JPH07138877A - Processing of polyethylene fiber - Google Patents
Processing of polyethylene fiberInfo
- Publication number
- JPH07138877A JPH07138877A JP28681693A JP28681693A JPH07138877A JP H07138877 A JPH07138877 A JP H07138877A JP 28681693 A JP28681693 A JP 28681693A JP 28681693 A JP28681693 A JP 28681693A JP H07138877 A JPH07138877 A JP H07138877A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- polyethylene fiber
- polyethylene
- molecular weight
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は超高分量ポリエチレン延
伸物の処理方法に関する。更には超高分子量ポリオレフ
ィン延伸物にプラズマ放電処理を行なった後グリシジル
メタアクリレート及び/又は無水マレイン酸等の不飽和
カルボン酸溶液に浸漬しながら又はその後に紫外線照射
するポリエチレン繊維の処理方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an ultra-high molecular weight polyethylene drawn product. Furthermore, it relates to a method for treating polyethylene fibers which is subjected to ultraviolet irradiation while being subjected to plasma discharge treatment on an ultra-high molecular weight polyolefin stretched product and then immersed in an unsaturated carboxylic acid solution such as glycidyl methacrylate and / or maleic anhydride. is there.
【0002】[0002]
【従来の技術】ポリエチレン繊維は表面に極性基又は反
応性基に乏しいため、繊維強化プラスチック(以下FR
P)等の強化繊維として応用する場合、マトリクスであ
る樹脂とのぬれ性に乏しく、また繊維/マトリクス樹脂
界面での接着性も低いことが知られている。この様なぬ
れ性及び接着性に乏しい強化繊維を使用した場合、それ
を用いて成形したFRPの機械特性は引張り特性はもと
より 曲げ、圧縮特性をも低下させる大きな要因となっ
ている。さらには破壊じん性値、長期の疲労特性等にも
大きな影響を及ぼすことが知られている。2. Description of the Related Art Polyethylene fibers lack a polar group or a reactive group on the surface, so that fiber reinforced plastics (hereinafter referred to as FR
It is known that when it is used as a reinforcing fiber such as P), it has poor wettability with a resin that is a matrix, and also has low adhesiveness at the fiber / matrix resin interface. When such a reinforcing fiber having poor wettability and adhesiveness is used, the mechanical properties of the FRP formed by using the reinforcing fiber are a major factor of lowering not only the tensile property but also the bending and compression properties. Further, it is known that the fracture toughness value, long-term fatigue property, etc. are also greatly affected.
【0003】[0003]
【発明が解決しようとする課題】一方これらの対策とし
てポリエチレン繊維表面をガス炎、加熱空気、加熱溶
媒、酸、フッ素処理、コロナ放電、紫外線、電子線、放
射線、プラズマ等種々の表面処理法により接着性を向上
させる試みがなされてきた。これらの共通した問題点
は、表面の接着性を上げるため処理度を上げるにつれ、
それが繊維内部にも及び繊維が本来持っていた高強度、
高弾性率を損なってしまうという相反関係である。ま
た、表面改質の別の手法として特公昭39−6384号
公報に示される様にポリエチレンとマレイン酸化合物と
を押出し機等を用いて溶融混合し、グラフト変性する方
法も提案されているが、超高分子量ポリエチレンの場合
は、汎用のポリエチレンと異なり極端に分子量が大きい
ので、溶融粘度が高く均一混合が困難なこと及びポリエ
チレンはグラフト変性時に架橋反応を起すので、これよ
り紡糸、延伸により、高強度、高弾性率化をすることは
殆ど不可能である。従って本発明の目的は超高分子量ポ
リエチレン延伸物の機械特性を損なうことなく表面の接
着性を改良することにある。On the other hand, as a countermeasure against these problems, the surface of polyethylene fiber is treated by various surface treatment methods such as gas flame, heated air, heated solvent, acid, fluorine treatment, corona discharge, ultraviolet ray, electron beam, radiation and plasma. Attempts have been made to improve adhesion. These common problems are that as the degree of treatment is increased to improve the adhesiveness of the surface,
It has high strength inside the fiber, which the fiber originally had,
It is a reciprocal relationship that damages the high elastic modulus. As another method of surface modification, a method of melt-mixing polyethylene and a maleic acid compound by using an extruder or the like and graft-modifying is proposed, as disclosed in JP-B-39-6384. In the case of ultra-high molecular weight polyethylene, unlike ordinary polyethylene, the molecular weight is extremely large, so the melt viscosity is high and uniform mixing is difficult, and since polyethylene undergoes a cross-linking reaction during graft modification, it is It is almost impossible to increase strength and elastic modulus. It is therefore an object of the present invention to improve surface adhesion without compromising the mechanical properties of ultra high molecular weight polyethylene stretched products.
【0004】[0004]
【課題を解決するための手段】本発明は、超高分子量ポ
リエチレン延伸物を5〜10-5Torr下で、二酸化炭
素及び/又はアンモニア雰囲気中でプラズマ放電処理を
した後、不飽和カルボン酸、開始剤及び還元剤の混合溶
液に浸漬しながら又はその後に紫外線照射することによ
り接着力が1.2倍以上向上せしめるを特徴とするポリ
エチレン繊維の処理方法である。According to the present invention, an ultrahigh molecular weight polyethylene stretched product is subjected to plasma discharge treatment in an atmosphere of carbon dioxide and / or ammonia under 5 to 10 -5 Torr, and then an unsaturated carboxylic acid, It is a method for treating polyethylene fibers, which is characterized in that the adhesive strength is improved 1.2 times or more by irradiating with ultraviolet rays while being immersed in a mixed solution of an initiator and a reducing agent or thereafter.
【0005】本発明に用いられるポリエチレン繊維とし
ては、例えば特開昭55−107506号公報、特開昭
56−15408号公報に開示されるような製法を用い
て得ることができるが、その他の方法によることも可能
である。また繊維の強度としては1.3GPa以上であ
ることが望ましい。また減圧度は10〜10-5Torr
であるが望ましくは10-1〜5×10-4Torrであ
る。The polyethylene fiber used in the present invention can be obtained by using the production methods disclosed in, for example, JP-A-55-107506 and JP-A-56-15408, but other methods can be used. It is also possible to Further, the fiber strength is preferably 1.3 GPa or more. Decompression degree is 10 to 10 -5 Torr
However, it is preferably 10 <-1> to 5 * 10 < -4 > Torr.
【0006】不飽和カルボン酸の好ましい例としては、
グリシジルアクリレート、グリシジルメタアクリレー
ト、グリシジルフマレート、グリシジルマレエート、無
水マレイン酸などを挙げることができる。またこれらは
混合使用することも可能である。開始剤としてはベンゾ
フェノン、4−クロロベンゾフェノン、2−ヒドロキシ
−2−クロロヘキシルアセトフェノン、2,2−ジメト
キシ−2−フェニルアセトフェノン、アンソラキノン、
過ヨウ素酸ソーダーなどの1種以上を使用するのが好ま
しい。また還元剤としては通常のものが使用できるがア
スコルビン酸、EDTAなどが好ましい。Preferred examples of unsaturated carboxylic acids include:
Examples thereof include glycidyl acrylate, glycidyl methacrylate, glycidyl fumarate, glycidyl maleate, and maleic anhydride. It is also possible to mix and use these. As the initiator, benzophenone, 4-chlorobenzophenone, 2-hydroxy-2-chlorohexylacetophenone, 2,2-dimethoxy-2-phenylacetophenone, anthraquinone,
It is preferred to use one or more such as sodium periodate. As the reducing agent, usual ones can be used, but ascorbic acid, EDTA and the like are preferable.
【0007】反応条件は前段のプラズマ処理及び用いる
モノマーの種類及び溶液の濃度にもよるが通常0℃から
80℃好ましくは室温ないし60℃にて5〜60分間反
応させ、減圧度は5Torrより高いとプラズマ/グラ
フト効果が低く10-5Torr以下では、効果は飽和し
て経済的に好ましくない。The reaction conditions depend on the plasma treatment in the previous stage and the kind of the monomer used and the concentration of the solution, but usually the reaction is carried out at 0 ° C to 80 ° C, preferably at room temperature to 60 ° C for 5 to 60 minutes, and the degree of reduced pressure is higher than 5 Torr. And the plasma / graft effect is low, and at 10 -5 Torr or less, the effect is saturated and it is not economically preferable.
【0008】[0008]
【実施例】ヒラノ光音(株)製高周波プラズマ処理装置
を用いて、強度及び弾性率が2.43GPa及び79G
Pa、繊度1200d/1170fの超高分子量ポリエ
チレンマルチフィラメントを13.5MHz 、真空度5
×10-3Torrにて二酸化炭素を流しながら、出力6
0wにて、15秒間処理した。この糸を不飽カルボン酸
モノマー及び開始剤を溶解した溶液に浸漬したまま、高
圧水銀炉を30分照射した。その後処理した繊維を各溶
液の溶媒で12hrソックスレー抽出し、繊維表面のホ
モポリマーを溶解除去した。得られた試料を乾燥後繊維
物性及び接着性を評価した。結果を、表1に示す。[Example] Using a high-frequency plasma processing apparatus manufactured by Hirano Mitsune Co., Ltd., the strength and elastic modulus were 2.43 GPa and 79 G.
Ultra high molecular weight polyethylene multifilament with Pa, fineness 1200d / 1170f, 13.5MHz, vacuum degree 5
Output 6 while flowing carbon dioxide at × 10 -3 Torr
Processed for 15 seconds at 0w. While the yarn was immersed in the solution in which the unsaturated carboxylic acid monomer and the initiator were dissolved, the high pressure mercury furnace was irradiated for 30 minutes. The treated fiber was subjected to Soxhlet extraction for 12 hours with the solvent of each solution to dissolve and remove the homopolymer on the fiber surface. After drying the obtained sample, the fiber physical properties and adhesiveness were evaluated. The results are shown in Table 1.
【0009】[0009]
【表1】 [Table 1]
【0010】(接着強度)接着性の評価は、引き抜き法
で行った。各試料繊維をエポキシ樹脂に5mm埋め込み
JIS L−1017の接着力試験法(A法、Tテス
ト)に準じて行った。試料は以下の配合のエポキシ樹脂
を用い、130℃×2hr硬化させて作成した。 エピコート−827(油化シエル) 100 エピキュア−YH−300(油化シエル) 80 EMI−24 1(Adhesive Strength) Evaluation of adhesiveness was carried out by a drawing method. Each sample fiber was embedded in an epoxy resin by 5 mm, and the test was performed according to the adhesive strength test method (method A, T test) of JIS L-1017. A sample was prepared by curing an epoxy resin having the following composition at 130 ° C. for 2 hours. Epicoat-827 (Oilized shell) 100 Epicure-YH-300 (Oilized shell) 80 EMI-24 1
【0011】[0011]
【発明の効果】本発明によると高強度、高弾性率ポリエ
チレン繊維は高い強度及び弾性率を保持したまま表面の
接着性を大幅に改善することを可能にした。According to the present invention, the high-strength, high-modulus polyethylene fiber makes it possible to significantly improve the surface adhesiveness while maintaining the high strength and modulus.
Claims (1)
0-5Torr下で、二酸化炭素及び/又はアンモニア雰
囲気中でプラズマ放電処理をした後、不飽和カルボン
酸、開始剤及び還元剤の混合溶液に浸漬しながら又はそ
の後に紫外線照射することにより接着力が1.2倍以上
向上せしめるを特徴とするポリエチレン繊維の処理方
法。1. A stretched product of ultra-high molecular weight polyethylene of 5 to 1
After plasma discharge treatment in a carbon dioxide and / or ammonia atmosphere at 0 -5 Torr, while immersing in a mixed solution of an unsaturated carboxylic acid, an initiator and a reducing agent, or thereafter, irradiating with an ultraviolet ray, the adhesive force The method for treating polyethylene fiber is characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28681693A JPH07138877A (en) | 1993-11-16 | 1993-11-16 | Processing of polyethylene fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28681693A JPH07138877A (en) | 1993-11-16 | 1993-11-16 | Processing of polyethylene fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07138877A true JPH07138877A (en) | 1995-05-30 |
Family
ID=17709421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28681693A Pending JPH07138877A (en) | 1993-11-16 | 1993-11-16 | Processing of polyethylene fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07138877A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9023452B2 (en) | 2011-09-06 | 2015-05-05 | Honeywell International Inc. | Rigid structural and low back face signature ballistic UD/articles and method of making |
US9023451B2 (en) | 2011-09-06 | 2015-05-05 | Honeywell International Inc. | Rigid structure UHMWPE UD and composite and the process of making |
US9023450B2 (en) | 2011-09-06 | 2015-05-05 | Honeywell International Inc. | High lap shear strength, low back face signature UD composite and the process of making |
JP2015526607A (en) * | 2012-07-27 | 2015-09-10 | ハネウェル・インターナショナル・インコーポレーテッド | Novel UHMWPE fiber and manufacturing method |
US9163335B2 (en) | 2011-09-06 | 2015-10-20 | Honeywell International Inc. | High performance ballistic composites and method of making |
US9168719B2 (en) | 2011-09-06 | 2015-10-27 | Honeywell International Inc. | Surface treated yarn and fabric with enhanced physical and adhesion properties and the process of making |
US9222864B2 (en) | 2011-09-06 | 2015-12-29 | Honeywell International Inc. | Apparatus and method to measure back face signature of armor |
KR101665576B1 (en) * | 2015-04-20 | 2016-10-12 | 다이텍연구원 | Method Of Surface Modifing UHMWPE Fiber Using UV And Oxident Agent |
-
1993
- 1993-11-16 JP JP28681693A patent/JPH07138877A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9821515B2 (en) | 2011-09-06 | 2017-11-21 | Honeywell International Inc. | High lap shear strength, low back face signature UD composite and the process of making |
US9222864B2 (en) | 2011-09-06 | 2015-12-29 | Honeywell International Inc. | Apparatus and method to measure back face signature of armor |
US9023450B2 (en) | 2011-09-06 | 2015-05-05 | Honeywell International Inc. | High lap shear strength, low back face signature UD composite and the process of making |
US11027501B2 (en) | 2011-09-06 | 2021-06-08 | Honeywell International Inc. | High lap shear strength, low back face signature UD composite and the process of making |
US9163335B2 (en) | 2011-09-06 | 2015-10-20 | Honeywell International Inc. | High performance ballistic composites and method of making |
US9168719B2 (en) | 2011-09-06 | 2015-10-27 | Honeywell International Inc. | Surface treated yarn and fabric with enhanced physical and adhesion properties and the process of making |
US9023451B2 (en) | 2011-09-06 | 2015-05-05 | Honeywell International Inc. | Rigid structure UHMWPE UD and composite and the process of making |
US10562238B2 (en) | 2011-09-06 | 2020-02-18 | Honeywell International Inc. | High lap shear strength, low back face signature UD composite and the process of making |
US9880080B2 (en) | 2011-09-06 | 2018-01-30 | Honeywell International Inc. | Rigid structural and low back face signature ballistic UD/articles and method of making |
US9023452B2 (en) | 2011-09-06 | 2015-05-05 | Honeywell International Inc. | Rigid structural and low back face signature ballistic UD/articles and method of making |
US9718237B2 (en) | 2011-09-06 | 2017-08-01 | Honeywell International Inc. | Rigid structure UHMWPE UD and composite and the process of making |
JP2019039130A (en) * | 2012-07-27 | 2019-03-14 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Novel uhmwpe fiber and production method |
JP2015526607A (en) * | 2012-07-27 | 2015-09-10 | ハネウェル・インターナショナル・インコーポレーテッド | Novel UHMWPE fiber and manufacturing method |
KR101665576B1 (en) * | 2015-04-20 | 2016-10-12 | 다이텍연구원 | Method Of Surface Modifing UHMWPE Fiber Using UV And Oxident Agent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hwang et al. | Effects of atmospheric pressure helium/air plasma treatment on adhesion and mechanical properties of aramid fibers | |
Sheu et al. | Surface properties and interfacial adhesion studies of aramid fibres modified by gas plasmas | |
Day et al. | Toughened carbon/epoxy composites made by using core/shell particles | |
JP4349118B2 (en) | Method for producing sizing-coated carbon fiber | |
JP2003510378A (en) | Graft polymerization of substrate surface | |
JPH07138877A (en) | Processing of polyethylene fiber | |
JP3287430B2 (en) | Processing method of polyethylene fiber | |
CN111978490B (en) | Method for preparing elastic wood based on ultraviolet light initiated graft polymerization | |
Wu et al. | Oxygen plasma processing and improved interfacial adhesion in PBO fiber reinforced epoxy composites | |
CN108070044A (en) | A kind of gel rubber material and preparation method thereof | |
CN114230719B (en) | Double-crosslinking cellulose-based hydrogel prepared by cold plasma and preparation method and application thereof | |
Yang et al. | Effect of MMA‐g‐UHMWPE grafted fiber on mechanical properties of acrylic bone cement | |
CN1210455C (en) | Method for increasing heat-resistant, creep resisting and adhesive bonding properties of high strength polytene at same time | |
Yang et al. | Bio-inspired copper ion-chelated chitosan coating modified UHMWPE fibers for enhanced interfacial properties of composites | |
Woods et al. | Study of the oxygen treatment of high‐modulus polyethylene fibres | |
JP2001262469A (en) | Super high-molecular weight polyethylene fiber excellent in adhesivity and method for manufacturing the same | |
Yang et al. | The grafting of methyl methacrylate onto ultrahigh molecular weight polyethylene fiber by plasma and UV treatment | |
KR100760959B1 (en) | Preparation method of polypropylene-based compatibilizers by radiation-induced graft polymerization | |
Brennan et al. | Surface modification of ultra-high molecular weight polyethylene fibers by γ-radiation-induced grafting | |
Kim et al. | Mechanical properties of kenaf fiber–cement composites containing kenaf gamma-ray grafted with acrylamide | |
JP2009161896A (en) | Cellulose nonwoven fabric, process for manufacturing the same and composite material | |
Sano et al. | Study on the interfacial shear strength of bamboo fiber reinforced plastics | |
JPS6259637A (en) | Improvement of adhesiveness | |
Xu et al. | The Reinforcement of Leather Split by Constructing an Interpenetrating Network via In-situ Recombination of PVA | |
Ochi et al. | Toughening mechanism of epoxy modified with CTBN elastomer adhesive j oints |