JPH07138747A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPH07138747A
JPH07138747A JP28457493A JP28457493A JPH07138747A JP H07138747 A JPH07138747 A JP H07138747A JP 28457493 A JP28457493 A JP 28457493A JP 28457493 A JP28457493 A JP 28457493A JP H07138747 A JPH07138747 A JP H07138747A
Authority
JP
Japan
Prior art keywords
plasma
discharge plasma
film
substrate
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28457493A
Other languages
Japanese (ja)
Inventor
Etsuo Ogino
悦男 荻野
Tetsuro Yoshii
哲朗 吉井
Toshiaki Anzaki
安崎利明
Naoto Horiguchi
直人 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP28457493A priority Critical patent/JPH07138747A/en
Publication of JPH07138747A publication Critical patent/JPH07138747A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the method for forming films having a uniform thickness on a substrate surface by irradiating a material to be evaporated with high- density plasma. CONSTITUTION:A shielding material 24 having an electromagnetic wave absorbability of a value of murG larger than 10 when the specific dielectric constant is defined as G and the specific magnetic permeability as mur is installed between plural discharge plasma plasmas formed at the time of coating the surface of the substrate 15 with the films by providing a film forming chamber 6 with plural sets of evaporating means each consisting of a plasma gun 2 for forming discharge plasma flow 13, a hearth 7 to be packed with the raw material to be evaporated and a magnetic field for converging the discharge plasma flow and making this flow incident on the inside of this hearth in such a manner that the respective discharge plasmas are invisible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、たとえば複合陰極型プ
ラズマガンの如き放電プラズマ発生手段により得られる
アーク放電プラズマを用いて、大きい面積の基体に均一
な厚みの被膜を形成する方法、とりわけ低抵抗の透明導
電膜を形成するのに適した方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a film having a uniform thickness on a substrate having a large area by using an arc discharge plasma obtained by a discharge plasma generating means such as a composite cathode type plasma gun. The present invention relates to a method suitable for forming a transparent conductive film having resistance.

【0002】[0002]

【従来の技術】従来より、減圧された容器内で基体にス
ズを添加した酸化インジウム透明導電膜を被覆する方法
として、真空蒸着法、スパッタリング法等が知られてい
るが、これらの方法では、被覆される基体の温度が30
0℃以下では、抵抗率が2×10-4Ωcm以下の低抵抗
率を有する透明導電膜を被覆することは困難であった。
基体の温度が300℃以下で、上記低抵抗率を有する透
明導電膜を被覆する方法として、特開平2−22846
9号公報に、複合陰極型プラズマから発生したプラズマ
を、ハース内の蒸着原料に収束させ、それを加熱蒸発さ
せる方法が開示されている。また、大面積の基体へ膜を
均一に被覆する方法として、複数のプラズマガンとそれ
と同数のハースを設置して行う方法が、特開平1−27
9748号公報に開示されている。
2. Description of the Related Art Conventionally, as a method of coating a transparent conductive film of indium oxide with tin added to a substrate in a depressurized container, a vacuum vapor deposition method, a sputtering method, etc. have been known. The temperature of the coated substrate is 30
Below 0 ° C., it was difficult to coat a transparent conductive film having a low resistivity of 2 × 10 −4 Ωcm or less.
As a method of coating the transparent conductive film having a low resistivity when the temperature of the substrate is 300 ° C. or lower, JP-A-2-22846.
No. 9 discloses a method in which plasma generated from a composite cathode type plasma is converged on a vapor deposition material in a hearth and the vapor is heated and evaporated. Further, as a method for uniformly coating a large-area substrate with a film, a method in which a plurality of plasma guns and the same number of hearths are installed is disclosed in JP-A-1-27.
It is disclosed in Japanese Patent No. 9748.

【0003】[0003]

【発明が解決しようとする課題】特開平2−22846
9号に開示されているアーク放電プラズマガンとハース
とからなる蒸発手段を一組用いて被膜を被覆する方法で
は、ハースからの蒸発流の広がりに限りがあるため大き
な面積の基体に全面に均一な膜を被覆することが困難と
いう問題点があった。一方、特開平1−279748号
に開示されている蒸発手段を複数組用いる方法では、発
生するプラズマの相互干渉により、各々のプラズマが乱
され、そのため個々のプラズマの個々のハースへの任意
の収束状態をつくりだすことが困難であった。そのた
め、大面積の基体に均一に膜を形成することは困難であ
った。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the method of coating a film by using one set of evaporation means consisting of an arc discharge plasma gun and a hearth disclosed in No. 9, since the spread of the evaporation flow from the hearth is limited, it is uniform over the entire surface of the substrate having a large area. There is a problem that it is difficult to coat such a film. On the other hand, in the method using a plurality of sets of evaporation means disclosed in Japanese Patent Laid-Open No. 1-279748, each plasma is disturbed by mutual interference of the generated plasmas, so that each plasma is arbitrarily converged to each hearth. It was difficult to create a state. Therefore, it is difficult to uniformly form a film on a large-area substrate.

【0004】[0004]

【課題を解決するための手段】本発明は、上記複数のプ
ラズマの相互干渉の問題点を解決するためになされたも
のであって、不活性ガスを主成分とするガスによるアー
ク放電プラズマ流を生成させ、前記アーク放電プラズマ
流の下方に設置されたハース内に充填された蒸着原料上
に前記アーク放電プラズマを磁場手段よって収束入射さ
せて前記蒸着原料を蒸発させる蒸発手段を、減圧された
雰囲気が調節できる容器に複数設置し、前記複数のハー
スから蒸発させた蒸着原料を前記複数のハースの上方に
設置された基体表面に被着させる被膜の形成方法であっ
て、、前記複数の放電プラズマ流の間に、一つの放電プ
ラズマ流から他の放電プラズマ流が見えないように遮蔽
物を設置し、かつその遮蔽物の、周波数が150Hzに
おける電磁波吸収能μrGを100以上としたことを特
徴とする被膜の形成方法である。ここで、Gは遮蔽物の
銅に対する比導電率、μrは遮蔽物の比透磁率である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem of mutual interference of a plurality of plasmas, and an arc discharge plasma flow by a gas containing an inert gas as a main component is provided. Evaporation means for generating and condensing the arc discharge plasma onto the vapor deposition material filled in the hearth placed below the arc discharge plasma flow by the magnetic field means to vaporize the vapor deposition material, a reduced pressure atmosphere A method of forming a coating film, wherein a plurality of vapor deposition raw materials vaporized from the plurality of hearths are applied to a surface of a substrate placed above the plurality of hearths, the plurality of discharge plasmas being provided. A shield is installed so that one discharge plasma stream cannot see the other discharge plasma stream, and the shield absorbs electromagnetic waves at a frequency of 150 Hz. a method for forming a coating, characterized in that the mu r G 100 or more. Here, G is the relative conductivity of the shield to copper, and μ r is the relative permeability of the shield.

【0005】[0005]

【作用】1つの容器内に同時に複数の高密度プラズマ流
を発生させると、高密度プラズマ流が形成する自己誘導
磁場により、互いにプラズマ流が影響を受け、ハース内
に収束させるべき収束位置がハース中心から外れ、その
ため各々のハースからの蒸発原料の蒸発量、蒸発方向の
分布が異なり、各々のハースからの蒸発を同じにするこ
とができなくなる。本発明においては、複数の高密度ア
ーク放電プラズマ流の間にアーク放電プラズマが互いに
見えないように、電磁波吸収能μrGが大きい遮蔽物を
設置しているので、各々のプラズマ流が形成する自己誘
導磁場に基因するプラズマ流の相互干渉が無い。これに
より、プラズマの乱れが抑制され、各ハースからの蒸発
量、蒸発方向を同じにすることができる。
When a plurality of high-density plasma flows are simultaneously generated in one container, the plasma flows are affected by the self-induced magnetic field formed by the high-density plasma flows, and the convergence position to be converged in the hearth is Since it is off the center, the evaporation amount of the evaporation raw material from each hearth and the distribution in the evaporation direction are different, and the evaporation from each hearth cannot be the same. In the present invention, a shield having a large electromagnetic wave absorption capacity μ r G is installed so that the arc discharge plasmas cannot be seen from each other among the plurality of high-density arc discharge plasma flows, so that each plasma flow forms. There is no mutual interference of plasma flows due to self-induced magnetic fields. Thereby, the turbulence of the plasma is suppressed, and the evaporation amount and the evaporation direction from each hearth can be made the same.

【0006】[0006]

【実施例】以下に、本発明を図面に従って説明する。図
1は本発明によりITO透明導電膜を基体上に形成する
のに用いた成膜装置の断面図である。アーク放電プラズ
マは、アーク放電プラズマ発生源2と底部に永久磁石8
を有しアノードとして作用する蒸着原料をその中に入れ
たハース7との間で、プラズマ発生用直流電源5によっ
てアーク放電を行うことで生成される。かかるアーク放
電プラズマ発生源2としては、複合陰極型プラズマ発生
装置、又は圧力勾配型プラズマ発生装置、又は両者を組
み合わせたプラズマ発生装置が好ましい。このようなプ
ラズマ発生装置については、真空第25巻第10号(1
982年)に記載されている。例えば、図2のような装
置が挙げられる。複合陰極型プラズマ発生装置は、熱容
量の小さい補助陰極17と、ホウ化ランタン(La
6)からなる主陰極18とを有し、該補助陰極に初期
放電を集中させ、それを利用して主陰極LaB6を加熱
し、主陰極LaB6が最終陰極としてアーク放電を行う
ようにしたプラズマ発生装置である。補助陰極としては
W,Ta,Mo等の高融点金属のパイプ状のものが挙げ
られる。主陰極18は円筒19に接して設けられ、補助
陰極17は円板状熱シールド22を介して保持されてい
る。円筒19の先端にはタングステンWからなる円板2
3が設けられている。水冷機構が設けられた陰極支持台
20の中心部に設けられた放電ガス導入口21からプラ
ズマ発生用のガスが導入され、そのガスは円板23の開
口部を通過して成膜室6内に導かれ、排気口9を経て成
膜室6外に排気ポンプにより排気される。また、圧力勾
配型プラズマ発生装置とは、陰極と陽極との間に中間電
極を介在させ、陰極領域を1torr程度に、陽極領域
を10-3torr程度に保って放電を行うものであり、
陽極領域からのイオンの逆流による陰極の損傷がない上
に、中間電極のない放電形式のものと比較して、放電電
子流をつくり出すためのキャリアガスのガス効率が飛躍
的に高く、大電流放電が可能であるという利点を有して
いる。複合陰極型プラズマ発生装置と、圧力勾配型プラ
ズマ発生装置とは、それぞれ上記のような利点を有して
おり、両者を組み合わせたプラズマ発生装置、即ち、陰
極として複合陰極を用いるとともに中間電極も配したプ
ラズマ発生装置は、上記利点を同時に得ることが出来る
ので本発明のアーク放電プラズマ発生源として好まし
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a film forming apparatus used for forming an ITO transparent conductive film on a substrate according to the present invention. The arc discharge plasma consists of an arc discharge plasma source 2 and a permanent magnet 8 on the bottom.
It is generated by performing an arc discharge with the DC power source 5 for plasma generation between the hearth 7 and the vapor deposition raw material which has the above and acts as an anode. The arc discharge plasma generation source 2 is preferably a composite cathode type plasma generator, a pressure gradient type plasma generator, or a plasma generator in which both are combined. Such a plasma generator is described in Vacuum No. 25, No. 10 (1
982). For example, a device as shown in FIG. The composite cathode type plasma generator includes an auxiliary cathode 17 having a small heat capacity and lanthanum boride (La).
And a main cathode 18 made of a B 6), to concentrate initial discharge to the auxiliary cathode, by using it to heat the main cathode LaB 6, the main cathode LaB 6 is to perform the arc discharge as the final cathode It is a plasma generator. Examples of the auxiliary cathode include pipe-shaped ones made of a refractory metal such as W, Ta and Mo. The main cathode 18 is provided in contact with the cylinder 19, and the auxiliary cathode 17 is held via a disc-shaped heat shield 22. A disk 2 made of tungsten W is provided at the tip of the cylinder 19.
3 is provided. A gas for plasma generation is introduced from a discharge gas introduction port 21 provided at the center of the cathode support 20 provided with a water cooling mechanism, and the gas passes through the opening of the disk 23 and inside the film formation chamber 6. To the outside of the film forming chamber 6 through the exhaust port 9 by the exhaust pump. Further, the pressure gradient type plasma generator is a device in which an intermediate electrode is interposed between a cathode and an anode, and the discharge is performed while maintaining the cathode region at about 1 torr and the anode region at about 10 −3 torr.
There is no damage to the cathode due to the backflow of ions from the anode region, and the gas efficiency of the carrier gas for creating a discharge electron flow is dramatically higher than that of the discharge type without an intermediate electrode, and a large current discharge is achieved. Has the advantage that The composite cathode type plasma generator and the pressure gradient type plasma generator have the above-mentioned advantages, respectively.A plasma generator combining the two, that is, a composite cathode is used as a cathode and an intermediate electrode is also arranged. The plasma generator described above is preferable as the arc discharge plasma generation source of the present invention because it can obtain the above advantages at the same time.

【0007】本発明に用いた成膜装置の断面図を図1に
示す。放電陰極としてのプラズマ発生源2、永久磁石3
を内蔵した第1中間電極11、磁気コイル4を内蔵した
第2中間電極12、大口径磁気コイル14を成膜室6の
側壁に設置し、成膜室の底部に永久磁石8を下部に設け
たハース7を設け、これらを一組として一つの蒸着手段
とした。ハース7は放電プラズマ13の陽極として、プ
ラズマ発生源2は陰極として作用する。上記蒸着手段を
二つ、図1の紙面に垂直な方向に並列に配置し、二つの
高密度プラズマ流13を形成した。磁気コイル4により
形成された水平磁場によって成膜室6に引き出された二
つの放電プラズマ流13を蒸着原料が充填されたハース
内に導くために、それぞれハース7の底部に設けた永久
磁石8の垂直磁場により、成膜室6内で下方に約90゜
に曲げられている。基体15の背面に基体加熱機構16
が設けられている。
A cross-sectional view of the film forming apparatus used in the present invention is shown in FIG. Plasma source 2 as discharge cathode, permanent magnet 3
A first intermediate electrode 11 having a built-in magnetic field, a second intermediate electrode 12 having a magnetic coil 4 built-in, and a large-diameter magnetic coil 14 are provided on the side wall of the film forming chamber 6, and a permanent magnet 8 is provided below the film forming chamber. A hearth 7 was provided, and a set of these was used as one vapor deposition means. The hearth 7 acts as an anode of the discharge plasma 13 and the plasma generation source 2 acts as a cathode. Two high-density plasma streams 13 were formed by arranging the two vapor deposition means in parallel in the direction perpendicular to the paper surface of FIG. In order to guide the two discharge plasma flows 13 drawn into the film forming chamber 6 by the horizontal magnetic field formed by the magnetic coil 4 into the hearth filled with the vapor deposition material, the permanent magnets 8 provided at the bottom of the hearth 7 The vertical magnetic field bends the film forming chamber 6 downward at about 90 °. A substrate heating mechanism 16 is provided on the back surface of the substrate 15.
Is provided.

【0008】二つのプラズマ発生源から成膜室6内に引
き出された二つの高密度プラズマ流の相互干渉によるプ
ラズマの乱れを抑えるため、図1および図3に示すよう
に、銅に対する比導電率をG、比透磁率をμrとしたと
きの周波数が150HzにおけるμrGの値が100よ
りも大きい電磁波吸収能を有する遮蔽物24を、一方の
プラズマ流から他方のプラズマ流が見えないように設置
する。このような遮蔽物の材質としては、鉄、鋼(SA
E1045)、パーマロイ、ミュウーメタル、ハイパー
ニックなどを用いることができる。
In order to suppress the turbulence of the plasma due to the mutual interference of the two high-density plasma flows drawn into the film forming chamber 6 from the two plasma generation sources, as shown in FIG. 1 and FIG. Is G and the relative magnetic permeability is μ r, and the frequency of 150 Hz is such that the value of μ r G is greater than 100, the shield 24 having an electromagnetic wave absorption capability is so that one plasma flow cannot see the other plasma flow. To install. Materials for such shields include iron and steel (SA
E1045), permalloy, mew metal, hypernic, etc. can be used.

【0009】実施例1 成膜室6内を真空排気ポンプによって2×10-5Tor
rの圧力に排気した後、ガラス基板15を200℃に加
熱した状態で、放電ガス導入パイプ1から放電ガスとし
てアルゴン(Ar)ガスを約30sccmを導入し、2
つのプラズマ発生装置にそれぞれ100Aの電流を供給
し、ハ−ス7と永久磁石8により構成された2つの電極
との間でアーク放電プラズマを2つ生起させた。図1に
示すように、プラズマ流はプラズマ発生源側から20c
m離れたところに設けた(成膜室の底面から35cm上
の位置)。図3に示すように、プラズマ流の相互干渉に
よるプラズマの乱れを抑えるために、基体の進行方向の
長さが30cm、高さ方向の長さが40cm、厚さ6m
mのμrGの値が170の鉄板24を設置した。なお、
成膜中は酸素ガスを反応性ガス導入口10より約50s
ccm導入した。基板15は10cm角、厚さ1.1m
mのガラス基板を図3の基板進行方向に対して垂直方向
に横1列に7枚並べて配置した。そして、基板を図3に
示す方向に一定速度で移動させ、ITO膜を成膜した。
また、得られたITO膜の膜厚みと比抵抗の値の測定
は、図3の左端のガラス基板の左端をゼロ位置として一
定間隔毎に行った。
Example 1 The inside of the film forming chamber 6 was set to 2 × 10 −5 Tor by a vacuum exhaust pump.
After evacuating to a pressure of r, while the glass substrate 15 was heated to 200 ° C., about 30 sccm of argon (Ar) gas was introduced as a discharge gas from the discharge gas introduction pipe 1 and 2
A current of 100 A was supplied to each of the two plasma generators, and two arc discharge plasmas were generated between the hearth 7 and the two electrodes composed of the permanent magnet 8. As shown in FIG. 1, the plasma flow is 20c from the plasma source side.
It was provided at a distance of m (a position 35 cm above the bottom surface of the film forming chamber). As shown in FIG. 3, in order to suppress the turbulence of the plasma due to the mutual interference of the plasma flows, the length of the substrate in the traveling direction is 30 cm, the length in the height direction is 40 cm, and the thickness is 6 m.
An iron plate 24 having a value of μ r G of 170 was set. In addition,
During film formation, oxygen gas is supplied from the reactive gas inlet 10 for about 50 s.
ccm was introduced. Substrate 15 is 10 cm square and 1.1 m thick
Seven glass substrates of m were arranged side by side in a direction perpendicular to the substrate traveling direction of FIG. Then, the substrate was moved in the direction shown in FIG. 3 at a constant speed to form an ITO film.
Further, the film thickness and the specific resistance of the obtained ITO film were measured at regular intervals with the left end of the glass substrate at the left end in FIG. 3 as the zero position.

【0010】図4(a)および図4(b)に、上記の方
法で得たITO膜の膜厚分布、抵抗率分布をそれぞれ示
す。±5%以内の膜厚分布を得ることができるのは、基
体左端から17cmの位置から70cmの位置の53c
mの範囲であることがわかった。1.5×10-4Ω・c
m以上3.0×10-4Ω・cm以下の抵抗率が得られる
範囲は基体左端から26cmの位置から64cmの位置
の38cmの間の範囲であることがわかった。したがっ
て、膜厚±5%以内、かつ抵抗率1.5×10-4Ω・c
m以上3.0×10-4Ω・cm以下のITO膜を成膜で
きる範囲は、基体左端から26cmの位置から64cm
の位置までの38cmの範囲であることがわかった。基
板進行方向に対しては、膜厚、抵抗率分布がなかったこ
とから、遮蔽物を設置した場合、一辺が38cmの基板
に膜厚±5%以内、かつ抵抗率1.5×10-4Ω・cm
以上3.0×10-4Ω・cm以下の均一および均質なI
TO膜を成膜することができる。
FIGS. 4 (a) and 4 (b) show the film thickness distribution and the resistivity distribution of the ITO film obtained by the above method, respectively. The film thickness distribution within ± 5% can be obtained by 53c at a position 70 cm from the position 17 cm from the left end of the substrate.
It was found to be in the range of m. 1.5 × 10 -4 Ω ・ c
It was found that the range where the resistivity of m or more and 3.0 × 10 −4 Ω · cm or less was obtained was between 38 cm at the position of 26 cm to 64 cm from the left end of the substrate. Therefore, the film thickness is within ± 5% and the resistivity is 1.5 × 10 −4 Ω · c.
The range in which the ITO film having a thickness of m or more and 3.0 × 10 −4 Ω · cm or less can be formed is 64 cm from the position 26 cm from the left end of the substrate.
It was found to be within the range of 38 cm up to the position. Since there was no film thickness or resistivity distribution in the substrate traveling direction, when a shield was installed, the film thickness was within ± 5% and the resistivity was 1.5 × 10 −4 on a substrate with a side of 38 cm. Ω · cm
More than 3.0 × 10 −4 Ω · cm and less uniform and homogeneous I
A TO film can be formed.

【0011】比較例1 実施例1で設けた遮蔽物を取り除いたことの他は、実施
例1と同じようにしてITOの成膜を行った。得られた
膜の膜厚分布および抵抗率分布をそれぞれ図5(a)お
よび(b)に示す。実施例1と同様、膜厚±5%以内、
かつ抵抗率1.5×10-4Ω・cm以上3.0×10-4
Ω・cm以下のITO膜を成膜することができる範囲
は、基体左側から26cmの位置から43cmの位置の
17cmの範囲であることがわかった。したがって、一
辺が17cmの基板で膜厚±5%以内、かつ抵抗率1.
5×10-4Ω・cm以上3.0×10-4Ω・cm以下の
ITO膜を成膜することができ、これは、実施例1に比
較して、均一な膜を成膜できる基体の面積が小さくなっ
たことを意味する。
Comparative Example 1 An ITO film was formed in the same manner as in Example 1 except that the shield provided in Example 1 was removed. The film thickness distribution and the resistivity distribution of the obtained film are shown in FIGS. 5 (a) and 5 (b), respectively. As in Example 1, the film thickness is within ± 5%,
And resistivity of 1.5 × 10 -4 Ω · cm or more 3.0 × 10 -4
It was found that the range in which the ITO film of Ω · cm or less can be formed is 17 cm from the position 26 cm to 43 cm from the left side of the substrate. Therefore, the film thickness is within ± 5% and the resistivity is 1.
An ITO film having a film thickness of 5 × 10 −4 Ω · cm or more and 3.0 × 10 −4 Ω · cm or less can be formed, which is a substrate capable of forming a uniform film as compared with Example 1. Means that the area of has become smaller.

【0012】比較例2 実施例1とは、遮蔽物をSUS304(μrGの値が2
0)の材質に変えた他は全く同じにして、ITO膜の成
膜を行った。得られた膜の膜厚分布、抵抗率分布をそれ
ぞれ図6(a)および図6(b)に示す。膜厚±5%以
内、かつ抵抗率1.5×10-4Ω・cm以上3.0×1
-4Ω・cm以下のITO膜を成膜できる範囲は、基体
左側から20cmの位置から43cmの位置の23cm
の範囲であることがわかった。したがって、放電プラズ
マ流の間にμrGの値が小さい金属板を設置した場合、
一辺が23cm以内の基板で膜厚±5%以内、かつ抵抗
率1.5×10-4Ω・cm以上3.0×10-4Ω・cm
以下のITO膜を成膜することができる。これは、実施
例1に比べ、均一な膜を成膜できる基板の面積が小さく
なったことを意味する。
Comparative Example 2 In comparison with Example 1, the shielding material was SUS304 (the value of μ r G was 2).
The ITO film was formed in the same manner except that the material of (0) was changed. The film thickness distribution and the resistivity distribution of the obtained film are shown in FIGS. 6 (a) and 6 (b), respectively. Film thickness within ± 5% and resistivity of 1.5 × 10 −4 Ω · cm or more 3.0 × 1
The range in which the ITO film of 0 -4 Ω · cm or less can be formed is 23 cm from the position 20 cm to the position 43 cm from the left side of the substrate.
It was found to be in the range. Therefore, when a metal plate with a small value of μ r G is installed between the discharge plasma flows,
Substrate with a side of 23 cm or less, film thickness within ± 5% and resistivity of 1.5 × 10 −4 Ω · cm or more and 3.0 × 10 −4 Ω · cm
The following ITO film can be formed. This means that the area of the substrate on which a uniform film can be formed is smaller than that in the first embodiment.

【0013】[0013]

【発明の効果】本発明によれば、より大きい面積の基体
に膜厚みを均一に被覆することができる。また、ITO
膜を成膜するにあたっては、抵抗率分布のよい被膜をよ
り大きい面積の基体に被覆することができる。
According to the present invention, a substrate having a larger area can be coated with a uniform film thickness. Also, ITO
When forming a film, a film having a good resistivity distribution can be applied to a substrate having a larger area.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いた成膜装置の一部断面図で
ある。
FIG. 1 is a partial cross-sectional view of a film forming apparatus used for implementing the present invention.

【図2】本発明に用いた放電プラズマ発生源の一例の断
面図である。
FIG. 2 is a cross-sectional view of an example of a discharge plasma generation source used in the present invention.

【図3】本発明に用いた成膜装置の一部平面図である。FIG. 3 is a partial plan view of a film forming apparatus used in the present invention.

【図4】実施例1で得られた被膜の膜厚分布と抵抗率分
布を示す図である。
FIG. 4 is a diagram showing a film thickness distribution and a resistivity distribution of the coating film obtained in Example 1.

【図5】比較例1で得られた被膜の膜厚分布と抵抗率分
布を示す図である。
5 is a diagram showing a film thickness distribution and a resistivity distribution of the coating film obtained in Comparative Example 1. FIG.

【図6】比較例2で得られた被膜の膜厚分布と抵抗分布
を示す図である。
FIG. 6 is a diagram showing a film thickness distribution and a resistance distribution of a film obtained in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1・・・・・放電ガス導入口、2・・・・・プラズマ発
生源、3・・・・・永久磁石、4・・・・・磁気コイル
、5・・・・・放電電源、6・・・・・成膜室、7・
・・・・ハース、8・・・・・永久磁石、9・・・・・
排気ポンプ、10・・・・反応性ガス導入口、11・・
・・第1中間電極、12・・・・第2中間電極、13・
・・・プラズマ流、14・・・・大口径磁気コイル、1
5・・・・基体、16・・・・基体加熱機構、17・・
・・Taパイプの補助陰極、18・・・・LaB6主陰
極、19・・・・Moからなる円筒、20・・・・ステ
ンレスからなる陰極支持台、21・・・・放電ガス導入
口、22・・・・Moからなる円板状の熱シールド、2
3・・・・陰極を保護するためのWからなる円板、24
・・・・遮蔽物
1 ... Discharge gas inlet, 2 ... Plasma source, 3 ... Permanent magnet, 4 ... Magnetic coil, 5 ... Discharge power source, 6 ... .... Deposition chamber, 7.
.... Hearth, 8 ... Permanent magnet, 9 ...
Exhaust pump, 10 ... Reactive gas inlet, 11 ...
.... First intermediate electrode, 12 ... Second intermediate electrode, 13 ...
... Plasma flow, 14 ... Large-diameter magnetic coil, 1
5 ... Base, 16 ... Base heating mechanism, 17 ...
..Auxiliary cathode of Ta pipe, 18 ... LaB 6 main cathode, 19 ... Cylinder made of Mo, 20 ... Cathode support made of stainless steel, 21 ... Discharge gas inlet, 22 ··· Disc-shaped heat shield made of Mo, 2
3 ··· Disc made of W for protecting cathode, 24
.... Shielding

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀口 直人 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoto Horiguchi 3-5-11 Doshomachi, Chuo-ku, Osaka City, Osaka Prefecture Nippon Sheet Glass Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】不活性ガスを主成分とするガスによるアー
ク放電プラズマ流を生成させ、前記アーク放電プラズマ
流の下方に設置されたハース内に充填された蒸着原料上
に前記アーク放電プラズマを磁場手段よって収束入射さ
せて前記蒸着原料を蒸発させる蒸発手段を、減圧された
雰囲気が調節できる容器に複数設置し、前記複数のハー
スから蒸発させた蒸着原料を前記ハースの上方に設置さ
れた基体表面に被着させる被膜の形成方法において、前
記複数の放電プラズマ流の間に、一つの放電プラズマ流
から他の放電プラズマ流が見えないように遮蔽物を設置
し、かつその遮蔽物の、周波数が150Hzにおける電
磁波吸収能μrGを100以上としたことを特徴とする
被膜の形成方法。ここでG、μrは、それぞれ遮蔽物の
銅に対する比導電率、比透磁率とする。
1. An arc discharge plasma flow is generated by a gas containing an inert gas as a main component, and the arc discharge plasma is magnetically applied onto a vapor deposition material filled in a hearth placed below the arc discharge plasma flow. A plurality of evaporation means for converging and evaporating the vapor deposition raw material by means are installed in a container in which a depressurized atmosphere can be adjusted, and vapor deposition raw materials evaporated from the plurality of hearths are provided on the surface of the substrate. In the method for forming a coating film to be deposited on, a shield is installed between the plurality of discharge plasma streams so that one discharge plasma stream cannot see another discharge plasma stream, and the shield has a frequency of A method for forming a coating film, which has an electromagnetic wave absorption capability μ r G at 150 Hz of 100 or more. Here, G and μ r are the relative conductivity and relative permeability of the shield to copper, respectively.
JP28457493A 1993-11-15 1993-11-15 Formation of film Pending JPH07138747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28457493A JPH07138747A (en) 1993-11-15 1993-11-15 Formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28457493A JPH07138747A (en) 1993-11-15 1993-11-15 Formation of film

Publications (1)

Publication Number Publication Date
JPH07138747A true JPH07138747A (en) 1995-05-30

Family

ID=17680229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28457493A Pending JPH07138747A (en) 1993-11-15 1993-11-15 Formation of film

Country Status (1)

Country Link
JP (1) JPH07138747A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684736B1 (en) * 2005-11-30 2007-02-20 삼성에스디아이 주식회사 Film forming apparatus
JP2008261058A (en) * 2001-02-08 2008-10-30 Semiconductor Energy Lab Co Ltd Film deposition apparatus and method for manufacturing light-emitting apparatus
JP4511629B2 (en) * 2007-05-30 2010-07-28 キヤノンアネルバ株式会社 Film forming apparatus and film forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261058A (en) * 2001-02-08 2008-10-30 Semiconductor Energy Lab Co Ltd Film deposition apparatus and method for manufacturing light-emitting apparatus
KR100684736B1 (en) * 2005-11-30 2007-02-20 삼성에스디아이 주식회사 Film forming apparatus
JP4511629B2 (en) * 2007-05-30 2010-07-28 キヤノンアネルバ株式会社 Film forming apparatus and film forming method
JPWO2008146844A1 (en) * 2007-05-30 2010-08-19 キヤノンアネルバ株式会社 Deposition equipment

Similar Documents

Publication Publication Date Title
JP3589467B2 (en) Apparatus and method for sputtering carbon
JP2002509988A (en) Method and apparatus for depositing a biaxially textured coating
JPH08505434A (en) Equipment for plasma-assisted fast electron beam evaporation
US5196400A (en) High temperature superconductor deposition by sputtering
JP2635385B2 (en) Ion plating method
JPH07138747A (en) Formation of film
JPH07254315A (en) Formation of film
JPH0578831A (en) Formation of thin film and device therefor
EP0047456B1 (en) Ion plating without the introduction of gas
US20080121515A1 (en) Magnetron sputtering utilizing halbach magnet arrays
JP2874548B2 (en) Method for forming coating by arc discharge plasma
JP3865841B2 (en) Electron beam evaporation system
JPS6350463A (en) Method and apparatus for ion plating
JP2878299B2 (en) Ion plating method
JPS6350473A (en) Continuous multistage ion plating device
JPH11172416A (en) Vacuum vapor deposition and formation of ito film using the same
JPH06272037A (en) Formation of thin film and apparatus therefor
JPH0273963A (en) Formation of thin film on low-temperature substrate
JPH0361364A (en) Formation of thin film using sheet plasma
JP3404065B2 (en) Ion plating equipment with high deposition efficiency
JPH0672300B2 (en) Hybrid ion plating device
JPS6353261B2 (en)
JPH0344463A (en) Formation of thin film utilizing sheet plasma
JP2567843B2 (en) Hybrid ion plating method and apparatus
Golan et al. Modified magnetic controlled plasma sputtering method