JPH07138738A - Crucible for evaporation and thin film forming method using the same - Google Patents

Crucible for evaporation and thin film forming method using the same

Info

Publication number
JPH07138738A
JPH07138738A JP28676293A JP28676293A JPH07138738A JP H07138738 A JPH07138738 A JP H07138738A JP 28676293 A JP28676293 A JP 28676293A JP 28676293 A JP28676293 A JP 28676293A JP H07138738 A JPH07138738 A JP H07138738A
Authority
JP
Japan
Prior art keywords
crucible
thin film
nozzle
evaporation
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28676293A
Other languages
Japanese (ja)
Inventor
Akihiko Yokoyama
晃彦 横山
Makoto Kameyama
誠 亀山
Hidehiko Fujimura
秀彦 藤村
Mitsuharu Sawamura
光治 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28676293A priority Critical patent/JPH07138738A/en
Publication of JPH07138738A publication Critical patent/JPH07138738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the crucible for an evaporating source which is capable of stably forming thin films of a large area and continuously forming the thin films without exchange of the crucible and features excellent mass productivity and the thin film forming method using the same. CONSTITUTION:This crucible for the evaporating source is formed to a doughnut shape having an aperture in the central part as the outside shape of the crucible 11 and has >=1 pieces of nozzles 15 at a cap 12 of the crucible having the hollow housing part continuous with the circumferential direction. The crucible for the evaporating source is formed to a shape projecting the central part at the bottom of the crucible body to the inner side of the crucible to the extent that the central part does not come into contact with the cap of the crucible and has >=1 pieces of the nozzles at the cap of the crucible. This thin film forming method comprises using the crucible described above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、真空蒸着、クラスタ
イオンビーム蒸着などにおいて用いられる蒸発用るつ
ぼ、及びそのるつぼを用いた薄膜形成方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporation crucible used in vacuum evaporation, cluster ion beam evaporation and the like, and a thin film forming method using the crucible.

【0002】[0002]

【従来の技術】従来、常温固体状の物質を加熱蒸発させ
て被蒸着基体上に蒸着して薄膜形成を行う真空蒸着、ク
ラスタイオンビーム蒸着などにおいて、常温個体状の物
質を加熱蒸発させるためのるつぼの外形形状としては、
円柱形状であり、るつぼ直径も10〜20mm以下程度
のものが一般的である。このるつぼを用いて真空蒸着法
や、クラスタイオンビーム蒸着法などにより多層膜や大
面積基板に薄膜形成を行う場合、複数のるつぼを成膜装
置中に用意するか、薄膜形成工程中にるつぼに蒸着物質
を補給するか、るつぼ交換を行いながら薄膜形成を行う
のが普通である。
2. Description of the Related Art Conventionally, in vacuum vapor deposition or cluster ion beam vapor deposition, in which a solid substance at room temperature is evaporated by heating to form a thin film on a substrate to be vapor-deposited, a substance for heating at room temperature is vaporized. As the outer shape of the crucible,
It is generally cylindrical and has a crucible diameter of 10 to 20 mm or less. When using this crucible to form a thin film on a multilayer film or a large-area substrate by vacuum vapor deposition or cluster ion beam vapor deposition, prepare multiple crucibles in the film deposition system or use crucibles during the thin film formation process. It is common to form a thin film while supplementing the deposition material or exchanging the crucible.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来例で
は常温個体状の蒸着物質を均一に加熱溶融、昇華させる
ために、均熱性の点から、るつぼの形状をあまり大きく
することが出来ない。このため、蒸着物質を多量にるつ
ぼに充填することが出来ず、大面積の薄膜形成や、るつ
ぼの交換なしでの連続しての薄膜形成には不向きであ
る。
However, in the above-mentioned conventional example, since the vapor deposition substance which is solid at room temperature is uniformly heated and melted and sublimated, the shape of the crucible cannot be increased so much from the viewpoint of heat uniformity. Therefore, a large amount of vapor deposition material cannot be filled in the crucible, and it is not suitable for forming a large-area thin film or continuously forming a thin film without exchanging the crucible.

【0004】また、ノズルの所で蒸気化した蒸着物質
が、凝縮して液化、あるいは固化してノズルを塞いでし
まうという欠点を有していた。また、成膜工程中にるつ
ぼの交換や、蒸着物質の補給などを行う必要があり、量
産性が著しく低下する。
Further, there is a drawback in that the vaporized material vaporized at the nozzle is condensed and liquefied or solidified to block the nozzle. In addition, it is necessary to replace the crucible and replenish the vapor deposition material during the film forming process, which significantly reduces the mass productivity.

【0005】[0005]

【課題を解決するための手段】本発明は前記問題点を改
善しようとするもので、るつぼの外形形状が中央部に開
口部を有するドーナツ形状であり、同方向に中空収納部
が連なるもしくはるつぼ本体の底の中心部が、るつぼの
蓋に接触しない程度までるつぼ内側に突き出した形状と
し、るつぼおよびるつぼ内側に充填された蒸着物質を外
側側面、底部面、内側側面の3方向から加熱すること
で、るつぼの形状を大きくし、かつ、るつぼ内部に充填
する蒸着物質の量を格段に増加させても、るつぼ、およ
び、るつぼ内の蒸着物質を均一に加熱でき、また、るつ
ぼの蓋近傍に接触もしくは、非接触で加熱手段を設ける
ことで、ノズル箇所で蒸着物質蒸気が液化あるいは固化
することを防止し、そのるつぼを使用して、安定して大
面積の薄膜形成を可能とし、かつ、るつぼの交換なしで
の連続しての薄膜形成を行うことが可能となるるつぼを
提供することを目的としている。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and the outer shape of the crucible is a donut shape having an opening in the central portion, and the hollow accommodating portions are connected in the same direction or the crucible is connected. The center of the bottom of the main body should be shaped so as to protrude inside the crucible to the extent that it does not contact the lid of the crucible, and the crucible and the vapor deposition material filled inside the crucible should be heated from three directions: the outer side surface, the bottom surface and the inner side surface. Therefore, even if the crucible shape is enlarged and the amount of the vapor deposition material filled in the crucible is significantly increased, the crucible and the vapor deposition material in the crucible can be heated uniformly, and the crucible can be heated near the lid. By providing heating means in contact or non-contact, vapor deposition material vapor is prevented from liquefying or solidifying at the nozzle location, and the crucible can be used to stably form a large-area thin film. And then, and has an object to provide a crucible which is made possible to perform film formation of the continuously with no crucible exchange.

【0006】また、このるつぼを使用し、量産性を格段
に向上させ、安定して大面積の薄膜形成を可能とし、か
つ、るつぼの交換なしでの連続しての薄膜形成を行うこ
とが可能とした、薄膜形成方法の提供を目的としてい
る。
Further, by using this crucible, mass productivity can be remarkably improved, a large-area thin film can be stably formed, and a continuous thin film can be formed without exchanging the crucible. The purpose is to provide a thin film forming method.

【0007】以下、本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0008】図1は本発明の一例を示するつぼの縦断面
図であり、図面において11の黒鉛製のるつぼ本体は中
央部に開口部を有し、円周方向に中空収納部が連なるド
ーナツ状の外形からなり、内部に基板上に蒸着すべき蒸
着物質を充填できるようになっている。12は黒鉛製る
つぼの蓋であり、るつぼ本体11と隙間なく密着して設
置できる。14はるつぼ加熱用フィラメントであり、そ
れぞれ、るつぼの外側側面、るつぼ内径の外側面、るつ
ぼの底部面を加熱する。これらフィラメントは図示して
いない個別の配線により、図示していない加熱用電源に
接続され、この加熱用電源によりフィラメントに印加す
る電圧、または電流を、全てのフィラメントを同一、も
しくは、個別に制御できるようになっている。15は、
蓋に設けられた、蒸着物質の蒸気をるつぼ内部から噴出
させるノズルであり、16はノズル近傍のるつぼの蓋1
2に接触もしくは非接触で設置されたフィラメントであ
る。このフィラメント16は、ノズルから噴出される蒸
気流に直接触れない位置に設けられ、ノズルで蒸着物質
が液化もしくは固化して、ノズルの詰りを発生しないよ
うに、蒸着物質の融点以上にノズル近傍を加熱するため
のフィラメントである。
FIG. 1 is a longitudinal sectional view of a crucible showing an example of the present invention. In the drawing, a graphite crucible body 11 has a doughnut-shaped main body having an opening at the center and hollow accommodating portions continuous in the circumferential direction. The outer shape is such that the deposition material to be deposited on the substrate can be filled inside. Reference numeral 12 denotes a graphite crucible lid, which can be installed in close contact with the crucible body 11 without a gap. Reference numeral 14 denotes a crucible heating filament, which heats the outer side surface of the crucible, the outer surface of the inner diameter of the crucible, and the bottom surface of the crucible, respectively. These filaments are connected to a heating power source (not shown) by individual wiring (not shown), and the voltage or current applied to the filaments by this heating power source can be controlled for all the filaments individually or individually. It is like this. 15 is
Reference numeral 16 denotes a nozzle provided on the lid for ejecting vapor of a vapor deposition substance from the inside of the crucible, and 16 denotes a lid 1 for the crucible near the nozzle.
It is a filament which is installed in contact with or not in 2. The filament 16 is provided at a position where it does not come into direct contact with the vapor flow ejected from the nozzle, and the vapor deposition substance is liquefied or solidified at the nozzle so that clogging of the nozzle does not occur. It is a filament for heating.

【0009】図3は本発明による他の例を示するつぼの
縦断面の図面であり、図面において31の黒鉛製のるつ
ぼ本体は、内部に基板上に蒸着すべき蒸着物質33を充
填できる形状をしており、るつぼ底面の中央部がるつぼ
内部に、るつぼの蓋32に接触しない程度まで突き出し
た構造となっている。32は黒鉛製のるつぼの蓋であ
り、るつぼ本体41と隙間なく密着して設置できるよう
になっている。34はるつぼ加熱用フィラメントであ
り、それぞれ、るつぼの外側側面、るつぼ内径の外側
面、るつぼの底部面を加熱する。これらフィラメントは
図示していない個別の配線により、図示していない加熱
用電源に接続され、この加熱用電源によりフィラメント
に印加する電圧、または電流を、全てのフィラメントを
同一、もしくは、個別に制御できるようになっている。
35は蓋に設けられた、蒸着物質の蒸気をるつぼ内部か
ら噴出させるノズルであり、36はノズル近傍のるつぼ
の蓋32に接触もしくは非接触で設置されたフィラメン
トである。このフィラメント36は、ノズルから噴出さ
れる蒸気流に直接触れない位置に設けられ、ノズルで蒸
着物質が液化もしくは固化して、ノズルの詰りを発生し
ないように、蒸着物質の融点以上にノズル近傍を加熱す
るためのフィラメントである。本発明の前記図1及び図
3のようなるつぼを用いて真空蒸着法及びクラスタイオ
ンビーム蒸着法等により多層膜や大面積基板に薄膜形成
させる場合はるつぼの大きさを大きくして充填する蒸着
物質を格段に多くしても均一な加熱が可能であり、ノズ
ル箇所での蒸着物質蒸気の液化あるいは固化してノズル
を塞ぐことなく、成膜工程中にるつぼの交換や蒸着物質
の補給なくして大面積の薄膜形成が可能となり、量産性
を格段に向上できるものである。なお、本発明のるつぼ
を複数個用いて薄膜を形成することもできる。
FIG. 3 is a longitudinal sectional view of a crucible showing another example according to the present invention. In the drawing, a graphite crucible body 31 has a shape capable of filling a deposition material 33 to be deposited on a substrate therein. The structure is such that the central portion of the bottom surface of the crucible projects inside the crucible to the extent that it does not contact the lid 32 of the crucible. Reference numeral 32 denotes a crucible lid made of graphite, which can be installed in close contact with the crucible body 41 without any gap. Reference numeral 34 denotes a crucible heating filament, which heats the outer side surface of the crucible, the outer surface of the inner diameter of the crucible, and the bottom surface of the crucible, respectively. These filaments are connected to a heating power source (not shown) by individual wiring (not shown), and the voltage or current applied to the filaments by this heating power source can be controlled for all the filaments individually or individually. It is like this.
Reference numeral 35 is a nozzle provided on the lid for ejecting vapor of the vapor deposition substance from the inside of the crucible, and 36 is a filament provided in contact with or not in contact with the lid 32 of the crucible near the nozzle. The filament 36 is provided at a position where it does not come into direct contact with the vapor flow ejected from the nozzle, and the vapor deposition material is liquefied or solidified at the nozzle so that clogging of the nozzle does not occur, and the vicinity of the nozzle is higher than the melting point of the vapor deposition material. It is a filament for heating. When a thin film is formed on a multilayer film or a large-area substrate by a vacuum evaporation method, a cluster ion beam evaporation method, or the like using the crucible as shown in FIGS. 1 and 3 of the present invention, the crucible is increased in size and deposited. Even if the amount of substance is significantly increased, uniform heating is possible, without vaporizing the vaporized substance vapor at the nozzle to solidify or solidify the nozzle, without changing the crucible or supplying the vaporized substance during the film forming process. A large-area thin film can be formed, and mass productivity can be significantly improved. A thin film can be formed by using a plurality of crucibles of the present invention.

【0010】[0010]

【実施例】【Example】

実施例1 以下、本発明を実施例に基づき更に詳細に説明する。 Example 1 Hereinafter, the present invention will be described in more detail based on examples.

【0011】図3に示した、高さ2.5cmで外径約
3.0cm中空部円筒部の内径1.0cmの本発明のる
つぼを使用することにより、るつぼの蓋の表面積が大き
いので、ノズルの数を多くすることができ、成膜速度を
大きくすることが出来た。また、図2に示した従来のる
つぼを使用した蒸着に比べて、どちらのるつぼもノズル
の個数を1個としたとき、本発明のるつぼでは、蒸着物
質の供給を行うことなく、従来のるつぼの約8倍の時間
連続して薄膜形成を行うことが出来た。また、従来のる
つぼのノズルを1個、本発明のるつぼのノズルの数を8
個としたときは、同じ面積の基板上に薄膜形成を行った
とき、本発明のるつぼを使用した場合、従来のるつぼを
使用したときに比べ、約1/8の時間で同じ膜厚の膜が
成膜できた。このとき、本発明のるつぼでは、るつぼ、
るつぼ内の蒸着物質の温度分布を均一に保つ制御は、従
来のるつぼの温度制御を行うのと同じ手法で、従来のる
つぼと何等変わることのない精度で、温度制御を行うこ
とが出来た。
By using the crucible of the present invention shown in FIG. 3 having a height of 2.5 cm and an outer diameter of about 3.0 cm and an inner diameter of the hollow cylindrical portion of 1.0 cm, the surface area of the crucible lid is large. The number of nozzles could be increased and the film formation rate could be increased. Further, as compared with the vapor deposition using the conventional crucible shown in FIG. 2, when both crucibles have one nozzle, the crucible of the present invention does not supply the vapor deposition material and does not use the conventional crucible. It was possible to form a thin film continuously for about 8 times the time. Further, the conventional crucible nozzle has one nozzle, and the crucible nozzle of the present invention has eight nozzles.
When the thin film is formed on a substrate having the same area, when the crucible of the present invention is used, the film having the same film thickness is formed in about 1/8 of the time when the crucible of the present invention is used. Was formed. At this time, in the crucible of the present invention, the crucible,
The control of keeping the temperature distribution of the deposition material in the crucible uniform was the same as the conventional temperature control of the crucible, and the temperature control could be performed with the same accuracy as the conventional crucible.

【0012】実施例2 図1に示した高さ2.5cmで円筒部の内径1.0cm
(開口部内径1.0cm)の本発明のるつぼを使用する
ことにより、図2に示した高さ2.5cm円筒部の内径
1.0cmからなる従来のるつぼを使用した蒸着に比べ
て、どちらのるつぼもノズルの個数を1個としたとき、
本発明のるつぼでは、蒸着物質の供給を行うことなく、
従来のるつぼの約8倍の時間連続して薄膜形成を行うこ
とが出来た。また、従来のるつぼのノズルを1個、本発
明のるつぼのノズルの数を8個としたときは、同じ面積
の基板上に薄膜形成を行うとき、本発明のるつぼを使用
した場合、従来のるつぼを使用したときに比べ、約1/
8の時間で同じ膜厚の膜が成膜できた。このとき、本発
明のるつぼでは、るつぼ、るつぼ内の蒸着物質の温度分
布を均一に保つ制御は、従来のるつぼの温度制御を行う
のと同じ手法で、従来のるつぼと何等変わることのない
精度で、温度制御を行うことが出来た。
Embodiment 2 The height shown in FIG. 1 is 2.5 cm and the inner diameter of the cylindrical portion is 1.0 cm.
By using the crucible of the present invention having an inner diameter of 1.0 cm in the opening, as compared with the vapor deposition using the conventional crucible having the inner diameter of 1.0 cm of the 2.5 cm height cylindrical portion shown in FIG. When the number of nozzles in the crucible is 1,
In the crucible of the present invention, without supplying the deposition material,
The thin film could be formed continuously for about 8 times as long as the conventional crucible. Moreover, when the number of nozzles of the conventional crucible is 1, and the number of nozzles of the crucible of the present invention is 8, when the thin film is formed on the substrate of the same area, when the crucible of the present invention is used, About 1 / compared to when using a crucible
A film having the same thickness could be formed in 8 hours. At this time, in the crucible of the present invention, the crucible, the control for keeping the temperature distribution of the vapor deposition material in the crucible uniform, is the same method as the temperature control of the conventional crucible, the accuracy that does not change at all with the conventional crucible. So, I was able to control the temperature.

【0013】実施例3 本発明によるるつぼ(実施例2の寸法の形状のもの)を
使用して、図4の装置においてクラスタイオンビーム蒸
着法により薄膜形成を行った。
Example 3 Using the crucible of the present invention (having the size and shape of Example 2), thin film formation was carried out by the cluster ion beam vapor deposition method in the apparatus of FIG.

【0014】基板径 300mm クラスタイオンビーム源から基板までの距離 450m
m 薄膜形成時の真空度 1×10-4Pa 基板中心の鉛直下方に蒸発源を設置 このとき形成した薄膜はMgF2であり、薄膜の膜厚は
約500nmである。このとき薄膜形成に要した時間
は、約300秒であり、蒸着速度に換算すると16A/
secであった。また、膜厚の分布は±5%であった。
また同じ装置形状で、図2の高さ2.5cm円筒部の内
径1.0cmからなる通常のるつぼを使用してMgF2
の成膜を行うと、薄膜形成に要した時間は、約2500
秒であり、蒸着速度に換算すると2A/secであり、
膜厚の分布は±15%であった。膜厚の分布状況を図6
に示す。
Substrate diameter 300 mm Distance from cluster ion beam source to substrate 450 m
m Degree of vacuum at the time of thin film formation 1 × 10 −4 Pa An evaporation source was installed vertically below the center of the substrate. The thin film formed at this time was MgF 2 , and the thickness of the thin film was about 500 nm. At this time, the time required for forming the thin film was about 300 seconds, which was converted to a vapor deposition rate of 16 A /
It was sec. The film thickness distribution was ± 5%.
In the same apparatus configuration, MgF 2 using conventional crucibles made from the inner diameter 1.0cm height 2.5cm cylindrical portion of FIG. 2
When the film formation is performed, the time required for forming the thin film is about 2500
Seconds, which is 2 A / sec when converted to a vapor deposition rate,
The film thickness distribution was ± 15%. Figure 6 shows the distribution of film thickness
Shown in.

【0015】この様に、本発明によるるつぼを使用した
場合、通常のるつぼを使用した場合と比較して、格段に
蒸着速度が向上し、膜厚分布もよい結果が得られ、ま
た、るつぼ内部に充填できる蒸着物質の量も約8倍であ
るので、蒸着物質の補給や、るつぼの交換などのメンテ
ナンスの時間間隔も約8倍に延び、量産性が大きく向上
した。
As described above, when the crucible according to the present invention is used, the vapor deposition rate is remarkably improved, the film thickness distribution is good, and the inside of the crucible is obtained, as compared with the case where the normal crucible is used. Since the amount of the vapor deposition material that can be filled in is about 8 times, the time interval for maintenance such as replenishment of the vapor deposition material and replacement of the crucible is extended by about 8 times, and mass productivity is greatly improved.

【0016】実施例4 本発明によるるつぼ(図1の形状のもの)を使用して、
図5の装置において、クラスタイオンビーム蒸着法によ
り薄膜形成を行った。
Example 4 Using a crucible according to the present invention (having the shape of FIG. 1),
In the apparatus of FIG. 5, thin film formation was performed by the cluster ion beam vapor deposition method.

【0017】基板径 1000mm クラスタイオンビーム源から基板までの距離 450m
m 薄膜形成時の真空度 1×10-4 Pa 使用したクラスタイオンビーム源 2基 基板の鉛直下方の半径上に蒸発源を設置 基板を回転 このとき形成した薄膜はMgF2であり、薄膜の膜厚は
約500nmである。このとき薄膜形成に要した時間
は、約1350秒であり、蒸着速度に換算すると4A/
secであった。また、膜厚の分布は±7%であった。
また同じ装置形状で、図2の高さ2.5cm円筒部の内
径1.0cmからなる通常のるつぼを使用したクラスタ
イオンビーム源を3基使用してMgF2の成膜を行う
と、薄膜形成に要した時間は、約7200秒であり、蒸
着速度に換算すると0.7A/secであり、膜厚の分
布は±20%であった。膜厚の分布状況は図7に示す。
Substrate diameter 1000 mm Distance from cluster ion beam source to substrate 450 m
m Degree of vacuum at the time of thin film formation 1 × 10 −4 Pa Cluster ion beam source used 2 bases Evaporation source was installed on the radius vertically below the substrate Rotated substrate The thin film formed at this time was MgF 2 The thickness is about 500 nm. At this time, the time required to form the thin film was about 1350 seconds, which was 4 A / in terms of the vapor deposition rate.
It was sec. The film thickness distribution was ± 7%.
Further, in the same apparatus shape, when three cluster ion beam sources using an ordinary crucible having an inner diameter of 1.0 cm of a 2.5 cm high cylindrical portion in FIG. 2 are used to form a MgF 2 film, a thin film is formed. It took about 7200 seconds to convert the vapor deposition rate to 0.7 A / sec, and the film thickness distribution was ± 20%. The film thickness distribution is shown in FIG.

【0018】この様に、本発明によるるつぼを使用した
場合、通常のるつぼを使用した場合と比較して、蒸発源
の数を極端に増加させる必要がなく、装置の費用も安価
で済み、大面積に薄膜形成を行うことに容易に対応が出
来る。
As described above, when the crucible according to the present invention is used, it is not necessary to extremely increase the number of evaporation sources as compared with the case where a normal crucible is used. It is possible to easily deal with forming a thin film on an area.

【0019】[0019]

【発明の効果】この様に、本発明のるつぼを使用するこ
とで、従来のるつぼを使用した場合と加熱方法におい
て、なんら変わることのない制御方式で、従来のるつぼ
と同等の温度制御精度でるつぼ、るつぼ内の蒸着物質を
加熱蒸発させることができ、かつ、高速に成膜すること
も、るつぼの交換、蒸着物質の補給することなく連続し
て長時間の薄膜形成が可能となる。
As described above, by using the crucible of the present invention, the temperature control accuracy is the same as that of the conventional crucible in the control system which does not change at all when the conventional crucible is used and the heating method. The crucible and the vapor deposition material in the crucible can be heated and evaporated, and the film can be formed at high speed, and the thin film can be continuously formed for a long time without exchanging the crucible and supplying the vapor deposition material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のるつぼの一例を示す縦断面図。FIG. 1 is a vertical sectional view showing an example of a crucible of the present invention.

【図2】従来のるつぼの上面図及びA−A断面図。FIG. 2 is a top view and a sectional view taken along line AA of a conventional crucible.

【図3】本発明のるつぼの縦断面図。FIG. 3 is a vertical sectional view of the crucible of the present invention.

【図4】本発明による実施例3の薄膜作製装置の模式断
面図。
FIG. 4 is a schematic cross-sectional view of a thin film forming apparatus of Example 3 according to the present invention.

【図5】本発明による実施例4の導膜作製装置の模式断
面図。
FIG. 5 is a schematic sectional view of a conductive film forming apparatus of Example 4 according to the present invention.

【図6】実施例3の膜厚分布。FIG. 6 is a film thickness distribution of Example 3.

【図7】実施例4の膜厚分布。FIG. 7 is a film thickness distribution of Example 4.

【符号の説明】[Explanation of symbols]

11,21,31 るつぼ本体 12,22,32 るつぼ蓋 13,33 蒸発物質 14,34,36 るつぼ加熱フィラメント 15,25,35 ノズル 16,36 ノズル加熱フィラメント 41,51 真空槽 42,52 基板ホルダー 43,53 基板基板 47,57 イオン化フィラメント 48,58 加速電極 59 水晶膜厚モニタ 11, 21, 31 Crucible body 12, 22, 32 Crucible lid 13, 33 Evaporated substance 14, 34, 36 Crucible heating filament 15, 25, 35 Nozzle 16, 36 Nozzle heating filament 41, 51 Vacuum tank 42, 52 Substrate holder 43 , 53 Substrate Substrate 47,57 Ionization filament 48,58 Accelerating electrode 59 Crystal thickness monitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢村 光治 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Sawamura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 るつぼの外形形状が中央部に開口部を有
するドーナツ形状であり、周方向に中空収納部が連らな
るるつぼの蓋に1個以上のノズルを有することを特徴と
する蒸発用るつぼ。
1. An evaporating apparatus, characterized in that the crucible has an outer shape of a donut shape having an opening in a central portion, and has a crucible lid having a plurality of hollow accommodating portions arranged in the circumferential direction and having one or more nozzles. Crucible.
【請求項2】 るつぼの蓋のノズル近傍に接触、もしく
は非接触で加熱手段を備えたことを特徴とする請求項1
記載の蒸発用るつぼ。
2. A heating means is provided in the vicinity of the nozzle of the lid of the crucible in contact or in non-contact with the nozzle.
The evaporation crucible described.
【請求項3】 るつぼ本体の底の中心部が、るつぼの蓋
に接触しない程度までるつぼ内側に突き出した形状であ
り、上記るつぼの蓋に1個以上のノズルを有することを
特徴とする蒸発用るつぼ。
3. A vaporizer for evaporation, characterized in that the center of the bottom of the crucible main body is shaped to protrude to the inside of the crucible to the extent that it does not come into contact with the lid of the crucible, and the lid of the crucible has one or more nozzles. Crucible.
【請求項4】 るつぼの蓋のノズル近傍に接触、もしく
は非接触で加熱手段を備えたことを特徴とする請求項3
記載の蒸発用るつぼ。
4. The heating means is provided in the vicinity of the nozzle of the lid of the crucible in contact with or not in contact with the nozzle.
The evaporation crucible described.
【請求項5】 常温固体状の物質を加熱蒸発させて被蒸
着基体上に蒸着する薄膜作製において、請求項1から4
のいずれかの蒸発用るつぼを用いて薄膜を形成すること
を特徴とする薄膜形成方法。
5. The method for producing a thin film, wherein a solid substance at room temperature is heated and vaporized to be vapor-deposited on a substrate to be vapor-deposited.
Forming a thin film using any one of the evaporation crucibles described above.
【請求項6】 請求項1から4のいずれかの蒸発用るつ
ぼを複数個用いて薄膜を形成することを特徴とする薄膜
形成方法。
6. A method for forming a thin film, which comprises forming a thin film using a plurality of evaporation crucibles according to any one of claims 1 to 4.
JP28676293A 1993-11-16 1993-11-16 Crucible for evaporation and thin film forming method using the same Pending JPH07138738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28676293A JPH07138738A (en) 1993-11-16 1993-11-16 Crucible for evaporation and thin film forming method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28676293A JPH07138738A (en) 1993-11-16 1993-11-16 Crucible for evaporation and thin film forming method using the same

Publications (1)

Publication Number Publication Date
JPH07138738A true JPH07138738A (en) 1995-05-30

Family

ID=17708723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28676293A Pending JPH07138738A (en) 1993-11-16 1993-11-16 Crucible for evaporation and thin film forming method using the same

Country Status (1)

Country Link
JP (1) JPH07138738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027251A (en) * 2002-06-21 2004-01-29 Samsung Nec Mobile Display Co Ltd Heating vessel for organic thin film deposition system
JP2013057129A (en) * 2004-03-22 2013-03-28 Global Oled Technology Llc Vaporizing fluidized organic materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027251A (en) * 2002-06-21 2004-01-29 Samsung Nec Mobile Display Co Ltd Heating vessel for organic thin film deposition system
JP2013057129A (en) * 2004-03-22 2013-03-28 Global Oled Technology Llc Vaporizing fluidized organic materials

Similar Documents

Publication Publication Date Title
US5976263A (en) Sources used in molecular beam epitaxy
JP2003160855A (en) Thin-film forming apparatus
US20070281081A1 (en) Vacuum Deposition Method and Sealed-Type Evaporation Source Apparatus for Vacuum Deposition
JPH07157868A (en) Resistance-heated vaporization source and formation of thin film
JPH06228740A (en) Vacuum deposition device
TWI607102B (en) Plasma enhanced deposition arrangement for evaporation of dielectric materials, deposition apparatus and methods of operating thereof
JPH07138738A (en) Crucible for evaporation and thin film forming method using the same
JP2016507645A5 (en)
JP2003231963A (en) Process and device for vacuum deposition
CN216947166U (en) Vacuum evaporation machine with double-crucible structure
JP2502653B2 (en) Metal thin film manufacturing equipment
JPH03173767A (en) Apparatus for forming thin film
JPH07126838A (en) Vapor-deposition boat
JPH03287761A (en) Thin film forming device
JPS5916973A (en) Formation of multilayered optical film
JPH1088325A (en) Device for forming thin coating
JPH01119663A (en) Thin film-forming apparatus
JPH10231192A (en) Accumulation of thin-film on substrate using multi-beam source
JPH03177565A (en) Crucible for vaporization source
JPH0448870B2 (en)
JPH0888137A (en) Method and device for manufacturing evaporated thin film
GB2175015A (en) Depositing vaporized material uniformly
JPS5887269A (en) Vapor source device
JPS62180064A (en) Coating method for inside surface of pipe by arc melting method
JPS58207371A (en) Vapor deposition source for vacuum deposition