JPH0713926B2 - Self-cooling gas insulation transformer - Google Patents

Self-cooling gas insulation transformer

Info

Publication number
JPH0713926B2
JPH0713926B2 JP8056187A JP8056187A JPH0713926B2 JP H0713926 B2 JPH0713926 B2 JP H0713926B2 JP 8056187 A JP8056187 A JP 8056187A JP 8056187 A JP8056187 A JP 8056187A JP H0713926 B2 JPH0713926 B2 JP H0713926B2
Authority
JP
Japan
Prior art keywords
vertical duct
winding
gas
interlayer
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8056187A
Other languages
Japanese (ja)
Other versions
JPS63245914A (en
Inventor
浩 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8056187A priority Critical patent/JPH0713926B2/en
Publication of JPS63245914A publication Critical patent/JPS63245914A/en
Publication of JPH0713926B2 publication Critical patent/JPH0713926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は多数の筒状巻線を多重筒状に配列してなる変圧
器に関し、特に筒状巻線間に介在される層間絶縁と垂直
ダクトの構造を改善した自冷式ガス絶縁変圧器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a transformer in which a large number of tubular windings are arranged in a multiple tubular configuration, and in particular, it is interposed between the tubular windings. The present invention relates to a self-cooling gas insulated transformer with improved interlayer insulation and vertical duct structure.

(従来の技術) 第6図には、従来のこの種の変圧器の巻線構造が縦断面
で示されている。即ち、同図において、1は内側絶縁
筒、2は絶縁被覆された素線導体を円筒状に巻回してな
る多数の円筒状巻線で、これらは同心円をなす多重円筒
状に配置されている。各円筒状巻線2は一つおきの層間
に層間絶縁物3が介在され、そして層間絶縁物3が介在
しない一つおきの層間には、複数個のスペーサを周方向
に間隔をおいて配置する等によって冷却用の垂直ダクト
4が確保されている。また、各円筒状巻線2は巻回進行
方向が交互に反転されているため、渡り線5による層間
接続は上端同志及び下端同志で交互に行なわれている。
(Prior Art) FIG. 6 shows a winding structure of a conventional transformer of this type in a longitudinal section. That is, in the figure, 1 is an inner insulating cylinder, 2 is a large number of cylindrical windings formed by winding an insulation-coated wire conductor in a cylindrical shape, and these are arranged in a concentric multiple cylindrical shape. . Each cylindrical winding 2 has an interlayer insulator 3 interposed between every other layers, and a plurality of spacers are arranged at intervals in the circumferential direction between every other layer without the interlayer insulator 3. By doing so, the vertical duct 4 for cooling is secured. Further, since the winding traveling directions of the respective cylindrical windings 2 are alternately inverted, the interlayer connection by the crossovers 5 is alternately performed at the upper end and the lower end.

以上の構成によれば、冷却媒体である絶縁ガスは上下部
間の温度差により垂直ダクト4を上昇する自然対流によ
り循環して巻線を冷却する。このようなガス絶縁変圧器
においては鉱油絶縁変圧器等とは異なり、層間絶縁物中
に鉱油等を用いた油入等より著しく熱伝導率の小さいガ
ス層が介在し、層間絶縁物3の熱伝導抵抗が大きいた
め、巻線層即ち円筒状巻線2の少なくとも片面には冷却
用の垂直ダクト4を設けるのが冷却上好ましく、一方円
筒状巻線2相互間の絶縁を与えた場合は固体絶縁とした
方が必要絶縁距離を短くでき、巻線のコンパクト化の上
で好ましい。このため、一般には第6図のように、垂直
ダクト4と層間絶縁物3を一層毎に交互に配置するのが
得策である。
According to the above configuration, the insulating gas, which is the cooling medium, circulates by natural convection rising in the vertical duct 4 due to the temperature difference between the upper and lower parts to cool the winding. In such a gas-insulated transformer, unlike a mineral oil-insulated transformer or the like, a gas layer having a significantly lower thermal conductivity than that of oil-filling using mineral oil or the like is interposed in the interlayer insulating material, and the heat of the interlayer insulating material 3 is reduced. Since the conduction resistance is high, it is preferable for cooling to provide a vertical duct 4 for cooling on at least one surface of the winding layer, that is, the cylindrical winding 2. On the other hand, when insulation between the cylindrical windings 2 is provided, it is solid. Insulation is preferable because the required insulation distance can be shortened and the winding can be made compact. Therefore, it is generally a good idea to alternately arrange the vertical ducts 4 and the interlayer insulators 3 layer by layer as shown in FIG.

ところでこのガスの流量は循環力(自冷式即ちガス自然
循環冷却の場合には上下のガス温度差による熱浮力によ
り決まる)と巻線内ガス流路の圧力損失とがバランスす
るように決まる。
By the way, the flow rate of this gas is determined so that the circulation force (in the case of the self-cooling type, that is, the gas natural circulation cooling, it is determined by the thermal buoyancy due to the difference in gas temperature between the upper and lower sides) and the pressure loss of the gas flow passage in the winding are balanced.

ここで巻線内の圧力損失hについては垂直ダクト4が第
7図に示すように巾w(m),半径方向間隙長、即ち厚
さd(m)の矩形ダクトとみなすことができるから、垂
直ダクト4下部へのガス流入量がQ(m3/s)である時の
巻線内圧力損失h(mmAg)は一般に下式(I)で近似で
きる。
Regarding the pressure loss h in the winding, the vertical duct 4 can be regarded as a rectangular duct having a width w (m) and a radial gap length, that is, a thickness d (m), as shown in FIG. The pressure loss h (mmAg) in the winding when the amount of gas flowing into the lower portion of the vertical duct 4 is Q (m 3 / s) can be generally approximated by the following formula (I).

ここで、γはガスの比重量(kg/m3)、gは重力加速度
(m/s2)、ξは垂直ダクト4の入口損失係数、ξ
垂直ダクト4内の摩擦損失係数、ξは垂直ダクト4の
出口損失係数である。またΔQは垂直ダクト4内で巻線
から熱を奪うことによるガスの体積増加分で、ガスの熱
膨脹率をβ(1/℃)、垂直ダクト4の入口と出口間のガ
ス温度差をΔθ(℃)とすると、一般に下式(II)で表
わされる。
Here, γ is the specific weight of the gas (kg / m 3 ), g is the gravitational acceleration (m / s 2 ), ξ 1 is the inlet loss coefficient of the vertical duct 4, ξ 2 is the friction loss coefficient in the vertical duct 4, ξ 4 is the exit loss coefficient of the vertical duct 4. Further, ΔQ is an increase in gas volume due to heat taken from the winding in the vertical duct 4, β (1 / ° C) is the coefficient of thermal expansion of the gas, and Δθ (is the gas temperature difference between the inlet and the outlet of the vertical duct 4. C)) is generally represented by the following formula (II).

ΔQ=β・Δθ・Q…………(II) 第8図は自冷式ガス絶縁変圧器の他の従来例を示すもの
で、同図中、第6図と同一部分には同一符号が付されて
いる。この第8図に示す巻線構造において、層間絶縁物
6は円筒状巻線2の相互間に要求される絶縁の度合に応
じて絶縁厚さをtからt′まで順次変えることにより絶
縁物の量を低減したものである。これに応じて垂直ダク
ト7の厚さ(半径方向間隙長)もd1からd2まで順次変化
するテーパ状のものとしている。この場合の巻線内圧力
損失hについても前述と全く同様に垂直ダクト7が第9
図に示すような形状のダクトとみなすことができるから
下式(III)で近似できる。
ΔQ = β · Δθ · Q (II) Fig. 8 shows another conventional example of a self-cooling type gas insulation transformer. In Fig. 8, the same parts as those in Fig. 6 are designated by the same reference numerals. It is attached. In the winding structure shown in FIG. 8, the interlayer insulator 6 is made of an insulating material by sequentially changing the insulating thickness from t to t'according to the degree of insulation required between the cylindrical windings 2. The amount is reduced. Correspondingly, the thickness of the vertical duct 7 (radial gap length) is also tapered so that it gradually changes from d 1 to d 2 . As for the pressure loss h in the winding in this case, the vertical duct 7 has
Since it can be regarded as a duct having the shape shown in the figure, it can be approximated by the following equation (III).

今、第6図と第8図において、仮りに垂直ダクト4およ
び7の平均厚さを同一とし、即ち、d1+d2=2dとする
と、第8図における巻線内圧力損失hと垂直ダクト7の
上,下厚さd2,d1との関係は(II),(III)式を用い
ると下式(IV)のように表わすことができる。
Now, assuming that the average thickness of the vertical ducts 4 and 7 is the same in FIGS. 6 and 8, that is, d 1 + d 2 = 2d, the pressure loss h in the winding and the vertical duct in FIG. The relationship between the upper and lower thicknesses d 2 and d 1 of 7 can be expressed by the following equation (IV) using the equations (II) and (III).

ところで一般にダクトの入口,出口損失係数ξ、ξ
はξ=0.5,ξ=1.0程度であり、また熱膨張率βは1
/273程度であるから、このIV式の{ }の値、即ち の値をCとすれば h∞CQ2………(V) となり、Cは垂直ダクトの入口と出口間のガス温度差Δ
θと垂直ダクトの上,下厚さd2,d1とにより決まり、従
ってこのCは圧力損失の大きさを表わす定数と言える。
By the way, generally, the duct entrance and exit loss coefficients ξ 1 , ξ 3
Is about ξ 1 = 0.5, ξ 3 = 1.0, and the coefficient of thermal expansion β is 1
Since it is about / 273, the value of {} in this IV formula, that is, If the value of C is C, then h ∞ CQ 2 ……… (V), where C is the gas temperature difference Δ between the inlet and outlet of the vertical duct.
It is determined by θ and the upper and lower thicknesses d 2 and d 1 of the vertical duct, and thus C can be said to be a constant representing the magnitude of pressure loss.

例えば温度差Δθ=20℃およびΔθ=100℃について、
定数Cとダクト厚さの上下比d2/d1の関係を求めてみる
と、第4図の特性線A(Δθ=20℃)およびB(Δθ=
100℃)のようになる。この第4図からわかるように、
垂直ダクトの平均厚さを一定とした場合に、d1に比べd2
を小さくすると巻線内圧力損失hは加速度的に増加し、
ガスのような熱膨張率の大きい冷却媒体ではガス温度差
Δθが大きくなる程その傾向が顕著になる。絶縁油のよ
うな熱膨張率の小さい冷媒を用いた場合には、実公昭53
−14885号公報中でも指摘されてある通り、第8図のよ
うに垂直ダクトを上部先細り状にし、巻線上部の熱伝達
率を向上させ巻線の冷却改善をすることも可能である
が、ガス絶縁変圧器、とりわけ自冷式においては冷却媒
体であるガスの熱膨張率が大きいこと及びガス循環力を
確保する上である程度の上下温度差Δθが必要であるこ
とから、このような構造では徒らに巻線内圧力損失を増
加させ、従ってガス循環流量の低下を招きかって巻線の
冷却性を損う結果となる。
For example, for temperature differences Δθ = 20 ° C and Δθ = 100 ° C,
When the relationship between the constant C and the vertical ratio d 2 / d 1 of the duct thickness is calculated, characteristic lines A (Δθ = 20 ° C.) and B (Δθ =) in FIG. 4 are obtained.
100 ° C). As you can see from Figure 4,
In the case where the average thickness of the vertical duct is constant, d 2 compared with d 1
When is smaller, the pressure loss h in the winding increases at an accelerating rate,
In a cooling medium having a large coefficient of thermal expansion such as gas, the tendency becomes more remarkable as the gas temperature difference Δθ increases. When using a refrigerant with a small coefficient of thermal expansion such as insulating oil
As pointed out in Japanese Patent Publication No. 14885, it is possible to improve the cooling of the winding by improving the heat transfer coefficient of the upper portion of the winding by making the vertical duct tapered as shown in FIG. In the insulation transformer, especially in the self-cooling type, the coefficient of thermal expansion of the gas as the cooling medium is large, and a certain temperature difference Δθ is required to secure the gas circulation force. In addition, the pressure loss in the winding is increased, and therefore the gas circulation flow rate is reduced, resulting in impairing the cooling performance of the winding.

従って第6図の場合と同一のガス流量を得ようとした場
合、第8図の構造では垂直ダクト7の平均厚さ{(d1
d2)/2}をdよりも大きくする必要があり、層間絶縁物
6の厚さを部分的に低減しても、巻線の半径方向寸法は
あまり小さくならない。
Therefore, when it is attempted to obtain the same gas flow rate as in the case of FIG. 6, in the structure of FIG. 8, the average thickness of the vertical duct 7 {(d 1 +
It is necessary to make d 2 ) / 2} larger than d, and even if the thickness of the interlayer insulator 6 is partially reduced, the radial dimension of the winding does not become so small.

(発明が解決しようとする問題点) 上記のように層間絶縁物の厚さを要求される絶縁度合に
応じて低減しても、その低減による冷却ダクト厚さ増加
が巻線冷却の向上に充分有効には反映できないという問
題があった。
(Problems to be Solved by the Invention) Even if the thickness of the interlayer insulator is reduced according to the required insulation degree as described above, the increase in the cooling duct thickness due to the reduction is sufficient for improving the winding cooling. There was a problem that it could not be reflected effectively.

本発明はこの問題を解決するためになされたもので、そ
の目的は冷却性能の向上と層間絶縁物量の低減を図り
得、巻線構造がコンパクトになる自冷式ガス絶縁変圧器
を提供することにある。
The present invention has been made to solve this problem, and an object of the present invention is to provide a self-cooling gas-insulated transformer that can improve cooling performance and reduce the amount of interlayer insulation, and has a compact winding structure. It is in.

[発明の構成] (問題点を解決するための手段) この目的を達成するために本発明による自冷式ガス絶縁
変圧器では多数の筒状巻線を多重筒状に配置すると共
に、これら筒状巻線の一つおきの層間に層間絶縁物を配
置し、且つ層間絶縁物を配置していない一つおきの層間
にスーペサ等によって垂直ダクトを形成してこの垂直ダ
クト内に絶縁ガスを自然循環させるものであって、前記
層間絶縁物の半径方向の厚さを下方に行くほど増加さ
せ、前記垂直ダクトの半径方向間隙長を上方に行くほど
増加させたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve this object, in the self-cooling type gas insulation transformer according to the present invention, a large number of tubular windings are arranged in a multiple tubular configuration and these tubular windings are arranged. The inter-layer insulation is placed between every other layer of the spiral winding, and a vertical duct is formed between every other layer where the inter-layer insulation is not placed by using a supervisor, etc. The thickness of the interlayer insulating material in the radial direction is increased downward, and the radial gap length of the vertical duct is increased upward.

(作用) この構成によれば、層間絶縁物は隣り合う二つの筒状巻
線間電圧即ち層間電圧が低い位置ほど薄くなり、それば
かりでなく垂直ダクトの半径方向間隙長も層間電圧が低
い位置ほど短縮される。この結果、絶縁上の観点では層
間絶縁物の占有スペース及び垂直ダクトの占有スペース
が必要最小限に抑えられ、巻線全体の体積を減少させる
ことができ、一方、垂直ダクトの半径方向間隙長が上方
に行くほど拡大される結果、冷却媒体である絶縁ガスの
循環時の圧力損失を低減することができ、従って、ガス
流量が増加して冷却性能が向上する。
(Operation) According to this configuration, the interlayer insulator becomes thinner as the voltage between two adjacent cylindrical windings, that is, the position where the interlayer voltage is lower, and not only that the radial gap length of the vertical duct is lower at the position where the interlayer voltage is lower. Is shortened. As a result, from the viewpoint of insulation, the space occupied by the interlayer insulator and the space occupied by the vertical duct can be minimized, and the volume of the entire winding can be reduced, while the radial gap length of the vertical duct can be reduced. As a result of the upward expansion, it is possible to reduce the pressure loss when the insulating gas, which is the cooling medium, is circulated, and thus the gas flow rate is increased and the cooling performance is improved.

(実施例) 以下本発明の一実施例について第1図乃至第4図を参照
しながら説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

21は図示しない鉄心脚に挿入される内側絶縁筒、22は絶
縁被覆された素線導体を円筒状に巻回してなる多数の円
筒状巻線であり、これら円筒状巻線は同心円をなす多重
円筒状に配置されている。各円筒状巻線22の一つおきの
隙間には層間絶縁物23が介在され、また層間絶縁物23を
介在していない一つおきの層間にはスペーサを介在する
等によって上下端が開口する冷却用の垂直ダクト24が確
保されている。又各円筒状巻線22はその巻回進行方向が
隣り合う巻線に対して1層毎に反対方向になっているた
め、渡り線25による層間接続は円筒状巻線22の上端同志
及び下端同志で交互に行なわれ、いわゆるU字接続とな
っている。
Reference numeral 21 denotes an inner insulating cylinder that is inserted into an iron core leg (not shown), and 22 is a large number of cylindrical windings formed by winding insulation-coated wire conductors in a cylindrical shape, and these cylindrical windings form multiple concentric circles. It is arranged in a cylindrical shape. An interlayer insulator 23 is interposed in every other gap between the cylindrical windings 22, and upper and lower ends are opened by interposing a spacer between every other interlayer in which the interlayer insulator 23 is not interposed. A vertical duct 24 for cooling is secured. Further, since the winding directions of the respective cylindrical windings 22 are opposite to each other with respect to the adjacent windings, the interlayer connection by the crossover wire 25 is made by connecting the upper end and the lower end of the cylindrical winding 22. They are conducted alternately with each other, forming a so-called U-shaped connection.

前記層間絶縁物23は、第2図に示すように、幅寸法(上
下方向寸法)の異なる多数の絶縁シート26a,26b,…26n
を多重層に巻回して構成され、特に内側層ほど幅寸法の
小さい絶縁シート26a,26b,…とすることによって層間絶
縁物23の厚さは下方ほど厚く上端に行くほど薄くなる形
状になっている。特にこの場合において、絶縁シート26
a,26b,…26nの内、第2図中高さ方向寸法Hで示すよう
に、低温度領域に位置するものには低耐熱絶縁物を用
い、高温度領域にまでおよぶものには高耐熱絶縁物を用
いている。又、この層間絶縁物23は第1図に示す渡り線
25の接続状態から理解されるように、層間電圧が上端に
おいて低い円筒状巻線22,22間に介在されている部分ほ
ど薄くなるように形成され、換言すれば層間絶縁物23は
その厚さが層間電圧の増加に従って厚くなるような配置
になっている。このような層間絶縁物23の形状及び配置
によって垂直ダクト24の半径方向間隙長は上端に行くほ
ど増加するテーパー状になる。即ち下端である入口の間
隙長d1よりも上端である出口の間隙長d2が大きくなって
いる。このダクト構造は圧力損失についての検討上第3
図に示す構造体として表すことができる。
As shown in FIG. 2, the interlayer insulator 23 includes a large number of insulating sheets 26a, 26b, ... 26n having different width dimensions (vertical dimension).
Are wound in multiple layers, and in particular, by forming the insulating sheets 26a, 26b, ... having a smaller width dimension toward the inner layer, the thickness of the interlayer insulator 23 becomes thicker toward the lower end and thinner toward the upper end. There is. Especially in this case, the insulating sheet 26
Among a, 26b, ... 26n, as shown by the dimension H in the height direction in FIG. 2, a low heat resistant insulator is used for those located in the low temperature region, and a high heat resistant insulation is used for those extending to the high temperature region. I use things. The interlayer insulator 23 is a crossover wire shown in FIG.
As can be understood from the connection state of 25, the interlayer voltage is formed such that it becomes thinner at the portion between the cylindrical windings 22, 22 having a lower interlayer voltage at the upper end, in other words, the interlayer insulator 23 has the same thickness. Is thickened as the interlayer voltage increases. Due to the shape and arrangement of the interlayer insulator 23, the radial gap length of the vertical duct 24 becomes a taper shape that increases toward the upper end. That is, the gap length d 2 at the upper end is larger than the gap length d 1 at the lower end. This duct structure is the third in consideration of pressure loss.
It can be represented as the structure shown in the figure.

又、垂直ダクト24の半径方向両側に位置する円筒状巻線
22が渡り線25によって下端で接続されている状態から明
らかなように垂直ダクト24による絶縁距離は上端ほど即
ち層間電圧が高くなるほど大きくなる構造になる。
Also, cylindrical windings located on both sides of the vertical duct 24 in the radial direction.
As is clear from the state where 22 is connected at the lower end by the crossover wire 25, the insulation distance by the vertical duct 24 becomes larger at the upper end, that is, as the interlayer voltage becomes higher.

この様な構造の変圧器において運転中は絶縁ガスが温度
差による自然対流によって垂直ダクト24内を上方に移動
する循環が行なわれ巻線の冷却を行なう。
In the transformer having such a structure, during operation, the insulating gas is circulated by moving upward in the vertical duct 24 by natural convection due to a temperature difference, thereby cooling the winding.

この様な絶縁ガスの循環において、垂直ダクト24におけ
る圧力損失hは第3図のような形状のダクトとみなす
と、式(III)で近似できる。更に垂直ダクト24の平均
間隙長を第6図に示す従来の垂直ダクト4と等しい(d1
+d2=2d)と仮定すれば、式(V)が成り立ち、第4図
に示す圧力損失特性よりd1/d2が1より大きくなった度
合だけ垂直ダクト24の圧力損失が小さくなり、従って巻
線内のガス流量が増大して巻線の冷却性能が向上する。
一方、層間絶縁物23の厚さは円筒状巻線22,22間の電圧
が低くなる位置ほど薄くなり、これに伴って垂直ダクト
24の間隙長も円筒状巻線22,22間電圧が低くなるほど減
少する構造になり、従って層間絶縁物23及び垂直ダクト
24の占有スペースを絶縁上必要とする最小限に抑制でき
るので巻線構造がコンパクトになる。又、本実施例によ
れば層間絶縁物23を構成する絶縁シート26a,26b…には
温度が比較的低い中間部から下方に位置する部分につい
ては低価格の低耐熱絶縁物を用いているので経済的に有
利になる。
When the insulating gas is circulated in this manner, the pressure loss h in the vertical duct 24 can be approximated by the equation (III), assuming that the duct has a shape as shown in FIG. Further, the average gap length of the vertical duct 24 is equal to that of the conventional vertical duct 4 shown in FIG. 6 (d 1
Assuming that + d 2 = 2d), the formula (V) is established, and the pressure loss of the vertical duct 24 becomes smaller by the degree that d 1 / d 2 becomes larger than 1 according to the pressure loss characteristic shown in FIG. The gas flow rate in the winding is increased and the cooling performance of the winding is improved.
On the other hand, the thickness of the interlayer insulator 23 becomes thinner at a position where the voltage between the cylindrical windings 22 and 22 becomes lower, and accordingly, the vertical duct
The gap length of 24 is also reduced as the voltage between the cylindrical windings 22 and 22 decreases, so that the interlayer insulator 23 and the vertical duct
Since the space occupied by 24 can be suppressed to the minimum required for insulation, the winding structure becomes compact. Further, according to the present embodiment, since the insulating sheets 26a, 26b, ... Forming the interlayer insulator 23 are made of low-priced, low-heat-resistant insulators for the portions located below the middle portion where the temperature is relatively low, Economically advantageous.

第2図と同一部分に同一符号を付して示す第5図は本発
明の他の実施例を示すものであり、層間絶縁物27は幅の
狭い絶縁シート27aを半径方向に一部ラップさせながら
多層に巻回し、そしてこの様な巻回を高さ方向に多段に
行なうと共に、その巻回数を上方ほど少なくして、断面
テーパ形状に形成してなるものである。この実施例によ
れば低温度領域に配置される絶縁シート27aの材質をす
べて低耐熱絶縁物とすることができ、その上方に位置す
る絶縁シートのみを高耐熱絶縁物とすればよいので高価
な高耐熱絶縁物の使用量を大幅に削減することができ
る。又、層間絶縁物を形成するのに同一寸法の絶縁シー
トを用いることができるので構成部品種類を削減し得る
点で優れている。
FIG. 5, which shows the same parts as those in FIG. 2 with the same reference numerals, shows another embodiment of the present invention. The interlayer insulator 27 partially wraps a narrow insulating sheet 27a in the radial direction. However, the winding is performed in multiple layers, and such winding is performed in multiple steps in the height direction, and the number of windings is reduced toward the upper side to form a tapered cross-section. According to this embodiment, all the materials of the insulating sheet 27a arranged in the low temperature region can be low heat-resistant insulators, and only the insulating sheet located thereabove is a high heat-resistant insulator, which is expensive. It is possible to significantly reduce the amount of high heat-resistant insulating material used. In addition, since insulating sheets of the same size can be used to form the interlayer insulating material, it is advantageous in that the number of types of constituent parts can be reduced.

[発明の効果] 本発明によれば、以上述べたように層間絶縁物の厚さを
上方ほど薄くし同時に垂直ダクトの半径方向間隙長を上
方ほど増加させる構成としたことにより巻線構造がコン
パクトになり、同時に冷却性能が向上する自冷式ガス絶
縁変圧器を提供することができる。
[Advantages of the Invention] According to the present invention, as described above, the thickness of the interlayer insulator is made thinner as it goes upward, and at the same time the radial gap length of the vertical duct is made higher as it goes up. In addition, it is possible to provide a self-cooling type gas-insulated transformer with improved cooling performance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す要部の縦断面図、第2
図は第1図に示す一部分の拡大縦断面図、第3図はダク
トの作用説明図、第4図は圧力損失特性曲線図、第5図
は本発明の変形例を示す第2図相当図、第6図は従来例
を示す要部の縦断面図、第7図は従来における垂直ダク
トの作用を説明するための図、第8図は他の従来例を示
す第6図相当図、第9図は第8図に対する第7図相当図
である。 図中、22は円筒状巻線、23,27は層間絶縁物、24は垂直
ダクトである。
FIG. 1 is a longitudinal sectional view of an essential part showing an embodiment of the present invention, and FIG.
1 is an enlarged vertical sectional view of a portion shown in FIG. 1, FIG. 3 is an explanatory view of the action of the duct, FIG. 4 is a pressure loss characteristic curve diagram, and FIG. 5 is a view equivalent to FIG. 2 showing a modified example of the present invention. FIG. 6 is a longitudinal sectional view of a main part showing a conventional example, FIG. 7 is a view for explaining the action of a conventional vertical duct, and FIG. 8 is a view corresponding to FIG. FIG. 9 is a view corresponding to FIG. 7 with respect to FIG. In the figure, 22 is a cylindrical winding, 23 and 27 are interlayer insulators, and 24 is a vertical duct.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】素線導体を筒形に巻回してなり各々を互に
同心をなすように多重筒状に配置する多数の筒状巻線
と、これら筒状巻線の一つおきの層間に配置された層間
絶縁物と、層間絶縁物を配置しない一つおきの層間にス
ペーサ等によって確保された垂直ダクトとを有し、前記
垂直ダクト内に絶縁ガスを自然循環させてなる自冷式ガ
ス絶縁変圧器において、前記層間絶縁物の半径方向厚さ
を下方に行くほど増加させ、前記垂直ダクトの半径方向
間隙長を上方に行くほど増加させたことを特徴とする自
冷式ガス絶縁変圧器。
1. A number of tubular windings, each of which is formed by winding a wire conductor into a tubular shape and arranged in a multi-tubular shape so as to be concentric with each other, and alternate layers of these tubular windings. A self-cooling type having an interlayer insulating material arranged in the vertical duct and a vertical duct secured by spacers or the like between every other layer in which no interlayer insulating material is arranged, and the insulating gas is naturally circulated in the vertical duct. In the gas-insulated transformer, the self-cooling type gas-insulated transformer characterized in that the radial thickness of the interlayer insulator is increased downward and the radial gap length of the vertical duct is increased upward. vessel.
JP8056187A 1987-03-31 1987-03-31 Self-cooling gas insulation transformer Expired - Fee Related JPH0713926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8056187A JPH0713926B2 (en) 1987-03-31 1987-03-31 Self-cooling gas insulation transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8056187A JPH0713926B2 (en) 1987-03-31 1987-03-31 Self-cooling gas insulation transformer

Publications (2)

Publication Number Publication Date
JPS63245914A JPS63245914A (en) 1988-10-13
JPH0713926B2 true JPH0713926B2 (en) 1995-02-15

Family

ID=13721751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8056187A Expired - Fee Related JPH0713926B2 (en) 1987-03-31 1987-03-31 Self-cooling gas insulation transformer

Country Status (1)

Country Link
JP (1) JPH0713926B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033386A (en) * 2010-07-30 2012-02-16 Nec Tokin Corp Electric wire, winding wire and electric component
CN104485217B (en) * 2014-12-31 2016-08-17 上海和鸣变压器有限公司 Photovoltaic superconduction dry-type transformer

Also Published As

Publication number Publication date
JPS63245914A (en) 1988-10-13

Similar Documents

Publication Publication Date Title
US3252117A (en) Transposed winding and insulation arrangement for electrical apparatus
US4337569A (en) Method of making integrally formed transformer cooling ducts
US2917644A (en) Innercooled turbine generators
US3467931A (en) Continuous disk winding and integral radial coil connector for electric transformer and the like
US3551863A (en) Transformer with heat dissipator
US3368174A (en) Spacer for pancake coils
JPH09134823A (en) Transformer for vehicle
JPH0713926B2 (en) Self-cooling gas insulation transformer
US5477007A (en) Twisted conductor
US3386060A (en) Power distribution transformer having conductive strip winding
WO2020053931A1 (en) Static inductor
JPS6342402B2 (en)
JP2024505057A (en) Non-fluid cooled electric vehicle fast charging cable
US4477791A (en) Spacer block pattern for electrical inductive apparatus
EP0146948B1 (en) Electromagnetic induction apparatus
JPH0864426A (en) Stationary induction device
CN1088349A (en) Twisted wire
JPS61150309A (en) Oil-circulating transformer winding
US1421899A (en) Transformer
WO2023195126A1 (en) Stationary induction apparatus
JP2635727B2 (en) Foil-wound transformer
KR102153359B1 (en) A Cable Transformer Winding With Different Edge
JPS5927605Y2 (en) disk winding
JPS59155108A (en) Winding for natural cooling induction electric apparatus
JPH09153415A (en) Gas-insulated induction electrical equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees