind speed sensor, when the wind hits it obliquely, the noise level tends to decrease as the wind hitting angle becomes smaller, as shown in FIG. Therefore, the wind direction can be easily detected by using this tendency.

【0018】尚、前記説明した風速センサー1、7及び
8として電線から切り出したものの場合を示したが、こ
の風速センサーはアルミニウム、プラスチック等からな
るパイプ材や棒材等の円柱状物体の表面に形状指数(d
/D)が1/11以下となるような線材や紐材等の線条
体を電線の最外層のように配置して定着させたものであ
っても差し支えない。
The case where the wind speed sensors 1, 7 and 8 described above are cut out from an electric wire is shown. This wind speed sensor is formed on the surface of a cylindrical object such as a pipe or a bar made of aluminum or plastic. Shape index (d
It is also possible to arrange and fix a filamentous body such as a wire rod or a cord material whose / D) is 1/11 or less like the outermost layer of the electric wire.

【0019】[0019]

【発明の効果】請求項1に記載の発明によれば、風が作
用することでレベルの高い振動ないし騒音を発するの
で、これを振動計や騒音計と組合せて用いることで応答
性が良く、安価且つ簡便な風速計を得ることができる。
According to the invention as set forth in claim 1, since high-level vibration or noise is generated by the action of wind, the response is good by using this in combination with a vibrometer or a sound level meter. An inexpensive and simple anemometer can be obtained.

【0020】また、請求項2,3に記載の発明によれ
ば、特殊な風速センサーを用いているため、重量的に軽
く、安価且つ簡便で、取り扱い易い風向風速計を提供す
ることができる。
According to the second and third aspects of the invention, since the special wind velocity sensor is used, it is possible to provide an anemometer which is light in weight, inexpensive, simple and easy to handle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の表面粗さを利用した風速センサーの形
状を示す正面図(A),断面図(B)。
FIG. 1 is a front view (A) and a sectional view (B) showing a shape of a wind speed sensor utilizing surface roughness of the present invention.

【図2】本発明の表面粗さを利用した風速センサーの一
実施例の斜視図(A),(B)。
FIG. 2 is a perspective view (A) and (B) of an embodiment of a wind speed sensor using the surface roughness of the present invention.

【図3】本発明の表面粗さを利用した風速センサーの他
の実施例の斜視図。
FIG. 3 is a perspective view of another embodiment of the wind speed sensor using the surface roughness of the present invention.

【図4】風速センサーの形状指数(d/D)に対する、
風速(m/sec)対振動周波数との関係図(A)、R
e数対St数の関係図(B)。
FIG. 4 is a graph showing the shape index (d / D) of the wind speed sensor,
Relationship between wind speed (m / sec) and vibration frequency (A), R
A relational diagram of the number of e and the number of St (B).

【図5】形状指数(d/D):1/11以下の電線形状
の騒音レベル(dB)と風速(m/s)との関係図
(A),センサーの断面における渦との模式図(B)。
FIG. 5: Shape index (d / D): relational diagram between noise level (dB) and wind speed (m / s) of electric wire shape of 1/11 or less (A), schematic diagram of vortex in cross section of sensor ( B).

【図6】本発明の風速センサーの風速に対する斜風の
(θ)と騒音レベル(dB)との関係図。
FIG. 6 is a diagram showing the relationship between the wind speed (θ) and the noise level (dB) of the wind speed sensor according to the present invention.

【符号の説明】[Explanation of symbols]

d 素線の外径 D 電線の外径 1 風速センサー 2 矢羽根 3 ポテンショメータ内蔵部 4 架台 5 センサー把持部 6 騒音振動計 7 鉛直に取付けた風速センサー 8 水平に取付けた風速センサー 9 取付け架台 d Outer diameter of the wire D Outer diameter of the wire 1 Wind speed sensor 2 Arrow blade 3 Potentiometer built-in part 4 Stand 5 Sensor grip 6 Noise vibrometer 7 Vertically mounted wind speed sensor 8 Horizontally mounted wind speed sensor 9 Mounting base

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】円柱状物体の外周全面を、該円柱状物体の
外径の1/11以下の外径を有する線状体を撚合せまた
は螺旋巻した形状に構成し、ストロハル数が大きい特異
な振動ないし騒音周波数を発生することを特徴とする表
面粗さ利用の風速センサー。
1. A peculiarity in which the entire outer circumference of a cylindrical object is formed by twisting or spirally winding a linear body having an outer diameter of 1/11 or less of the outer diameter of the cylindrical object, and having a large Strouhal number. A wind velocity sensor using surface roughness that generates various vibration or noise frequencies.
【請求項2】前記請求項1に記載の風速センサーを風向
検出用矢羽根の方向に直角に配置し、前記風速センサー
が発した振動ないし騒音周波数から風速を検知すること
を特徴とする風向風速計。
2. The wind velocity sensor according to claim 1, wherein the wind velocity sensor is arranged at right angles to the direction of the wind direction detecting blade, and the wind velocity is detected from the vibration or noise frequency emitted by the wind velocity sensor. Total.
【請求項3】前記請求項1に記載の風速センサーの複数
本を水平面上に等間隔に設置し前記放射の中心に更に鉛
直に前記風速センサーを配置し、前記各風速センサーが
発した振動ないし騒音周波数から風速を検知し、この風
速成分の合成値から風向を検知することを特徴とする風
向風速計。
3. A wind speed sensor according to claim 1, wherein a plurality of wind speed sensors are installed at equal intervals on a horizontal plane, and the wind speed sensors are arranged vertically at the center of the radiation, so that vibrations generated by the respective wind speed sensors or An anemometer that detects wind speed from a noise frequency and detects the wind direction from a combined value of the wind speed components.
JP29047693A 1993-11-19 1993-11-19 Wind velocity sensor using surface roughness and wind vane/anemometer employing it Pending JPH07140161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29047693A JPH07140161A (en) 1993-11-19 1993-11-19 Wind velocity sensor using surface roughness and wind vane/anemometer employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29047693A JPH07140161A (en) 1993-11-19 1993-11-19 Wind velocity sensor using surface roughness and wind vane/anemometer employing it

Publications (1)

Publication Number Publication Date
JPH07140161A true JPH07140161A (en) 1995-06-02

Family

ID=17756511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29047693A Pending JPH07140161A (en) 1993-11-19 1993-11-19 Wind velocity sensor using surface roughness and wind vane/anemometer employing it

Country Status (1)

Country Link
JP (1) JPH07140161A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084537A (en) * 2016-11-25 2018-05-31 ホルトプラン合同会社 Wind measuring device
CN111398623A (en) * 2019-03-01 2020-07-10 上海电机学院 Intelligent wind speed detection system
JP2021042980A (en) * 2019-09-06 2021-03-18 住友電気工業株式会社 Anemometer and wind speed measuring method
US11754424B2 (en) 2021-09-30 2023-09-12 Fujitsu Limited Computer-readable non-transitory medium, estimation device and estimation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084537A (en) * 2016-11-25 2018-05-31 ホルトプラン合同会社 Wind measuring device
WO2018097236A1 (en) * 2016-11-25 2018-05-31 ホルトプラン合同会社 Wind measurement device
CN111398623A (en) * 2019-03-01 2020-07-10 上海电机学院 Intelligent wind speed detection system
JP2021042980A (en) * 2019-09-06 2021-03-18 住友電気工業株式会社 Anemometer and wind speed measuring method
US11754424B2 (en) 2021-09-30 2023-09-12 Fujitsu Limited Computer-readable non-transitory medium, estimation device and estimation method

Similar Documents

Publication Publication Date Title
US10976335B2 (en) Wind measurement apparatus based on 3D non-orthogonal ultrasonic sensor array
CN105784096B (en) A kind of measuring system and measurement method of water-filled pipe jet noise
JPS6140512A (en) Measuring device for velocity of flow of fluid
JPH07140161A (en) Wind velocity sensor using surface roughness and wind vane/anemometer employing it
US5339287A (en) Airborne sensor for listening to acoustic signals
US4281553A (en) Vortex shedding flowmeter
McEachern et al. Flow‐induced noise on a bluff body
JPS6225268A (en) Optical air speedometer
Subramanian et al. An experimental study of propeller noise due to cyclic flow distortion
JP2869054B1 (en) Insertion type vortex flowmeter and method for determining its probe line length
JP7276022B2 (en) Anemometer and wind speed measurement method
Bazhenova Effect of external actions on the characteristics of vortex sound
US4135466A (en) Arrangement for dampening sound-vibrations in elongate hollow members such as masts of sailing vessels and methods for dampening sound-vibrations
Richardson The flow and sound field near a cylinder towed through water
Bazhenova et al. On the influence of the Reynolds number on the intensity of vortex sound flowing around a cylindrical profile
US4152934A (en) Vector measuring current meter
Weaver Jr Wind-induced vibrations in antenna members
Saur et al. Experimental investigation of flow-induced sound of kite lines
JPH0571104A (en) Overcoat protective tube of laid cable
Kristiansen et al. Measurements on a little known sound source-the Vortex Whistle
Gomery et al. Fence vibrations [intruder detection]
JP4192836B2 (en) Wind noise reduction tower and method of reducing wind noise of steel tower
Hamakawa et al. Effect of fins on vortex shedding noise generated from a circular cylinder in cross flow
ITAYA et al. Experiments on Strouhal's number
Lee An experimental and theoretical study of helicopter rotor noise.