JPH07139923A - Apparatus for measuring three dimensional object - Google Patents
Apparatus for measuring three dimensional objectInfo
- Publication number
- JPH07139923A JPH07139923A JP5286510A JP28651093A JPH07139923A JP H07139923 A JPH07139923 A JP H07139923A JP 5286510 A JP5286510 A JP 5286510A JP 28651093 A JP28651093 A JP 28651093A JP H07139923 A JPH07139923 A JP H07139923A
- Authority
- JP
- Japan
- Prior art keywords
- pulse signal
- delay time
- dimensional
- measuring
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、3次元物体の表面情報
の計測を行う3次元物体計測装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional object measuring device for measuring surface information of a three-dimensional object.
【0002】[0002]
【従来の技術】従来、物体形状の3次元計測を行う3次
元物体計測装置として、図7に示す概略構成を有するパ
ルスレーダ型3次元物体計測装置が知られている。図7
において、1’は物体、1’Aは計測点、2’はレーザ
光源、3’はハーフミラー、4’は回転ミラー、5’は
光受信器、6’は遅延時間検出器、7’はコンピュー
タ、8’はパルス発振器である。2. Description of the Related Art Conventionally, as a three-dimensional object measuring apparatus for three-dimensionally measuring an object shape, a pulse radar type three-dimensional object measuring apparatus having a schematic configuration shown in FIG. 7 is known. Figure 7
, 1'is an object, 1'A is a measurement point, 2'is a laser light source, 3'is a half mirror, 4'is a rotating mirror, 5'is an optical receiver, 6'is a delay time detector, and 7'is The computer, 8 ', is a pulse oscillator.
【0003】前記従来のパルスレーダ型3次元物体計測
装置は、図7に示すように、パルス発振器8’によって
制御されるレーザ光源2’(送信部)からハーフミラー
3’、回転ミラー4’を介して計測しようとする物体
1’に向かって原パルス信号(レーダパルス)P0が発
射され、これが物体1’の計測点1’Aに当ってはねか
えることによって生じる反射パルス信号P1を受信し、
原パルス信号P0と受信パルス信号(反射パルス信号P
1)との間の遅延時間Δt(図8)を計測し、この計測
結果から当該計測装置と物体との間の3次元距離を算出
することによって物体形状の三次元計測を行う仕組であ
る。In the conventional pulse radar type three-dimensional object measuring apparatus, as shown in FIG. 7, a laser light source 2 '(transmission unit) controlled by a pulse oscillator 8'to a half mirror 3'and a rotating mirror 4'. The original pulse signal (radar pulse) P0 is emitted toward the object 1'to be measured via the reflected pulse signal P1 which is generated when the pulse signal P0 hits the measuring point 1'A of the object 1'and bounces off. ,
Original pulse signal P0 and received pulse signal (reflected pulse signal P
This is a mechanism for performing three-dimensional measurement of the object shape by measuring the delay time Δt (FIG. 8) with 1) and calculating the three-dimensional distance between the measuring device and the object from the measurement result.
【0004】[0004]
【発明が解決しようとする課題】しかし、前記従来のパ
ルスレーダ型3次元物体計測装置では、基本的に計測装
置と物体上の1点との間の距離を求めるものである。単
一の送信部と単一の受信部を使用しており、一度に測定
できるのは一点だけである。このため、物体全体の3次
元計測を行うためには、図7に示す回転ミラー4’等の
仕掛を利用して前記原パルス信号P0の発信方向を少し
ずつ変えて物体全体をカバーするように走査を行い、各
点毎に一回ずつ前記計測を行う必要がある。このため、
物体全体を計測するためには、どうしても長い計測時間
が必要であり、動く物体の実時間計測を行うことは基本
的に困難であった。However, in the conventional pulse radar type three-dimensional object measuring apparatus, the distance between the measuring apparatus and a point on the object is basically obtained. It uses a single transmitter and a single receiver, and can only measure one point at a time. Therefore, in order to perform the three-dimensional measurement of the entire object, it is necessary to gradually change the transmitting direction of the original pulse signal P0 by using a mechanism such as the rotating mirror 4'shown in FIG. 7 so as to cover the entire object. It is necessary to scan and perform the measurement once for each point. For this reason,
In order to measure the whole object, a long measurement time is inevitable, and it is basically difficult to measure the moving object in real time.
【0005】本発明は、前記問題点を解決するためにな
されたものであり、本発明の目的は、より短時間もしく
は実時間で計測を行うことが可能なパルスレーダ型3次
元物体計測装置を提供することにある。The present invention has been made to solve the above problems, and an object of the present invention is to provide a pulse radar type three-dimensional object measuring apparatus capable of measuring in a shorter time or in a real time. To provide.
【0006】本発明の他の目的は、カラー計測が可能な
パルスレーダ型3次元物体計測装置を提供することにあ
る。Another object of the present invention is to provide a pulse radar type three-dimensional object measuring apparatus capable of color measurement.
【0007】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
にする。The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
【0008】[0008]
【課題を解決するための手段】前記目的を達成するため
に、本発明の3次元物体計測装置は、一つもしくは複数
の光源と、該光源から物体に向かって原パルス信号を発
射するパルス発生器と、物体に当ってはねかえった反射
パルス信号を受信する複数の光受信手段と、前記原パル
ス信号と前記反射パルス信号との間の遅延時間を検出す
る複数の遅延時間検出手段と、該複数の遅延時間検出手
段の検出値から当該計測装置と物体との間の3次元距離
を算出して物体形状の三次元計測を行う計測手段とを備
えたことを特徴とする。In order to achieve the above object, a three-dimensional object measuring apparatus according to the present invention comprises one or a plurality of light sources, and pulse generation for emitting an original pulse signal from the light sources toward an object. Vessel, a plurality of optical receiving means for receiving the reflected pulse signal repelled by the object, a plurality of delay time detecting means for detecting the delay time between the original pulse signal and the reflected pulse signal, It is characterized by further comprising: measuring means for calculating the three-dimensional distance between the measuring device and the object from the detection values of the plurality of delay time detecting means to perform the three-dimensional measurement of the object shape.
【0009】また、前記物体の表面カラー情報を検出す
る物体表面カラー情報検出手段と、該表面カラー情報検
出手段の検出値と前記位相差検出手段の検出値とを対応
させてカラー計測を行うカラー計測手段とを備えたこと
を特徴とする。Further, an object surface color information detecting means for detecting the surface color information of the object and a color for performing color measurement by making the detected value of the surface color information detecting means correspond to the detected value of the phase difference detecting means. And a measuring means.
【0010】[0010]
【作用】前述した手段によれば、一つもしくは複数の光
源から物体に向かって原パルス信号を発射し、物体に当
ってはねかえった反射パルス信号を複数の光受信手段で
受信し、それぞれの前記原パルス信号と前記反射パルス
信号との間の遅延時間を、複数の遅延時間検出手段で検
出し、それらの検出値から当該計測装置と物体との間の
3次元距離を算出して物体形状の三次元計測を行うこと
により、三次元物体情報を短時間もしくは実時間で計測
することができる。これにより、静止物体の計測のみな
らず、動く物体における三次元物体情報を計測すること
ができる。According to the above-mentioned means, the original pulse signal is emitted from one or a plurality of light sources toward the object, and the reflected pulse signal which is repelled by hitting the object is received by the plurality of optical receiving means. The delay time between the original pulse signal and the reflected pulse signal is detected by a plurality of delay time detecting means, and the three-dimensional distance between the measuring device and the object is calculated from the detected values, and the object is calculated. By performing three-dimensional shape measurement, three-dimensional object information can be measured in a short time or in real time. This makes it possible to measure not only stationary objects but also three-dimensional object information on moving objects.
【0011】また、物体の表面カラー情報を検出し、該
検出された表面カラー情報と受信パルス信号の両者の時
間差(遅延時間)とを対応させることにより、物体の3
次元形状情報と表面カラー情報とを同時にしかも各計測
点毎にそれぞれ完全に一致した形でカラー計測すること
ができるので、三次元物体を認識したり、入力されたデ
ータに基づいて物体のコンピュータグラフィックス映像
を生成することが容易にできる。Further, the surface color information of the object is detected, and the time difference (delay time) between the detected surface color information and the received pulse signal is made to correspond to the 3
Since it is possible to perform color measurement of dimensional shape information and surface color information at the same time and in a form that is completely in agreement with each other at each measurement point, it is possible to recognize a three-dimensional object and to computer graphic the object based on the input data. It is possible to easily generate a video image.
【0012】[0012]
【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0013】なお、実施例を説明するための全図におい
て、同一機能を有するものは同一符号を付け、その繰り
返しの説明は省略する。In all the drawings for explaining the embodiments, parts having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted.
【0014】(実施例1)図1は、本発明の実施例1の
パルスレーダ型三次元物体計測装置の概略構成を示すブ
ロック図である。(Embodiment 1) FIG. 1 is a block diagram showing a schematic configuration of a pulse radar type three-dimensional object measuring apparatus according to Embodiment 1 of the present invention.
【0015】図1において、101,102は計測装
置、1は物体、1A,1Bは計測点、2A,2Bはレー
ザ光源、3A,3Bはハーフミラー、4A,4Bは集光
レンズ、5A,5Bは回転ミラー、6A,6Bは光受信
器、7A,7Bは遅延時間検出器、8はコンピュータ、
9はパルス発振器である。前記光受信器6A,6Bとし
ては、例えば、ホトダイオード、光電管等を用いる。ま
た、遅延時間検出器6A,6Bとしては、例えば、PL
L等を用いた公知の遅延時間検出器を用いる。In FIG. 1, 101 and 102 are measuring devices, 1 is an object, 1A and 1B are measuring points, 2A and 2B are laser light sources, 3A and 3B are half mirrors, 4A and 4B are condenser lenses, and 5A and 5B. Is a rotating mirror, 6A and 6B are optical receivers, 7A and 7B are delay time detectors, 8 is a computer,
9 is a pulse oscillator. As the optical receivers 6A and 6B, for example, photodiodes, photoelectric tubes, etc. are used. The delay time detectors 6A and 6B are, for example, PL
A known delay time detector using L or the like is used.
【0016】計測時間を短縮するための1つの自然な方
法は、複数点の同時計測を行うことである。図1はこの
複数点同時計測方法の概念を示すものであり、基本的に
図7の計測装置を2台並べたものにほぼ等しい。計測装
置101で物体1上の計測点1Aを、また、計測装置1
02で物体1上の計測点1Bをそれぞれ計測し、両計測
結果を同時にコンピュータ8に送るものである。One natural way to reduce the measurement time is to make simultaneous measurements at multiple points. FIG. 1 shows the concept of this method for simultaneously measuring a plurality of points, and is basically equivalent to one in which two measuring devices in FIG. 7 are arranged. The measuring device 101 measures the measuring point 1A on the object 1 and the measuring device 1
In 02, the measurement point 1B on the object 1 is measured, and both measurement results are sent to the computer 8 at the same time.
【0017】本実施例1のパルスレーダ型三次元物体計
測装置の各計測装置101,102の動作は、まず、パ
ルス発振器9の出力パルス信号に応した原パルスレーザ
光(以下、原パルス信号という)をレーザ光源2A,2
Bから発射させる。この原パルス信号をハーフミラー3
A,3B、集光レンズ4A,4B、回転ミラー5A,5
Bを介して計測しようとする物体1に向かって発射し、
これが物体1の計測点1A,1Bに当ってはねかえるこ
とによって生じる反射パルスレーザ光(以下、反射パル
ス信号という)を光受信器6A,6Bで受信し、原パル
ス信号と反射パルス信号との時間差を検出する遅延時間
検出器7A,7Bで検出し、この検出値コンピュータ8
に入力して前記計測装置と物体との間の3次元距離を算
出して物体形状の三次元計測を行う。The operation of each of the measuring devices 101 and 102 of the pulse radar type three-dimensional object measuring device according to the first embodiment is as follows. First, an original pulse laser beam corresponding to an output pulse signal of the pulse oscillator 9 (hereinafter referred to as an original pulse signal). ) Laser light sources 2A, 2
Fire from B. This original pulse signal is applied to the half mirror 3
A, 3B, condenser lenses 4A, 4B, rotating mirrors 5A, 5
Fire toward the object 1 to be measured via B,
Reflected pulse laser light (hereinafter referred to as a reflected pulse signal) generated when this hits the measurement points 1A and 1B of the object 1 and is repelled is received by the optical receivers 6A and 6B, and the original pulse signal and the reflected pulse signal are combined. The delay time detectors 7A and 7B for detecting the time difference detect the detected time difference, and the detected value computer 8
To calculate the three-dimensional distance between the measuring device and the object to perform three-dimensional measurement of the object shape.
【0018】以上の説明からわかるように、本実施例1
によれば、2つの光源から物体1に向かって原パルス信
号を発射し、物体1の計測点1A,1Bからの反射パル
ス信号を複数の光受信器6A,6Bで受信し、それぞれ
の前記原パルス信号と反射パルス信号と間の時間差を遅
延時間検出器7A,7Bで検出し、それらの検出値をコ
ンピュータ8に入力して当該計測装置101,102と
物体1との間の3次元距離を算出して物体形状の三次元
計測を行うので、三次元物体情報を短時間もしくは実時
間で計測することができる。これにより、静止物体の計
測のみならず、動く物体における三次元物体情報を計測
することができる。As can be seen from the above description, the first embodiment
According to the above, the original pulse signals are emitted from the two light sources toward the object 1, and the reflected pulse signals from the measurement points 1A and 1B of the object 1 are received by the plurality of optical receivers 6A and 6B. The time difference between the pulse signal and the reflected pulse signal is detected by the delay time detectors 7A and 7B, and the detected values are input to the computer 8 to determine the three-dimensional distance between the measuring devices 101 and 102 and the object 1. Since the object shape is calculated and three-dimensionally measured, the three-dimensional object information can be measured in a short time or in real time. This makes it possible to measure not only stationary objects but also three-dimensional object information on moving objects.
【0019】前記本実施例1は、2点を同時に計測する
ために、2台の計測装置101,102を並べたもので
あるが、概念の上では3台以上の場合も全く同様な構成
を考えることができる。しかし、この方法では、光源を
はじめとする全ての部品が複数必要であり、しかも、複
数の回転ミラーを的確に制御して計測を行う必要があ
る。このため、単純に計測装置を並べるだけでは、現実
的には、あまり多くの点の同時計測を行うことは技術的
に極めて困難である。In the first embodiment, two measuring devices 101 and 102 are arranged in order to measure two points at the same time. However, the same configuration is conceptually applied to the case of three or more devices. I can think. However, this method requires a plurality of all parts including the light source, and moreover, it is necessary to accurately control a plurality of rotating mirrors for measurement. Therefore, it is technically extremely difficult to perform simultaneous measurement of too many points simply by arranging the measuring devices.
【0020】(実施例2)図2は、本発明の実施例2の
パルスレーダ型三次元物体計測装置の概略構成を示すブ
ロック図であり、21は物体1の全体を照射できるよう
な単一レーザ光源、22A,22Bはピンホール、23
は光遮蔽板である。(Embodiment 2) FIG. 2 is a block diagram showing a schematic configuration of a pulse radar type three-dimensional object measuring apparatus according to a second embodiment of the present invention. Reference numeral 21 denotes a single unit capable of irradiating the entire object 1. Laser light source, 22A and 22B are pinholes, 23
Is a light shielding plate.
【0021】本実施例2のパルスレーダ型三次元物体計
測装置は、図2に示すように、単一のレーザ光源21を
使用し、かつ、ハーフミラー3A,3B、集光レンズ4
A,4B、回転ミラー5A,5Bを使用しない複数点同
時計測を行うものであり、単一のレーザ光源21からの
原パルス信号を物体1の全体に照射し、この原パルス信
号が物体1の計測点1A,1Bに当ってはねかえること
によって生じる反射パルス信号を光受信器6A,6Bで
受信し、原パルス信号と受信パルス信号(反射パルス信
号)との時間差(遅延時間)を遅延時間検出器7A,7
Bで検出し、この検出値をコンピュータ8に入力して前
記計測装置と物体との間の3次元距離を算出することに
よって物体形状の三次元計測を行う。As shown in FIG. 2, the pulse radar type three-dimensional object measuring apparatus according to the second embodiment uses a single laser light source 21, and includes half mirrors 3A and 3B and a condenser lens 4.
A, 4B and multi-point simultaneous measurement without using the rotating mirrors 5A, 5B are performed, and an original pulse signal from a single laser light source 21 is applied to the entire object 1, and the original pulse signal of the object 1 is emitted. The optical receivers 6A and 6B receive the reflected pulse signals generated by repelling the measurement points 1A and 1B, and determine the time difference (delay time) between the original pulse signal and the received pulse signal (reflected pulse signal) by the delay time. Detectors 7A, 7
Three-dimensional measurement of the object shape is performed by detecting the object shape in B and inputting the detected value into the computer 8 to calculate the three-dimensional distance between the measuring device and the object.
【0022】この方法では、ハーフミラー3A,3B、
集光レンズ4A,4B、回転ミラー5A,5Bを使用し
ないため、図2に示す計測点1Aと計測点1Bの計測を
行うことができるだけである。In this method, the half mirrors 3A, 3B,
Since the condenser lenses 4A and 4B and the rotating mirrors 5A and 5B are not used, it is only possible to measure the measurement points 1A and 1B shown in FIG.
【0023】そこで、他の点の計測を行うために、回転
ミラーを使用することなく物体上の他の全ての点につい
て計測を行うには、図2に示す本実施例2の方法におい
て、ピンホール22A,22Bの数を2つに限定せず、
多数のピンホールを一面に作成し、それに対応する位置
に対応する個数の光受信器6A,6B・・・と遅延時間
検出器7A,7B・・・をそれぞれ層状に並べて使用す
れば良い。Therefore, in order to measure other points without using a rotating mirror, to measure all other points on the object, in the method of the second embodiment shown in FIG. The number of holes 22A and 22B is not limited to two,
A large number of pinholes may be formed on one surface, and the number of optical receivers 6A, 6B ... And delay time detectors 7A, 7B.
【0024】以上の説明からわかるように、本実施例2
によれば、一つの光源から原パルス信号を物体1の全体
に照射し、物体1の計測点1A,1B・・・からの反射
パルス信号を複数の光受信器6A,6B・・・で受信
し、それぞれの前記原パルス信号と反射パルス信号と間
の時間差を遅延時間検出器7A,7B・・・で検出し、
それらの検出値をコンピュータ8に入力して当該計測装
置と物体1との間の3次元距離を算出して物体形状の三
次元計測を行うことにより、計測時に回転ミラーを使用
しないので、三次元物体情報をより短時間もしくは実時
間で計測することができる。これにより、静止物体の計
測のみならず、動く物体における三次元物体情報を計測
することができる。As can be seen from the above description, the second embodiment
According to the above, the original pulse signal is applied to the entire object 1 from one light source, and the reflected pulse signals from the measurement points 1A, 1B ... Of the object 1 are received by the plurality of optical receivers 6A, 6B. Then, the time difference between the original pulse signal and the reflected pulse signal is detected by the delay time detectors 7A, 7B ...
By inputting those detected values into the computer 8 and calculating the three-dimensional distance between the measuring device and the object 1 to perform the three-dimensional measurement of the object shape, the rotating mirror is not used during the measurement. Object information can be measured in a shorter time or in real time. This makes it possible to measure not only stationary objects but also three-dimensional object information on moving objects.
【0025】現実的には、多数のピンホールを使用する
代わりに1枚の光学レンズを使用すれば、もっとエレガ
ントに同じ効果を得ることができる。この考え方による
本発明のパルスレーダ型三次元物体計測装置の構成を次
の実施例3に示す。In reality, the same effect can be obtained more elegantly by using one optical lens instead of using many pinholes. The configuration of the pulse radar type three-dimensional object measuring device of the present invention based on this idea is shown in the following third embodiment.
【0026】(実施例3)図3は、本発明の実施例3の
パルスレーダ型三次元物体計測装置の概略構成を示すブ
ロック図、図4は、図3の光受信部及び遅延時間検出部
の拡大図、図5は、図4の光受信器及び遅延時間検出器
の詳細な構成を示すブロック図である。(Third Embodiment) FIG. 3 is a block diagram showing a schematic configuration of a pulse radar type three-dimensional object measuring apparatus according to a third embodiment of the present invention, and FIG. 4 is an optical receiving section and a delay time detecting section of FIG. 5 is an enlarged view of FIG. 5, and FIG. 5 is a block diagram showing a detailed configuration of the optical receiver and the delay time detector of FIG.
【0027】図3乃至図5において、31は物体1の全
体を照射できるような単一レーザ光源、32はハーフミ
ラー、33は光学レンズ、34は複数の光受信器からな
る光受信部、34A,34B・・・は光受信器、34A
1,34B1・・・は光センサ、34A2,34B2・・・
は増幅器、35は複数の遅延時間検出器からなる遅延時
間検出部、35A,35B・・・は遅延時間検出器、3
5A1,35B1・・・は出力バッファ、36はコンピュ
ータ、37は光遮蔽板である。前記光センサ34A1,
34B1・・・としては、ホトダイオード、光電管を用
いる。In FIGS. 3 to 5, 31 is a single laser light source capable of irradiating the entire object 1, 32 is a half mirror, 33 is an optical lens, 34 is an optical receiving section composed of a plurality of optical receivers, and 34 A is shown. , 34B ... is an optical receiver, 34A
1 , 34B 1 ... are optical sensors, 34A 2 , 34B 2 ...
Is an amplifier, 35 is a delay time detection unit including a plurality of delay time detectors, 35A, 35B ...
5A 1 , 35B 1 ... Are output buffers, 36 is a computer, and 37 is a light shielding plate. The optical sensor 34A 1 ,
A photodiode or a phototube is used as 34B 1 .
【0028】前記光受信部34及び遅延時間検出部35
は、図4に示すように、それぞれ複数の光受信器34
A,34B・・・及び遅延時間検出器35A,35B・
・・からなり、M行N列の格子上に並べたものである
(但し、必ずしもこれを格子上に配置する必要はなく、
どのように配置しても原理的には同様の機能を実現する
ことができる)。このM×Nの配列のそれぞれが光学レ
ンズ33を通して物体1上のM×N個の計測点1A,1
B・・・の計測を同時に行うものである。The optical receiver 34 and the delay time detector 35
Is a plurality of optical receivers 34, as shown in FIG.
A, 34B ... and delay time detectors 35A, 35B.
.. and arranged on a grid of M rows and N columns (however, it is not always necessary to arrange them on the grid,
In principle, the same function can be achieved no matter how they are arranged). Each of the M × N arrays passes through the optical lens 33 and the M × N measurement points 1A, 1 on the object 1 are measured.
B ... is simultaneously measured.
【0029】前記光受信器34A,34B・・・は、図
5に示すように、それぞれ光センサ34A1,34B1・
・・及び増幅器34A2,34B2・・・からなってい
る。As shown in FIG. 5, the optical receivers 34A, 34B, ... Have optical sensors 34A 1 , 34B 1 ,.
... and has been from the amplifier 34A 2, 34B 2 ···.
【0030】また、遅延時間検出器35A,35B・・
・にはそれぞれ出力バッファ35A1,35B1・・・が
設けられている。Further, the delay time detectors 35A, 35B ...
Are provided with output buffers 35A 1 , 35B 1 ...
【0031】本実施例3のパルスレーダ型三次元物体計
測装置は、図3に示すように、まず、光源31から光信
号としての原パルス信号を発射し、これをハーフミラー
32および光学レンズ33を介して物体1の全体に照射
する。同時に原パルス信号送出タイミング信号を遅延時
間検出部35を構成するすべての遅延時間検出器35
A,35B・・・に送る。In the pulse radar type three-dimensional object measuring apparatus of the third embodiment, as shown in FIG. 3, first, an original pulse signal as an optical signal is emitted from a light source 31, and this is emitted by a half mirror 32 and an optical lens 33. The whole of the object 1 is irradiated via. At the same time, the original pulse signal transmission timing signal is applied to all the delay time detectors 35 that constitute the delay time detector 35.
Send to A, 35B ...
【0032】物体1からの反射パルス信号は、物体1の
像として、光学レンズ33およびハーフミラー32を介
して光受信部34の各光受信器34A,34B・・・に
投影される。すなわち、図4に示すように、物体1上の
計測点1Aからの反射パルス信号は光受信器34Aの光
センサ34A1に、計測点1Bからの反射パルスは第2
光受信器34Bの光センサ34B1にそれぞれ入射され
る。他の計測点からの反射パルス信号も同様にしてそれ
ぞれ対応する位置にある光受信器に入射される。The reflected pulse signal from the object 1 is projected as an image of the object 1 onto the respective optical receivers 34A, 34B, ... Of the optical receiver 34 via the optical lens 33 and the half mirror 32. That is, as shown in FIG. 4, the reflected pulse signal from the measurement point 1A on the object 1 is sent to the optical sensor 34A 1 of the optical receiver 34A, and the reflected pulse signal from the measurement point 1B is sent to the second point.
The light is incident on the optical sensor 34B 1 of the optical receiver 34B. Reflected pulse signals from other measurement points are similarly made incident on the optical receivers at corresponding positions.
【0033】前記光センサ34A1,光センサ34B1に
よって検出された受信パルス信号(反射パルス信号)
は、増幅器34A2,34B2によって増幅されて遅延時
間検出回路35A,35Bに送られる。遅延時間検出回
路35A,35Bでは、光源31から受けた原パルス信
号と増幅器34A2,34B2から送られた受信パルス信
号の両者の時間差(遅延時間)を算出し、この算出結果
は、出力バッファ35A1,35B1を介してコンピュー
タ36に送られる。同様の動作が、全ての計測点と、対
応する光受信部34および遅延時間検出部35について
同時に行われる。Received pulse signals (reflected pulse signals) detected by the optical sensors 34A 1 and 34B 1
Is amplified by amplifiers 34A 2 and 34B 2 and sent to delay time detection circuits 35A and 35B. The delay time detection circuits 35A and 35B calculate the time difference (delay time) between the original pulse signal received from the light source 31 and the received pulse signals sent from the amplifiers 34A 2 and 34B 2, and the result of this calculation is the output buffer. It is sent to the computer 36 via 35A 1 and 35B 1 . The same operation is performed simultaneously for all the measurement points and the corresponding light receiving section 34 and delay time detecting section 35.
【0034】各遅延時間検出回路35A,35Bからコ
ンピュータ36に送られた時間差情報は、原パルス信号
が光源31を出てからそれぞれ対応する計測点1A,1
Bで反射し、最終的に光受信器34A,34Bのそれぞ
れの光センサ34A1,光センサ34B1で受信パルス信
号として検出されるまでの時間差に対応するものを表し
ており、これは、とりもなおさず、図3の計測装置と物
体1上の計測点1A,1B・・・との3次元空間上での
距離を反映する情報である。従って、図3の計測装置の
各部品の幾何学的距離を正確に求めておけば、コンピュ
ータ8内で光受信部34と計測点1A,1Bの間の3次
元距離情報に変換することができる。このような3次元
計測が物体1上のすべての計測点1A,1B・・・につ
いて同時に行われる。The time difference information sent from the respective delay time detection circuits 35A and 35B to the computer 36 is the measurement points 1A and 1A corresponding to the time points after the original pulse signal leaves the light source 31.
The light reflected by B and finally corresponds to the time difference until it is detected as a received pulse signal by the optical sensors 34A 1 and 34B 1 of the optical receivers 34A and 34B, respectively. Nonetheless, it is information that reflects the distance in the three-dimensional space between the measuring device of FIG. 3 and the measuring points 1A, 1B, ... On the object 1. Therefore, if the geometrical distance of each part of the measuring device of FIG. 3 is accurately obtained, it can be converted into three-dimensional distance information between the light receiving section 34 and the measuring points 1A and 1B in the computer 8. . Such three-dimensional measurement is simultaneously performed on all measurement points 1A, 1B, ... On the object 1.
【0035】以上のようにして、回転ミラーを使用する
ことなく、物体の3次元計測を行うことができる。As described above, the three-dimensional measurement of the object can be performed without using the rotating mirror.
【0036】(実施例4)図6は、本発明の実施例4の
パルスレーダ型三次元物体計測装置の概略構成を示すブ
ロック図である。(Embodiment 4) FIG. 6 is a block diagram showing a schematic configuration of a pulse radar type three-dimensional object measuring apparatus according to Embodiment 4 of the present invention.
【0037】図6において、41は第2のハーフミラ
ー、42はカラー撮像装置、43はカラー撮像装置42
とコンピュータ36とのインタフェースである。カラー
撮像装置42のカラー撮像素子としては、例えば、カラ
ー電荷結合素子(CCD)が用いられ、このカラー撮像
装置42は、例えば、500×500点分のカラーデー
タが得られるCCDによる構成になっている。In FIG. 6, 41 is a second half mirror, 42 is a color image pickup device, and 43 is a color image pickup device 42.
And the computer 36. As the color image pickup device of the color image pickup device 42, for example, a color charge coupled device (CCD) is used, and the color image pickup device 42 has, for example, a CCD configuration capable of obtaining color data of 500 × 500 points. There is.
【0038】このように構成することにより、物体1の
像は第2のハーフミラー41を介してカラーCCD42
に投影され、このカラー撮像装置42から物体1の表面
カラー情報がカラー画像データ(R,G,B)として出
力される。この出力カラー画像データは、コンピュータ
36に入力され、前記遅延時間検出部35の検出情報、
例えば、500×500点分の座標(X,Y,Z)値と
コンピュータ36内で対応づけられる。このようにし
て、物体1の3次元形状情報と表面カラー情報とを同時
にしかも各計測点毎にそれぞれ完全に一致した形でカラ
ー計測することができる。With this structure, the image of the object 1 is transferred to the color CCD 42 via the second half mirror 41.
And the surface color information of the object 1 is output as color image data (R, G, B) from the color imaging device 42. This output color image data is input to the computer 36, and the detection information of the delay time detection unit 35,
For example, the coordinates (X, Y, Z) values of 500 × 500 points are associated in the computer 36. In this way, the three-dimensional shape information of the object 1 and the surface color information can be measured at the same time and in a form in which the measurement points completely match each other.
【0039】前記遅延時間検出部35の検出情報、例え
ば、500×500点分の座標(X,Y,Z)に対応す
る時間差と表面カラー情報との対応づけは、最初から光
学系、光センサの幾何学的条件を合せておけば不要とな
る。すなわち、この場合、最初から対応のとれた3次元
計測データとカラー画像データが得られる。The detection information of the delay time detecting section 35, for example, the time difference corresponding to the coordinates (X, Y, Z) of 500 × 500 points and the surface color information are associated from the beginning with an optical system and an optical sensor. It becomes unnecessary if the geometric conditions of are matched. That is, in this case, the corresponding three-dimensional measurement data and color image data are obtained from the beginning.
【0040】また、3次元計測とカラー計測は、光の波
長(光学フィルタ)で分けて行うか、あるいは時分割式
(特願平2−309766号等に記載される時分割物体
計測装置参照)で行う。Further, the three-dimensional measurement and the color measurement are performed separately by the wavelength of light (optical filter) or time-division type (see the time-division object measurement device described in Japanese Patent Application No. 2-309766). Done in.
【0041】なお、前記実施例2乃至4における光受信
部および遅延時間検出部もしくは全部品をLSI化する
ことも、可能である。これにより、コンパクトな計測装
置を実現することも可能である。It is also possible to integrate the optical receiving unit and the delay time detecting unit or all the components in the above-mentioned Embodiments 2 to 4 into an LSI. This makes it possible to realize a compact measuring device.
【0042】以上、本発明を実施例に基づき具体的に説
明したが、本発明は、前記実施例に限定されるものでは
なく、その要旨を逸脱しない範囲において種々変更し得
ることはいうまでもない。例えば、本発明は、超音波、
電波等、を利用した計測システムにも同様に利用できる
ことはいうまでもない。Although the present invention has been specifically described based on the embodiments, the present invention is not limited to the above embodiments and can be variously modified without departing from the scope of the invention. Absent. For example, the present invention provides ultrasound,
It goes without saying that the same can be applied to a measurement system using radio waves or the like.
【0043】[0043]
【発明の効果】以上、説明したように、本発明によれ
ば、一つもしくは複数の光源から物体に向かって原パル
ス信号を発射し、物体に当ってはねかえった反射パルス
信号を受信し、それぞれの前記原パルス信号と前記反射
パルス信号との間の遅延時間を検出し、それら検出され
た遅延時間から当該計測装置と物体との間の3次元距離
を算出して物体形状の三次元計測を行うことにより、三
次元物体情報を短時間もしくは実時間で計測することが
できる。これにより、静止物体の計測のみならず、動く
物体における三次元物体情報を計測することができる。As described above, according to the present invention, the original pulse signal is emitted from one or a plurality of light sources toward the object, and the reflected pulse signal which is repelled by hitting the object is received. , Detecting the delay time between each of the original pulse signal and the reflected pulse signal, and calculating the three-dimensional distance between the measuring device and the object from the detected delay times to determine the three-dimensional shape of the object. By performing the measurement, the three-dimensional object information can be measured in a short time or in real time. This makes it possible to measure not only stationary objects but also three-dimensional object information on moving objects.
【0044】また、物体の表面カラー情報を検出し、該
検出された表面カラー情報と受信パルス信号の両者の時
間差(遅延時間)とを対応させることにより、物体の3
次元形状情報と表面カラー情報とを同時にしかも各計測
点毎にそれぞれ完全に一致した形でカラー計測すること
ができるので、三次元物体を認識したり、入力されたデ
ータに基づいて物体のコンピュータグラフィックス映像
を生成することが容易にできる。Further, the surface color information of the object is detected, and the detected surface color information and the time difference (delay time) between the received pulse signal and the detected surface color information are associated with each other.
Since it is possible to perform color measurement of dimensional shape information and surface color information at the same time and in a form that is completely in agreement with each other at each measurement point, it is possible to recognize a three-dimensional object and to computer graphic the object based on the input data. It is possible to easily generate a video image.
【図1】 本発明の実施例1のパルスレーダ型三次元物
体計測装置の概略構成を示すブロック図、FIG. 1 is a block diagram showing a schematic configuration of a pulse radar type three-dimensional object measuring device according to a first embodiment of the present invention,
【図2】 本発明の実施例2のパルスレーダ型三次元物
体計測装置の概略構成を示すブロック図、FIG. 2 is a block diagram showing a schematic configuration of a pulse radar type three-dimensional object measuring device according to a second embodiment of the present invention,
【図3】 本発明の実施例3のパルスレーダ型三次元物
体計測装置の概略構成を示すブロック図、FIG. 3 is a block diagram showing a schematic configuration of a pulse radar type three-dimensional object measuring device according to a third embodiment of the present invention,
【図4】 図3の光受信部及び遅延時間検出部の拡大
図、FIG. 4 is an enlarged view of the optical receiver and the delay time detector of FIG.
【図5】 図4の光受信器及び遅延時間検出器の詳細な
構成を示すブロック図、5 is a block diagram showing a detailed configuration of the optical receiver and the delay time detector of FIG. 4,
【図6】 本発明の実施例4のパルスレーダ型三次元物
体計測装置の概略構成を示すブロック図、FIG. 6 is a block diagram showing a schematic configuration of a pulse radar type three-dimensional object measuring device according to a fourth embodiment of the present invention,
【図7】 従来の物体形状の3次元計測を行うパルスレ
ーダ型3次元物体計測装置の問題点を説明するための
図、FIG. 7 is a diagram for explaining problems of a conventional pulse radar type three-dimensional object measuring device that performs three-dimensional measurement of an object shape;
【図8】 図7に示すパルスレーダ型3次元物体計測装
置の原パルス信号に対する反射パルス信号の遅延時間を
示す図。8 is a diagram showing a delay time of a reflected pulse signal with respect to an original pulse signal of the pulse radar type three-dimensional object measuring device shown in FIG.
101,102…計測装置、1…物体、1A,1B…計
測点、2A,2B…レーザ光源、3A,3B…ハーフミ
ラー、4A,4B…集光レンズ、5A,5B…回転ミラ
ー、6A,6B…光受信器、7A,7B…遅延時間差検
出器、8…コンピュータ、9…パルス発振器、21…物
体の全体を照射できるような単一レーザ光源、22A,
22B…ピンホール、23…光遮蔽板、31…物体の全
体を照射できるような単一レーザ光源、32…ハーフミ
ラー、33…光学レンズ、34…複数の光受信器からな
る光受信部、34A,34B…光受信器、34A1,3
4B1…光センサ、34A2,34B2…増幅器、35は
複数の遅延時間検出器からなる遅延時間検出部、35
A,35B…遅延時間検出器、35A1,35B1…出力
バッファ、36…コンピュータ、37…光遮蔽板、41
…第2のハーフミラー、42…カラー撮像装置、43…
カラー撮像装置とコンピュータとのインタフェース。101, 102 ... Measuring device, 1 ... Object, 1A, 1B ... Measuring point, 2A, 2B ... Laser light source, 3A, 3B ... Half mirror, 4A, 4B ... Condensing lens, 5A, 5B ... Rotating mirror, 6A, 6B ... optical receiver, 7A, 7B ... delay time difference detector, 8 ... computer, 9 ... pulse oscillator, 21 ... single laser light source capable of illuminating the entire object, 22A,
22B ... Pinhole, 23 ... Light shielding plate, 31 ... Single laser light source capable of irradiating the entire object, 32 ... Half mirror, 33 ... Optical lens, 34 ... Optical receiving section composed of plural optical receivers, 34A , 34B ... Optical receivers, 34A 1 , 3
4B 1 ... Optical sensor, 34A 2 , 34B 2 ... Amplifier, 35 is a delay time detecting section composed of a plurality of delay time detectors, 35
A, 35B ... delay time detector, 35A 1, 35B 1 ... output buffer, 36 ... computer, 37 ... light shielding plate, 41
... second half mirror 42, color imager 43 ...
Interface between color imager and computer.
Claims (2)
物体に向かって原パルス信号を発射するパルス発生器
と、物体に当ってはねかえった反射パルス信号を受信す
る複数の光受信手段と、前記原パルス信号と前記反射パ
ルス信号との間の遅延時間を検出する複数の遅延時間検
出手段と、該複数の遅延時間検出手段の検出値から当該
計測装置と物体との間の3次元距離を算出して物体形状
の三次元計測を行う計測手段とを備えたことを特徴とす
る3次元物体計測装置。1. A light source or a plurality of light sources, a pulse generator for emitting an original pulse signal from the light source toward an object, and a plurality of light receiving means for receiving a reflected pulse signal which is repelled by the object. A plurality of delay time detecting means for detecting a delay time between the original pulse signal and the reflected pulse signal, and a three-dimensional relationship between the measuring device and the object based on detection values of the plurality of delay time detecting means. A three-dimensional object measuring apparatus, comprising: a measuring unit that calculates a distance and three-dimensionally measures an object shape.
計測装置において、前記物体の表面カラー情報を検出す
る物体表面カラー情報検出手段と、該表面カラー情報検
出手段の検出値と前記位相差検出手段の検出値とを対応
させてカラー計測を行うカラー計測手段とを備えたこと
を特徴とする3次元物体計測装置。2. The object shape three-dimensional object measuring device according to claim 1, wherein an object surface color information detecting means for detecting surface color information of the object, a detection value of the surface color information detecting means and the position. A three-dimensional object measuring apparatus, comprising: a color measuring unit that performs color measurement in correspondence with a detection value of the phase difference detecting unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5286510A JPH07139923A (en) | 1993-11-16 | 1993-11-16 | Apparatus for measuring three dimensional object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5286510A JPH07139923A (en) | 1993-11-16 | 1993-11-16 | Apparatus for measuring three dimensional object |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07139923A true JPH07139923A (en) | 1995-06-02 |
Family
ID=17705347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5286510A Pending JPH07139923A (en) | 1993-11-16 | 1993-11-16 | Apparatus for measuring three dimensional object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07139923A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000035569A1 (en) * | 1998-12-17 | 2000-06-22 | F & P Sortiertechnik Gmbh | Method, device and installation for continuously treating water |
JP4841694B2 (en) * | 2008-04-28 | 2011-12-21 | ゼミスコ インコーポレイテッド | Alignment apparatus and method for laminating multiple webs |
-
1993
- 1993-11-16 JP JP5286510A patent/JPH07139923A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000035569A1 (en) * | 1998-12-17 | 2000-06-22 | F & P Sortiertechnik Gmbh | Method, device and installation for continuously treating water |
JP4841694B2 (en) * | 2008-04-28 | 2011-12-21 | ゼミスコ インコーポレイテッド | Alignment apparatus and method for laminating multiple webs |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11435446B2 (en) | LIDAR signal acquisition | |
CA3017735C (en) | Integrated illumination and detection for lidar based 3-d imaging | |
JP4405154B2 (en) | Imaging system and method for acquiring an image of an object | |
US6741082B2 (en) | Distance information obtaining apparatus and distance information obtaining method | |
CN101846745B (en) | Laser radar based on highly-correlated quantum imaging principle | |
EP3583384A1 (en) | Lidar based 3-d imaging with structured light and integrated illumination and detection | |
EP0885374B1 (en) | Three-dimensional color imaging | |
JP2002039716A (en) | Depth map input device | |
CN110716190A (en) | Transmitter and distance measurement system | |
JP3414624B2 (en) | Real-time range finder | |
GB2374743A (en) | Surface profile measurement | |
US5701173A (en) | Method and apparatus for reducing the unwanted effects of noise present in a three dimensional color imaging system | |
JPH07139923A (en) | Apparatus for measuring three dimensional object | |
KR101866764B1 (en) | Range Image Sensor comprised of Combined Pixel | |
JPH11201725A (en) | Three-dimensional array sensor | |
JP4045341B2 (en) | 3D measurement system | |
JP3553515B2 (en) | High precision ranging laser radar device | |
US7061620B2 (en) | Method and apparatus for three-dimensional object detection | |
JP3029004B2 (en) | Stereo vision camera | |
JPH07139925A (en) | Apparatus for measuring three-dimensional object | |
JPS58213203A (en) | Position detecting device of moving body | |
JP2000002521A (en) | Three dimensional input device | |
JP3029005B2 (en) | Stereo vision camera | |
US4533828A (en) | Arrangement for increasing the dynamic range of optical inspection devices to accommodate varying surface reflectivity characteristics | |
EP3665503A1 (en) | Lidar signal acquisition |