JPH07138568A - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPH07138568A
JPH07138568A JP28700593A JP28700593A JPH07138568A JP H07138568 A JPH07138568 A JP H07138568A JP 28700593 A JP28700593 A JP 28700593A JP 28700593 A JP28700593 A JP 28700593A JP H07138568 A JPH07138568 A JP H07138568A
Authority
JP
Japan
Prior art keywords
liquid crystal
group
crystal composition
compound
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28700593A
Other languages
Japanese (ja)
Inventor
Hidekazu Kobayashi
英和 小林
Eiji Chino
英治 千野
Masayuki Yazaki
正幸 矢崎
Hideto Iizaka
英仁 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP28700593A priority Critical patent/JPH07138568A/en
Publication of JPH07138568A publication Critical patent/JPH07138568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To obtain the composition having good light resistance and a driving voltage low enough for satisfactory drive of an active element by using a specified compound for a liquid crystal composition used in a liquid display element composed of a polymer and a liquid crystal which are dispersed in or mixed with each other. CONSTITUTION:The composition is used in a display element composed of a polymer and a liquid crystal which are dispersed in or mixed with each other, and comprises 5-50wt.% of at least one member selected from the group consisting of a compound of formula I (wherein R is alkyl or alkoxyl), II, III, IV and V, or comprises, in addition to these compounds, 5-90wt.% of at least one member selected from the group consisting of a compound of formula VI, VII and VIII (wherein R<1> is F or H; and R<2> is F or alkyl). By selecting Rs of the compounds, a liquid crystal temperature range is the most suitable for the use can be attained. A dichroic coloring matter can be desirably used as the coloring matter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、情報機器端末、テレ
ビ、または広告板などの表示装置に応用される、高分子
と液晶を互いに分散または配向分散させた表示素子に用
いる液晶組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal composition used for a display device in which a polymer and a liquid crystal are dispersed or oriented and dispersed, which is applied to a display device such as an information equipment terminal, a television or an advertising board.

【0002】[0002]

【従来の技術】近年情報機器の小型携帯化が進行し、そ
れに登載する表示装置も省電力化が求められている。そ
こで最近、偏光板を用いない、明るい反射型表示装置が
開発されつつある。たとえば電界印加で透明、電界無印
加で散乱するもの(特公昭58−501631)や電界
印加で散乱、電界無印加で光吸収あるいは透明となるも
の(特開平4−227684、特開平5−119302
など)などが開発されている。また大容量表示に不可欠
なアクティブ素子との組み合わせを可能とするために、
低電圧で駆動できる液晶組成物が開発されている(高分
子分散型液晶にシアノフェニルエステル系液晶を用いる
例は特開平2−202984から特開平2−20298
6などに提示されている)。
2. Description of the Related Art In recent years, information devices have become smaller and more portable, and power consumption of display devices mounted on them has also been required. Therefore, recently, a bright reflective display device that does not use a polarizing plate is being developed. For example, a material which is transparent when an electric field is applied and which scatters when an electric field is not applied (Japanese Patent Publication No. 58-501631) or a material which scatters when an electric field is applied and absorbs light or becomes transparent when an electric field is not applied (Japanese Patent Application Laid-Open Nos. 4-227684 and 5-119302).
Etc.) are being developed. In addition, in order to enable the combination with the active element that is indispensable for large capacity display,
A liquid crystal composition that can be driven at a low voltage has been developed.
6 has been presented).

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
液晶組成物を用いた高分子分散型液晶表示素子では、そ
の製造過程で強い紫外線を用いて液晶中の高分子前駆体
を重合することが多いため、液晶が紫外線でダメージを
受けて比抵抗が低下してアクティブ素子で駆動できなく
なる課題を有している。また製造過程で紫外線を用いな
い物でも製造後光の当たる場所に保管しておくだけで、
照射される光により液晶が分解して比抵抗が低下してア
クティブ素子で駆動できなくなる課題を有していた。と
くに駆動電圧を低減できるシアノフェニルエステル系液
晶やベンゼン環に窒素を置換した骨格(ピリジン、ピリ
ミジン骨格など)を持つ液晶は耐光性が悪いという課題
を有していた。このように液晶の劣化が起こると、アク
ティブ素子と組み合わせた場合の電荷の保持率が低下し
て、アクティブ素子で駆動できなくなり、ひいては大容
量表示をできなくなり、ディスプレイとしての用途が限
られることになる。
However, in a polymer dispersed liquid crystal display device using such a liquid crystal composition, it is possible to polymerize the polymer precursor in the liquid crystal by using strong ultraviolet rays during the manufacturing process. Therefore, there is a problem in that the liquid crystal is damaged by ultraviolet rays, the specific resistance is lowered, and the liquid crystal cannot be driven by the active element. Also, even if you do not use ultraviolet rays in the manufacturing process, just store it in a place exposed to light after manufacturing,
There is a problem that the liquid crystal is decomposed by the irradiated light and the specific resistance is lowered, so that the active element cannot be driven. In particular, a cyanophenyl ester-based liquid crystal that can reduce the driving voltage and a liquid crystal having a benzene ring-substituted skeleton (pyridine, pyrimidine skeleton, etc.) have a problem of poor light resistance. When the liquid crystal deteriorates in this way, the charge retention rate when combined with an active element decreases, it becomes impossible to drive with the active element, and it becomes impossible to display a large capacity, which limits its use as a display. Become.

【0004】そこで本発明はこのような課題を解決する
ものであり、その目的とするところは、耐光性の良好
な、アクティブ素子で十分駆動できるほどに駆動電圧の
低い液晶組成物を提供するところにある。
Therefore, the present invention is intended to solve such a problem, and an object of the present invention is to provide a liquid crystal composition having a good light resistance and a low driving voltage which can be sufficiently driven by an active element. It is in.

【0005】[0005]

【課題を解決するための手段】本発明の液晶組成物は、
高分子と液晶を互いに分散あるいは配向分散させた表示
素子に用いる液晶組成物について、化合物群I
The liquid crystal composition of the present invention comprises:
Regarding the liquid crystal composition used in the display device in which the polymer and the liquid crystal are dispersed or aligned and dispersed, Compound Group I

【0006】[0006]

【化9】 [Chemical 9]

【0007】(Rはアルキル基またはアルコキシ基)化
合物群II
(R is an alkyl group or an alkoxy group) Compound group II

【0008】[0008]

【化10】 [Chemical 10]

【0009】(Rはアルキル基またはアルコキシ基)化
合物群III
(R is an alkyl group or an alkoxy group) Compound group III

【0010】[0010]

【化11】 [Chemical 11]

【0011】(Rはアルキル基またはアルコキシ基)化
合物群IV
(R is an alkyl group or an alkoxy group) Compound group IV

【0012】[0012]

【化12】 [Chemical 12]

【0013】(Rはアルキル基またはアルコキシ基)化
合物群V
(R is an alkyl group or an alkoxy group) Compound group V

【0014】[0014]

【化13】 [Chemical 13]

【0015】(Rはアルキル基またはアルコキシ基)で
示される化合物群の中から少なくとも1化合物を含み、
これらの化合物群の組成比が5重量%から50重量%で
あることを特徴とする。
At least one compound is selected from the group of compounds represented by the formula (R is an alkyl group or an alkoxy group),
The composition ratio of these compound groups is characterized by being 5% by weight to 50% by weight.

【0016】さらに前記液晶組成物中に、化合物群VIFurther, in the above liquid crystal composition, compound group VI

【0017】[0017]

【化14】 [Chemical 14]

【0018】(Rはアルキル基またはアルコキシ基)化
合物群VII
(R is an alkyl group or an alkoxy group) Compound group VII

【0019】[0019]

【化15】 [Chemical 15]

【0020】(Rはアルキル基またはアルコキシ基)化
合物群VIII
(R is an alkyl group or an alkoxy group) Compound group VIII

【0021】[0021]

【化16】 [Chemical 16]

【0022】(Rはアルキル基またはアルコキシ基、R
1は、フッ素または水素、R2はフッ素またはアルキル
基)で示される化合物群の中から少なくとも1化合物群
を5%から90%含むことを特徴とする。
(R is an alkyl group or an alkoxy group, R is
1 is 5 or 90% of at least one compound group selected from the group of compounds represented by fluorine or hydrogen, and R2 is fluorine or an alkyl group).

【0023】また、上記液晶組成物中に2色性色素を含
有することも特徴とする。以下詳細を実施例で示す。
The liquid crystal composition is also characterized by containing a dichroic dye. Details will be shown below in Examples.

【0024】[0024]

【実施例】 (実施例1)本実施例では先に示した化合物群Iと化合
物群V、化合物群VIを混合して用いた例を示す。本実
施例で用いた液晶の組成を示す。
EXAMPLES Example 1 In this example, an example in which the compound group I, the compound group V, and the compound group VI shown above are mixed and used is shown. The composition of the liquid crystal used in this example is shown.

【0025】[0025]

【表1】 [Table 1]

【0026】この液晶組成物を用いて以下の種種の方
法、実施例2〜実施例9により表示素子を作製した。
Using this liquid crystal composition, display devices were produced by the following various methods and Examples 2 to 9.

【0027】それぞれの化合物群のRについてはここに
示したものに限らず、用途に応じ最適な液晶温度範囲を
とるように決めれば良い。それぞれの化合物群の混合比
はここに示した値に限らず、Rの種類および長さ、用途
から要求される動作温度範囲および電気光学特性を考慮
して決められる。
The R of each compound group is not limited to those shown here, but may be determined so as to have an optimum liquid crystal temperature range depending on the application. The mixing ratio of each compound group is not limited to the values shown here, and can be determined in consideration of the type and length of R, the operating temperature range required for the application, and the electro-optical characteristics.

【0028】ここで用いた化合物群VIについてはフッ
素の置換する位置により様々なバリエーションがあり、
ここではその1部を示したに過ぎない。たとえばフッ素
が全てのフェニル基に置換していても良い。
The compound group VI used here has various variations depending on the substitution position of fluorine,
Here, only one part is shown. For example, fluorine may be substituted for all phenyl groups.

【0029】(従来例1)従来例として化合物群Iのか
わりにシアノフェニルエステル化合物を用いて、
(Conventional Example 1) As a conventional example, a cyanophenyl ester compound was used instead of the compound group I,

【0030】[0030]

【表2】 [Table 2]

【0031】なる組成の液晶組成物を作製して以下の従
来例2〜従来例9に供した。
A liquid crystal composition having the following composition was prepared and used in the following conventional examples 2 to 9.

【0032】(実施例2)本実施例では実施例1で作製
した液晶組成物を用いて高分子粒子配向型表示素子を作
製してその耐光性を調べた例を示す。
(Example 2) In this example, a liquid crystal composition prepared in Example 1 was used to prepare a polymer particle alignment type display device, and its light resistance was examined.

【0033】実施例1の液晶組成物を96重量%、カイ
ラル成分R1011(メルク社製)を0.5重量%、2
色性色素(M361:SI512:M137=1.4重
量%:1.7重量%:0.4重量%、いずれも三井東圧
染料社製)を混合して100重量%とした。この液晶組
成物95%と高分子前駆体としてターフェニルメタクリ
レート3.3%、フロロターフェニルジメタクリレート
1.7%を混合したものを、配向処理を施した2枚の電
極付き基板間に封入した。2枚の基板の一方にはアクテ
ィブ素子を形成した。アクティブ素子はMIM素子、T
FT素子どちらでも640×480の表示が可能であっ
た。裏側基板の電極は反射性電極としたが、透明電極で
も良い。その場合、表示素子の裏側に反射板を配置する
と明るさが向上する。液晶層の厚さは5μmとしたが、
3μmから10μmの間で用途に応じて最適化すると良
い。この液晶/高分子前駆体混合層に液晶相にて波長3
00nm〜400nm、強度3.5mW/cm2なる紫
外線を照射して液晶中から高分子粒子を析出させた。こ
の表示素子の表面にノングレア処理、減反射処理を施し
た。もちろんこのような処理を施さなくても良いし、ど
ちらか一方のみでも十分視認性は向上する。
96% by weight of the liquid crystal composition of Example 1, 0.5% by weight of chiral component R1011 (manufactured by Merck & Co.), 2
Color pigments (M361: SI512: M137 = 1.4% by weight: 1.7% by weight: 0.4% by weight, all manufactured by Mitsui Toatsu Dyes Co., Ltd.) were mixed to obtain 100% by weight. A mixture of 95% of this liquid crystal composition, 3.3% of terphenyl methacrylate and 1.7% of fluoroterphenyl dimethacrylate as a polymer precursor was sealed between two substrates with electrodes subjected to an alignment treatment. . An active element was formed on one of the two substrates. Active element is MIM element, T
A 640 × 480 display was possible with either FT element. Although the electrode on the back substrate is a reflective electrode, it may be a transparent electrode. In that case, the brightness is improved by disposing the reflection plate on the back side of the display element. The thickness of the liquid crystal layer was 5 μm,
It is preferable to optimize between 3 μm and 10 μm according to the application. This liquid crystal / polymer precursor mixed layer has a wavelength of 3 in the liquid crystal phase.
Ultraviolet rays having a wavelength of 00 nm to 400 nm and an intensity of 3.5 mW / cm 2 were irradiated to precipitate polymer particles from the liquid crystal. The surface of this display element was subjected to antiglare treatment and antireflection treatment. Of course, it is not necessary to perform such a treatment, and the visibility is sufficiently improved with only one of them.

【0034】こうして作製した表示素子の液晶/高分子
層に駆動電圧5V印加して、表示素子表面の法線から2
0度傾いた方向から光を入射して、法線方向への反射光
強度を測定した場合に、白い紙と同等の明るさが得られ
た。またキセノンランプにて白色光を720時間(積算
光量20000La)照射したところ、保持率が70%
に低下した。
A driving voltage of 5 V was applied to the liquid crystal / polymer layer of the display device thus manufactured, and the voltage was set to 2 from the normal line of the surface of the display device.
Brightness equivalent to that of white paper was obtained when light was incident from a direction inclined by 0 ° and the reflected light intensity in the normal direction was measured. When the white light was irradiated with a xenon lamp for 720 hours (integrated light amount of 20000 La), the retention rate was 70%.
Fell to.

【0035】本実施例ではアクティブ素子を形成した例
を示したが、もちろんアクティブ素子を形成しなくて
も、低駆動電圧である効果は得られる。
In this embodiment, an example in which an active element is formed is shown, but of course the effect of a low driving voltage can be obtained without forming an active element.

【0036】(従来例2)従来例1に示した液晶組成物
を用いて実施例2の構成の表示素子を作製して同様の耐
光性試験を行うと、保持率は10%以下となった。
(Conventional Example 2) When a display element having the structure of Example 2 was manufactured using the liquid crystal composition shown in Conventional Example 1 and the same light resistance test was conducted, the retention rate was 10% or less. .

【0037】(実施例3)本実施例では実施例2におい
て2色性色素を用いない例を示した。 実施例1の液晶
組成物を99.5重量%、カイラル成分R1011(メ
ルク社製)を0.5重量%を混合して100重量%とし
た。この液晶組成物95%と高分子前駆体としてターフ
ェニルメタクリレート3.3%、フロロターフェニルジ
メタクリレート1.7%を混合したものを、配向処理を
施した2枚の電極付き基板間に封入した。2枚の基板の
一方にはアクティブ素子を形成した。アクティブ素子は
MIM素子、TFT素子どちらでも640×480の表
示が可能であった。裏側基板の電極は反射性電極とした
が、透明電極でも良い。その場合、表示素子の裏側に反
射板あるいは光吸収板を配置すると視認性が向上する。
液晶層の厚さは5μmとしたが、3μmから10μmの
間で用途に応じて最適化すると良い。この液晶/高分子
前駆体混合層に液晶相にて波長300nm〜400n
m、強度3.5mW/cm2なる紫外線を照射して液晶
中から高分子粒子を析出させた。この表示素子の表面に
ノングレア処理、減反射処理を施した。もちろんこのよ
うな処理を施さなくても良いし、どちらか一方のみでも
十分視認性は向上する。
(Embodiment 3) In this embodiment, an example in which the dichroic dye is not used in Embodiment 2 is shown. 99.5% by weight of the liquid crystal composition of Example 1 and 0.5% by weight of chiral component R1011 (manufactured by Merck) were mixed to make 100% by weight. A mixture of 95% of this liquid crystal composition, 3.3% of terphenyl methacrylate and 1.7% of fluoroterphenyl dimethacrylate as a polymer precursor was sealed between two substrates with electrodes subjected to an alignment treatment. . An active element was formed on one of the two substrates. Both the MIM element and the TFT element could be displayed as 640 × 480 active elements. Although the electrode on the back substrate is a reflective electrode, it may be a transparent electrode. In that case, visibility is improved by disposing a reflection plate or a light absorption plate on the back side of the display element.
Although the thickness of the liquid crystal layer is set to 5 μm, it is preferable to optimize the thickness between 3 μm and 10 μm according to the application. The liquid crystal / polymer precursor mixed layer has a liquid crystal phase with a wavelength of 300 nm to 400 n.
Ultraviolet rays having an intensity of m and an intensity of 3.5 mW / cm 2 were irradiated to precipitate polymer particles from the liquid crystal. The surface of this display element was subjected to antiglare treatment and antireflection treatment. Of course, it is not necessary to perform such a treatment, and the visibility is sufficiently improved with only one of them.

【0038】こうして作製した表示素子の液晶/高分子
層に駆動電圧5V印加して、表示素子表面の法線から2
0度傾いた方向から光を入射して、法線方向への反射光
強度を測定した場合に、白い紙と同等の明るさが得られ
た。またキセノンランプにて白色光を720時間(積算
光量20000La)照射したところ、保持率が80%
に低下した。
A driving voltage of 5 V was applied to the liquid crystal / polymer layer of the display device thus manufactured, and the drive voltage was set to 2 from the normal line of the display device surface.
Brightness equivalent to that of white paper was obtained when light was incident from a direction inclined by 0 ° and the reflected light intensity in the normal direction was measured. When the white light was irradiated with a xenon lamp for 720 hours (integrated light amount of 20000 La), the retention rate was 80%.
Fell to.

【0039】本実施例ではアクティブ素子を形成した例
を示したが、もちろんアクティブ素子を形成しなくて
も、低駆動電圧である効果は得られる。
In this embodiment, an example in which an active element is formed is shown, but of course the effect of a low driving voltage can be obtained without forming an active element.

【0040】(従来例3)従来例1の液晶組成物を用い
て実施例3の構成の表示素子を作製して同様の耐光性試
験を行うと、保持率は20%以下となった。
(Conventional Example 3) When a display element having the structure of Example 3 was prepared using the liquid crystal composition of Conventional Example 1 and the same light resistance test was conducted, the retention rate was 20% or less.

【0041】(実施例4)本実施例では実施例1の液晶
組成物を用いて高分子ゲルネットワーク配向型液晶表示
素子を作製してその耐光性を調べた例を示す。
(Example 4) In this example, a polymer gel network alignment type liquid crystal display device was produced using the liquid crystal composition of Example 1 and its light resistance was examined.

【0042】実施例1の液晶組成物を96重量%、カイ
ラル成分R1011(メルク社製)を0.5重量%、2
色性色素(M361:SI512:M137=1.4重
量%:1.7重量%:0.4重量%、いずれも三井東圧
染料社製)を混合して100重量%とした。この液晶組
成物97%と高分子前駆体としてC6H
96% by weight of the liquid crystal composition of Example 1, 0.5% by weight of chiral component R1011 (manufactured by Merck & Co.), 2
Color pigments (M361: SI512: M137 = 1.4% by weight: 1.7% by weight: 0.4% by weight, all manufactured by Mitsui Toatsu Dyes Co., Ltd.) were mixed to obtain 100% by weight. 97% of this liquid crystal composition and C6H as a polymer precursor

【0043】[0043]

【化17】 [Chemical 17]

【0044】を3%および光重合開始剤としてイルガキ
ュア651(チバガイギー社製)を混合したものを、配
向処理を施した2枚の電極付き基板間に封入した。2枚
の基板の一方にはアクティブ素子を形成した。アクティ
ブ素子はMIM素子、TFT素子どちらでも640×4
80の表示が可能であった。裏側基板の電極は反射性電
極としたが、透明電極でも良い。その場合、表示素子の
裏側に反射板を配置すると明るさが向上する。液晶層の
厚さは5μmとしたが、3μmから10μmの間で用途
に応じて最適化すると良い。この液晶/高分子前駆体混
合層に液晶相にて波長300nm〜400nm、強度
3.5mW/cm2なる紫外線を照射して液晶中に高分
子ゲルネットワークを形成した。この表示素子の表面に
ノングレア処理、減反射処理を施した。もちろんこのよ
うな処理を施さなくても良いし、どちらか一方のみでも
十分視認性は向上する。
A mixture of 3% and Irgacure 651 (manufactured by Ciba Geigy) as a photopolymerization initiator was sealed between two orientation-treated substrates with electrodes. An active element was formed on one of the two substrates. 640 × 4 active elements for both MIM element and TFT element
80 indications were possible. Although the electrode on the back substrate is a reflective electrode, it may be a transparent electrode. In that case, the brightness is improved by disposing the reflection plate on the back side of the display element. Although the thickness of the liquid crystal layer is set to 5 μm, it is preferable to optimize the thickness between 3 μm and 10 μm according to the application. This liquid crystal / polymer precursor mixed layer was irradiated with ultraviolet rays having a wavelength of 300 nm to 400 nm and an intensity of 3.5 mW / cm 2 in the liquid crystal phase to form a polymer gel network in the liquid crystal. The surface of this display element was subjected to antiglare treatment and antireflection treatment. Of course, it is not necessary to perform such a treatment, and the visibility is sufficiently improved with only one of them.

【0045】こうして作製した表示素子の液晶/高分子
層に駆動電圧10V印加して、表示素子表面の法線から
20度傾いた方向から光を入射して、法線方向への反射
光強度を測定した場合に、白い紙と同等の明るさが得ら
れた。またキセノンランプにて白色光を720時間(積
算光量20000La)照射したところ、保持率が60
%に低下した。
A driving voltage of 10 V was applied to the liquid crystal / polymer layer of the display device thus manufactured, and light was incident from a direction inclined by 20 degrees from the normal line of the display device surface, and the reflected light intensity in the normal direction was obtained. When measured, the same brightness as white paper was obtained. When the white light was irradiated with a xenon lamp for 720 hours (total light amount: 20000 La), the retention rate was 60%.
Fell to%.

【0046】本実施例ではアクティブ素子を形成した例
を示したが、もちろんアクティブ素子を形成しなくて
も、低駆動電圧である効果は得られる。
In this embodiment, an example in which an active element is formed is shown, but of course the effect of a low driving voltage can be obtained without forming an active element.

【0047】(従来例4)従来例1の液晶組成物を用い
て実施例4の構成の表示素子を作製して同様の耐光性試
験を行うと、保持率は5%以下となった。
(Conventional Example 4) When a display element having the structure of Example 4 was prepared using the liquid crystal composition of Conventional Example 1 and the same light resistance test was conducted, the retention rate was 5% or less.

【0048】(実施例5)本実施例では実施例4におい
て2色性色素を用いない例を示した。 実施例1の液晶
組成物を99.5重量%、カイラル成分R1011(メ
ルク社製)を0.5重量%を混合して100重量%とし
た。この液晶組成物97%と高分子前駆体として先に示
したC6Hを3%および光重合開始剤としてイルガキュ
ア651(チバガイギー社製)を混合したものを、配向
処理を施した2枚の電極付き基板間に封入した。2枚の
基板の一方にはアクティブ素子を形成した。アクティブ
素子はMIM素子、TFT素子どちらでも640×48
0の表示が可能であった。裏側基板の電極は反射性電極
としたが、透明電極でも良い。その場合、表示素子の裏
側に反射板あるいは光吸収板を配置すると視認性が向上
する。液晶層の厚さは5μmとしたが、3μmから10
μmの間で用途に応じて最適化すると良い。この液晶/
高分子前駆体混合層に液晶相にて波長300nm〜40
0nm、強度3.5mW/cm2なる紫外線を照射して
液晶中に高分子ゲルネットワークを形成した。この表示
素子の表面にノングレア処理、減反射処理を施した。も
ちろんこのような処理を施さなくても良いし、どちらか
一方のみでも十分視認性は向上する。
(Embodiment 5) In this embodiment, an example in which the dichroic dye is not used in Embodiment 4 is shown. 99.5% by weight of the liquid crystal composition of Example 1 and 0.5% by weight of chiral component R1011 (manufactured by Merck) were mixed to make 100% by weight. Two 97% liquid crystal compositions, 3% C6H shown above as a polymer precursor, and Irgacure 651 (manufactured by Ciba Geigy) as a photopolymerization initiator were mixed, and two substrates with electrodes were subjected to an alignment treatment. Enclosed in between. An active element was formed on one of the two substrates. Either MIM element or TFT element as active element is 640 × 48
It was possible to display 0. Although the electrode on the back substrate is a reflective electrode, it may be a transparent electrode. In that case, visibility is improved by disposing a reflection plate or a light absorption plate on the back side of the display element. The thickness of the liquid crystal layer was set to 5 μm, but from 3 μm to 10 μm
It is advisable to optimize between μm according to the application. This liquid crystal /
The polymer precursor mixed layer has a wavelength of 300 nm to 40 in the liquid crystal phase.
The polymer gel network was formed in the liquid crystal by irradiating with ultraviolet rays of 0 nm and an intensity of 3.5 mW / cm 2. The surface of this display element was subjected to antiglare treatment and antireflection treatment. Of course, it is not necessary to perform such a treatment, and the visibility is sufficiently improved with only one of them.

【0049】こうして作製した表示素子の液晶/高分子
層に駆動電圧10V印加して、表示素子表面の法線から
20度傾いた方向から光を入射して、法線方向への反射
光強度を測定した場合に、白い紙と同等の明るさが得ら
れた。またキセノンランプにて白色光を720時間(積
算光量20000La)照射したところ、保持率が70
%に低下した。尚、保持率とは60μ秒間10Vの電界
を印加してその後電界を0に戻して、50ミリ秒後の液
晶間に保持された電圧の初期電圧(10V)に対する比
率である。
A driving voltage of 10 V is applied to the liquid crystal / polymer layer of the display device thus manufactured, and light is incident from a direction inclined by 20 degrees from the normal line of the display device surface, and the reflected light intensity in the normal line direction is obtained. When measured, the same brightness as white paper was obtained. When a white light was irradiated for 720 hours (integrated light quantity of 20000 La) with a xenon lamp, the retention rate was 70%.
Fell to%. The holding ratio is the ratio of the voltage held between the liquid crystals 50 milliseconds after the electric field of 10 V is applied to the liquid crystal after applying the electric field of 10 V for 60 μs and then returned to 0.

【0050】本実施例ではアクティブ素子を形成した例
を示したが、もちろんアクティブ素子を形成しなくて
も、低駆動電圧である効果は得られる。
In this embodiment, an example in which the active element is formed is shown, but of course, the effect of a low driving voltage can be obtained without forming the active element.

【0051】(従来例5)従来例1の液晶組成物を用い
て実施例5の構成の表示素子を作製して同様の耐光性試
験を行うと、保持率は10%以下となった。
(Conventional Example 5) When a display element having the structure of Example 5 was produced using the liquid crystal composition of Conventional Example 1 and the same light resistance test was conducted, the retention rate was 10% or less.

【0052】(実施例6)本実施例では実施例1に示し
た液晶組成物を微細液滴マトリックス型表示素子に用い
た例を示す。
(Embodiment 6) In this embodiment, an example in which the liquid crystal composition shown in Embodiment 1 is used in a fine droplet matrix type display device will be described.

【0053】実施例1の液晶組成物に実施例2で記述し
た2色性色素を1%混合したものと、紫外線硬化性樹脂
NOA65(ノーランド社製)を1.6:1の比率で混
合し、室温で透明な溶液が得られるまで攪拌する。この
溶液を2枚の電極付き基板間に封入した。2枚の基板の
一方にはアクティブ素子を形成した。アクティブ素子は
MIM素子、TFT素子どちらでも640×480の表
示が可能であった。裏側基板の電極は反射性電極とした
が、透明電極でも良い。その場合、表示素子の裏側に反
射板を配置すると視認性が向上する。反射面を光散乱す
るように形成すると視認性が向上した。液晶層の厚さは
15μmとしたが、5μmから20μmの間で用途に応
じて最適化すると良い。この液晶/高分子前駆体混合層
に液晶相にて波長200nm〜400nm、強度20m
W/cm2なる紫外線を照射して高分子中に液晶の微細
液滴を分散した構造を形成した。この表示素子の表面に
ノングレア処理、減反射処理を施した。もちろんこのよ
うな処理を施さなくても良いし、どちらか一方のみでも
十分視認性は向上する。
The liquid crystal composition of Example 1 was mixed with 1% of the dichroic dye described in Example 2 and the ultraviolet curable resin NOA65 (manufactured by Norland Co.) at a ratio of 1.6: 1. Stir at room temperature until a clear solution is obtained. This solution was sealed between two substrates with electrodes. An active element was formed on one of the two substrates. Both the MIM element and the TFT element could be displayed as 640 × 480 active elements. Although the electrode on the back substrate is a reflective electrode, it may be a transparent electrode. In that case, the visibility is improved by disposing the reflection plate on the back side of the display element. When the reflecting surface was formed so as to scatter light, the visibility was improved. The thickness of the liquid crystal layer is set to 15 μm, but it may be optimized between 5 μm and 20 μm according to the application. In the liquid crystal / polymer precursor mixed layer, the liquid crystal phase has a wavelength of 200 nm to 400 nm and an intensity of 20 m.
Ultraviolet rays of W / cm 2 were irradiated to form a structure in which fine liquid crystal droplets were dispersed in a polymer. The surface of this display element was subjected to antiglare treatment and antireflection treatment. Of course, it is not necessary to perform such a treatment, and the visibility is sufficiently improved with only one of them.

【0054】こうして作製した表示素子の液晶/高分子
層に駆動電圧10V印加して、表示素子表面の法線から
20度傾いた方向から光を入射して、法線方向への反射
光強度を測定した場合に、白い紙と同等の明るさが得ら
れた。またキセノンランプにて白色光を720時間(積
算光量20000La)照射したところ、保持率が60
%に低下した。
A driving voltage of 10 V was applied to the liquid crystal / polymer layer of the display element thus manufactured, and light was incident from a direction inclined by 20 degrees from the normal line of the display element surface, and the reflected light intensity in the normal direction was measured. When measured, the same brightness as white paper was obtained. When the white light was irradiated with a xenon lamp for 720 hours (total light amount: 20000 La), the retention rate was 60%.
Fell to%.

【0055】本実施例ではアクティブ素子を形成した例
を示したが、もちろんアクティブ素子を形成しなくて
も、低駆動電圧である効果は得られる。
In this embodiment, an example in which an active element is formed is shown, but of course the effect of a low driving voltage can be obtained without forming an active element.

【0056】(従来例6)従来例1の液晶組成物を用い
て実施例6の構成の表示素子を作製して同様の耐光性試
験を行うと、保持率は5%以下となった。
(Conventional Example 6) When a display element having the structure of Example 6 was prepared using the liquid crystal composition of Conventional Example 1 and the same light resistance test was conducted, the retention rate was 5% or less.

【0057】本実施例では2色性色素を用いたが、用い
なくても表示素子として機能する。その際、裏基板の形
成電極には、反射性または光吸収性の材料を用いると視
認性が向上する。または透明電極として表示素子の裏面
に、光反射層または光吸収層を設けても良い。
Although a dichroic dye is used in this embodiment, it functions as a display element without using it. At that time, the visibility is improved by using a reflective or light absorbing material for the forming electrode of the back substrate. Alternatively, a light reflection layer or a light absorption layer may be provided as a transparent electrode on the back surface of the display element.

【0058】(実施例7)本実施例では実施例1に示し
た液晶組成物を微細液滴マトリックス型表示素子に用い
た別の例を示す。
Example 7 In this example, another example in which the liquid crystal composition shown in Example 1 is used in a fine liquid crystal matrix type display device will be described.

【0059】実施例1で示した液晶組成物に実施例2で
示した2色性色素を1%混合したものを、室温でエピコ
ート828およびキャプキュア3−800(ともに油化
シェル社製)と共に1:1:1の比率で透明な溶液が得
られるまで攪拌した。その後素早く以下に示す空セルに
封入する。2枚の電極付きガラス基板の電極面を向かい
合わせて間隙5μmとして周囲をモールドして空セルと
した。一方の基板に形成する電極は透明電極として、も
う一方の基板にはアクティブ素子を形成した後、光散乱
性の反射電極を形成した。光散乱性の反射電極は、アル
ミニウムとシリコンを共蒸着することにより形成した。
2枚の基板に透明電極を形成して、表示素子の裏面に光
散乱層を配置しても良い。こうして作製した空セルに先
の液晶−高分子前駆体混合物を封入後、硬化促進のため
100℃に加熱した。こうして高分子中に液晶の微細液
滴を分散した構造を形成した。この表示素子の表面にノ
ングレア処理、減反射処理を施した。もちろんこのよう
な処理を施さなくても良いし、どちらか一方のみでも十
分視認性は向上する。
A mixture of the liquid crystal composition shown in Example 1 and 1% of the dichroic dye shown in Example 2 was used at room temperature together with Epicoat 828 and Capcure 3-800 (both manufactured by Yuka Shell Co., Ltd.). Stirred at a ratio of: 1: 1 until a clear solution was obtained. Then, quickly fill the empty cells shown below. Two glass substrates with electrodes were made to face each other so that the gap between them was 5 μm and the periphery was molded to form an empty cell. An electrode formed on one substrate was a transparent electrode, and an active element was formed on the other substrate, and then a light-scattering reflective electrode was formed. The light-scattering reflective electrode was formed by co-evaporating aluminum and silicon.
A transparent electrode may be formed on two substrates and a light scattering layer may be arranged on the back surface of the display element. The liquid crystal-polymer precursor mixture was sealed in the empty cell thus prepared, and then heated to 100 ° C. to accelerate curing. Thus, a structure in which fine liquid crystal droplets were dispersed in the polymer was formed. The surface of this display element was subjected to antiglare treatment and antireflection treatment. Of course, it is not necessary to perform such a treatment, and the visibility is sufficiently improved with only one of them.

【0060】こうして作製した表示素子の液晶/高分子
層に駆動電圧10V印加して、表示素子表面の法線から
20度傾いた方向から光を入射して、法線方向への反射
光強度を測定した場合に、白い紙と同等の明るさが得ら
れた。またキセノンランプにて白色光を720時間(積
算光量20000La)照射したところ、保持率が50
%に低下した。
A driving voltage of 10 V was applied to the liquid crystal / polymer layer of the display element thus manufactured, and light was incident from a direction inclined by 20 degrees from the normal line of the display element surface, and the reflected light intensity in the normal direction was obtained. When measured, the same brightness as white paper was obtained. When the white light was irradiated with a xenon lamp for 720 hours (total light amount: 20000 La), the retention rate was 50%.
Fell to%.

【0061】本実施例ではアクティブ素子を形成した例
を示したが、もちろんアクティブ素子を形成しなくて
も、低駆動電圧である効果は得られる。
In this embodiment, an example in which an active element is formed is shown, but of course the effect of a low drive voltage can be obtained without forming an active element.

【0062】本実施例では2色性色素を用いたが、用い
なくても表示素子として機能する。その際、裏基板に形
成電極には、反射性または光吸収性の材料を用いると視
認性が向上する。または透明電極として表示素子の裏面
に、光反射層または光吸収層を設けても良い。
Although a dichroic dye is used in this example, it functions as a display element without using it. At that time, the visibility is improved by using a reflective or light absorbing material for the formation electrode on the back substrate. Alternatively, a light reflection layer or a light absorption layer may be provided as a transparent electrode on the back surface of the display element.

【0063】(従来例7)従来例1の液晶組成物を用い
て実施例7の構成の表示素子を作製して同様の耐光性試
験を行うと、保持率は3%以下となった。
(Conventional Example 7) When a display element having the structure of Example 7 was prepared using the liquid crystal composition of Conventional Example 1 and the same light resistance test was conducted, the retention rate was 3% or less.

【0064】(実施例8)本実施例では実施例1に示し
た液晶組成物を微細液滴マトリックス型表示素子に用い
たさらに別の例を示す。実施例1で作製した液晶組成物
に実施例2で示した2色性色素を2%混合したもの5g
を、20%PVA水溶液15gと共に室温で2分間20
00rpmで攪拌した。得られた溶液を24時間脱気し
て、アクティブ素子および画素電極付きガラス基板上
に、乾燥した後に10μm程度の厚みになるように製膜
した。その後85℃にて24時間乾燥して電極付き対向
基板を張り合わせた。この時真空中で張り合わせても良
いし、常圧で液晶を介して張り合わせても良い。こうし
て高分子中に液晶の微細液滴を分散した構造を形成し
た。この表示素子の表面にノングレア処理、減反射処理
を施した。もちろんこのような処理を施さなくても良い
し、どちらか一方のみでも十分視認性は向上する。
(Embodiment 8) This embodiment shows still another example in which the liquid crystal composition shown in Embodiment 1 is used for a fine liquid crystal matrix type display device. 5 g of the liquid crystal composition prepared in Example 1 mixed with 2% of the dichroic dye shown in Example 2
For 20 minutes at room temperature with 15 g of 20% PVA aqueous solution.
It was stirred at 00 rpm. The obtained solution was degassed for 24 hours, and dried to form a film having a thickness of about 10 μm on a glass substrate with active elements and pixel electrodes. After that, it was dried at 85 ° C. for 24 hours, and the counter substrate with electrodes was laminated. At this time, they may be laminated in a vacuum, or they may be laminated at normal pressure through a liquid crystal. Thus, a structure in which fine liquid crystal droplets were dispersed in the polymer was formed. The surface of this display element was subjected to antiglare treatment and antireflection treatment. Of course, it is not necessary to perform such a treatment, and the visibility is sufficiently improved with only one of them.

【0065】こうして作製した表示素子の液晶/高分子
層に駆動電圧10V印加して、表示素子表面の法線から
20度傾いた方向から光を入射して、法線方向への反射
光強度を測定した場合に、白い紙と同等の明るさが得ら
れた。またキセノンランプにて白色光を720時間(積
算光量20000La)照射したところ、保持率が80
%に低下した。
A driving voltage of 10 V was applied to the liquid crystal / polymer layer of the display element thus manufactured, and light was incident from a direction inclined by 20 degrees from the normal line of the display element surface, and the reflected light intensity in the normal direction was measured. When measured, the same brightness as white paper was obtained. When the white light was irradiated with a xenon lamp for 720 hours (total light amount: 20000 La), the retention rate was 80%.
Fell to%.

【0066】本実施例ではアクティブ素子を形成した例
を示したが、もちろんアクティブ素子を形成しなくて
も、低駆動電圧である効果は得られる。
In this embodiment, an example in which an active element is formed has been shown, but of course the effect of a low driving voltage can be obtained without forming an active element.

【0067】本実施例では2色性色素を用いたが、用い
なくても表示素子として機能する。その際、裏基板に形
成電極には、反射性または光吸収性の材料を用いると視
認性が向上する。または透明電極として表示素子の裏面
に、光反射層または光吸収層を設けても良い。
Although a dichroic dye is used in this embodiment, it functions as a display element without using it. At that time, the visibility is improved by using a reflective or light absorbing material for the formation electrode on the back substrate. Alternatively, a light reflection layer or a light absorption layer may be provided as a transparent electrode on the back surface of the display element.

【0068】(従来例8)従来例1の液晶組成物を用い
て実施例8の構成の表示素子を作製して同様の耐光性試
験を行うと、保持率は10%以下となった。
(Conventional Example 8) When a display element having the structure of Example 8 was produced using the liquid crystal composition of Conventional Example 1 and the same light resistance test was conducted, the retention rate was 10% or less.

【0069】(実施例9)本実施例では実施例1で示し
た液晶組成物を用いて高分子ネットワーク型表示素子を
作製した例を示す。実施例1で示した液晶組成物に実施
例1で示した2色性色素を2%混合したものと、高分子
前駆体トリメチロールプロパン及び光重合開始剤2−ヒ
ドロキシ−2−メチル−1−フェニルプロパン−1−オ
ンを80:19.8:0.2の比率で混合して攪拌し、
後に説明する空セルに封入した。2枚の電極付きガラス
基板の電極面を向かい合わせて間隙5μmとして周囲を
モールドして空セルとした。一方の基板に形成する電極
は透明電極として、もう一方の基板にはアクティブ素子
を形成した後、光散乱性の反射電極を形成した。光散乱
性の反射電極は、アルミニウムとシリコンを共蒸着する
ことにより形成した。2枚の基板に透明電極を形成し
て、表示素子の裏面に光散乱層を配置しても良い。こう
して作製した空セルに先の液晶−高分子前駆体混合物を
封入後、ハロゲンランプ(70W/cm2)にて高分子
前駆体を重合層分離した。こうして高分子中に液晶の微
細液滴を分散した構造を形成した。この表示素子の表面
にノングレア処理、減反射処理を施した。もちろんこの
ような処理を施さなくても良いし、どちらか一方のみで
も十分視認性は向上する。
Example 9 In this example, a polymer network type display device was produced using the liquid crystal composition shown in Example 1. A mixture of the liquid crystal composition shown in Example 1 with 2% of the dichroic dye shown in Example 1, a polymer precursor trimethylolpropane and a photopolymerization initiator 2-hydroxy-2-methyl-1- Phenylpropan-1-one was mixed in a ratio of 80: 19.8: 0.2 and stirred,
It was enclosed in an empty cell described later. Two glass substrates with electrodes were made to face each other so that the gap between them was 5 μm and the periphery was molded to form an empty cell. An electrode formed on one substrate was a transparent electrode, and an active element was formed on the other substrate, and then a light-scattering reflective electrode was formed. The light-scattering reflective electrode was formed by co-evaporating aluminum and silicon. A transparent electrode may be formed on two substrates and a light scattering layer may be arranged on the back surface of the display element. After filling the liquid crystal-polymer precursor mixture into the empty cell thus prepared, the polymer precursor was separated by a halogen lamp (70 W / cm2). Thus, a structure in which fine liquid crystal droplets were dispersed in the polymer was formed. The surface of this display element was subjected to antiglare treatment and antireflection treatment. Of course, it is not necessary to perform such a treatment, and the visibility is sufficiently improved with only one of them.

【0070】こうして作製した表示素子の液晶/高分子
層に駆動電圧10V印加して、表示素子表面の法線から
20度傾いた方向から光を入射して、法線方向への反射
光強度を測定した場合に、白い紙と同等の明るさが得ら
れた。またキセノンランプにて白色光を720時間(積
算光量20000La)照射したところ、保持率が50
%に低下した。
A driving voltage of 10 V was applied to the liquid crystal / polymer layer of the display element thus manufactured, and light was made incident from a direction inclined by 20 degrees from the normal line of the display element surface, and the reflected light intensity in the normal line direction was measured. When measured, the same brightness as white paper was obtained. When the white light was irradiated with a xenon lamp for 720 hours (total light amount: 20000 La), the retention rate was 50%.
Fell to%.

【0071】本実施例ではアクティブ素子を形成した例
を示したが、もちろんアクティブ素子を形成しなくて
も、低駆動電圧である効果は得られる。
In this embodiment, the example in which the active element is formed is shown, but of course, the effect of the low driving voltage can be obtained without forming the active element.

【0072】本実施例では2色性色素を用いたが、用い
なくても表示素子として機能する。その際、裏基板に形
成電極には、反射性または光吸収性の材料を用いると視
認性が向上する。または透明電極として表示素子の裏面
に、光反射層または光吸収層を設けても良い。
Although the dichroic dye is used in this embodiment, it functions as a display element without using it. At that time, the visibility is improved by using a reflective or light absorbing material for the formation electrode on the back substrate. Alternatively, a light reflection layer or a light absorption layer may be provided as a transparent electrode on the back surface of the display element.

【0073】以上の全ての実施例において液晶/高分子
層の厚さは、用途に応じて決めれば良い。厚ければ光吸
収または光散乱は強くなるが駆動電圧が高くなり、アク
ティブ素子またはドライバーICで駆動できなくなる。
薄ければアクティブ素子やドライバーICで駆動できる
が、光吸収または光散乱が弱くなる。
In all of the above examples, the thickness of the liquid crystal / polymer layer may be determined according to the application. If it is thick, light absorption or light scattering will be strong, but the driving voltage will be high, and it will not be possible to drive with an active element or driver IC.
If it is thin, it can be driven by an active element or a driver IC, but light absorption or light scattering becomes weak.

【0074】(従来例9)従来例1の液晶組成物を用い
て実施例9の構成の表示素子を作製して同様の耐光性試
験を行うと、保持率は3%以下となった。
(Conventional Example 9) When a display element having the structure of Example 9 was produced using the liquid crystal composition of Conventional Example 1 and the same light resistance test was conducted, the retention rate was 3% or less.

【0075】(実施例10)本実施例では実施例1にお
いて化合物群Iを化合物群IIで置き換えた例を示す。
Example 10 In this example, an example in which the compound group I is replaced with the compound group II in Example 1 will be shown.

【0076】[0076]

【表3】 [Table 3]

【0077】この液晶組成物を用いて、実施例3により
表示素子を作製した。これによると実施例3に比べて、
散乱度は90%程度、駆動電圧は1割増し程度となる
が、耐光性は1割増しの寿命となった。
Using this liquid crystal composition, a display element was manufactured according to Example 3. According to this, compared to the third embodiment,
The scattering degree was about 90% and the driving voltage was increased by 10%, but the light resistance was increased by 10%.

【0078】ここでは実施例3の構成への応用を示した
が、これに限らず実施例2から実施例9までの構成にも
同様に応用できる。
Although the application to the configuration of the third embodiment is shown here, the present invention is not limited to this, and the same can be applied to the configurations of the second to ninth embodiments.

【0079】(実施例11)本実施例では実施例1にお
いて化合物群Iを化合物群IIIで置き換えた例を示
す。
(Example 11) This example shows an example in which the compound group I in Example 1 is replaced with the compound group III.

【0080】[0080]

【表4】 [Table 4]

【0081】この液晶組成物を用いて実施例4により表
示素子を作製した。これによると実施例4の場合に比べ
て、散乱度が1割ほど向上し、駆動電圧は1割増し程度
となるが、耐光性は同定度の寿命であった。
Using this liquid crystal composition, a display device was manufactured according to the example 4. According to this, compared with the case of Example 4, the scattering degree is improved by about 10% and the driving voltage is increased by about 10%, but the light resistance is the life of the identification degree.

【0082】ここでは実施例4の構成への応用を示した
が、これに限らず実施例2から実施例9までの構成にも
同様に応用できる。
Although the application to the configuration of the fourth embodiment is shown here, the present invention is not limited to this, and the same can be applied to the configurations of the second to ninth embodiments.

【0083】(実施例12)本実施例では実施例1にお
いて化合物群Iを化合物群IVで置き換えた例を示す。
Example 12 In this example, an example in which the compound group I is replaced with the compound group IV in Example 1 will be shown.

【0084】[0084]

【表5】 [Table 5]

【0085】この液晶組成物を用いて、実施例5により
表示素子を作製した。これによると実施例5の場合に比
べて、同定度の散乱度で、駆動電圧は1割増し程度とな
るが、耐光性は同定度の寿命であった。
Using this liquid crystal composition, a display element was manufactured according to the example 5. According to this, compared to the case of Example 5, the driving voltage is increased by about 10% due to the scattering degree of the identification degree, but the light resistance is the life of the identification degree.

【0086】ここでは実施例5の構成への応用を示した
が、これに限らず実施例2から実施例9までの構成にも
同様に応用できる。
Although the application to the configuration of the fifth embodiment is shown here, the present invention is not limited to this, and the same can be applied to the configurations of the second to ninth embodiments.

【0087】(実施例13)本実施例では実施例1にお
いて化合物群Iを化合物群Vで置き換えた例を示す。
Example 13 In this example, an example in which the compound group I in Example 1 is replaced with the compound group V is shown.

【0088】[0088]

【表6】 [Table 6]

【0089】この液晶組成物を用いて、実施例6により
表示素子を作製した。これによると実施例6の場合に比
べて、1割り増しの散乱度で、駆動電圧は1割増し程度
となるが、耐光性は同定度の寿命であった。
Using this liquid crystal composition, a display element was prepared according to Example 6. According to this, compared to the case of Example 6, the scattering degree is increased by 10% and the driving voltage is increased by about 10%, but the light resistance is the life of the identification degree.

【0090】ここでは実施例6の構成への応用を示した
が、これに限らず実施例2から実施例9までの構成にも
同様に応用できる。
Although the application to the configuration of the sixth embodiment is shown here, the present invention is not limited to this, and the same can be applied to the configurations of the second to ninth embodiments.

【0091】(実施例14)本実施例では先に示した化
合物群Iと化合物群VII、VIIIを混合して用いた
例を示す。本実施例で用いた液晶の組成を示す。
(Example 14) In this example, an example in which the compound group I and the compound groups VII and VIII shown above are mixed and used is shown. The composition of the liquid crystal used in this example is shown.

【0092】[0092]

【表7】 [Table 7]

【0093】この液晶組成物を用いて、実施例7により
表示素子を作製した。これによると実施例7に比べて、
散乱度が1割ほど低下して、耐光性は同定度の寿命であ
るが、駆動電圧が1割程低くなった。
Using this liquid crystal composition, a display device was manufactured according to the seventh embodiment. According to this, compared to the seventh embodiment,
The scattering degree was reduced by about 10%, and the light resistance was the lifetime of the identification degree, but the driving voltage was reduced by about 10%.

【0094】ここでは実施例7の構成への応用を示した
が、これに限らず実施例2から実施例9までの構成にも
同様に応用できる。
Although the application to the configuration of the seventh embodiment is shown here, the present invention is not limited to this, and the same can be applied to the configurations of the second to ninth embodiments.

【0095】それぞれの化合物群のRについてはここに
示したものに限らず、用途に応じ最適な液晶温度範囲を
とるように決めれば良い。それぞれの化合物群の混合比
はここに示した値に限らず、Rの種類および長さ、用途
から要求される動作温度範囲および電気光学特性を考慮
して決められる。
The R of each compound group is not limited to those shown here, but may be determined so as to have an optimum liquid crystal temperature range depending on the application. The mixing ratio of each compound group is not limited to the values shown here, and can be determined in consideration of the type and length of R, the operating temperature range required for the application, and the electro-optical characteristics.

【0096】(実施例15)本実施例では実施例14に
おいて化合物群Iの替わりに化合物群IIを用いた例を
示す。
Example 15 In this example, a compound group II is used in place of the compound group I in Example 14.

【0097】[0097]

【表8】 [Table 8]

【0098】この液晶組成物を用いて実施例8により表
示素子を作製した。これによると実施例8に比べて、散
乱度は80%程度、駆動電圧は1割増し程度となるが、
耐光性は1割増しの寿命となった。
Using this liquid crystal composition, a display device was manufactured according to Example 8. According to this, compared with Example 8, the scattering degree is about 80% and the driving voltage is about 10% higher.
The light resistance was increased by 10%.

【0099】ここでは実施例8の構成への応用を示した
が、これに限らず実施例2から実施例9までの構成にも
同様に応用できる。
Although the application to the configuration of the eighth embodiment is shown here, the present invention is not limited to this and can be similarly applied to the configurations of the second to ninth embodiments.

【0100】(実施例16)本実施例では実施例14に
おいて化合物群Iの替わりに化合物群IIIを用いた例
を示す。
Example 16 In this example, a compound group III is used instead of the compound group I in Example 14.

【0101】[0101]

【表9】 [Table 9]

【0102】この液晶組成物を用いて、実施例9により
表示素子を作製した。これによると実施例9に比べて、
散乱度は同程度、駆動電圧も1割増し程度となるが、耐
光性は1割増しの寿命となった。
Using this liquid crystal composition, a display element was prepared according to Example 9. According to this, compared with the ninth embodiment,
The degree of scattering is about the same and the driving voltage is increased by about 10%, but the light resistance is increased by 10%.

【0103】ここでは実施例9の構成への応用を示した
が、これに限らず実施例2から実施例8までの構成にも
同様に応用できる。
Although the application to the configuration of the ninth embodiment is shown here, the present invention is not limited to this, and the same can be applied to the configurations of the second to eighth embodiments.

【0104】(実施例17)本実施例では実施例14に
おいて化合物群Iの替わりに化合物群IVを用いた例を
示す。
Example 17 In this example, a compound group IV is used instead of the compound group I in Example 14.

【0105】[0105]

【表10】 [Table 10]

【0106】この液晶組成物を用いて実施例2により表
示素子を作製した。これによると実施例2に比べて、散
乱度は90%程度、駆動電圧、耐光性は同程度となっ
た。
Using this liquid crystal composition, a display device was manufactured according to the second embodiment. According to this, compared with Example 2, the scattering degree was about 90%, the driving voltage and the light resistance were about the same.

【0107】ここでは実施例2の構成への応用を示した
が、これに限らず実施例3から実施例8までの構成にも
同様に応用できる。
Although the application to the configuration of the second embodiment is shown here, the present invention is not limited to this, and the same can be applied to the configurations of the third to eighth embodiments.

【0108】(実施例18)本実施例では実施例14に
おいて化合物群Iを化合物群Vで置き換えた例を示す。
Example 18 In this example, an example in which the compound group I in Example 14 is replaced with the compound group V will be shown.

【0109】[0109]

【表11】 [Table 11]

【0110】この液晶組成物を用いて実施例3により表
示素子を作製した。これによると実施例3の場合に比べ
て、同程度の散乱度で、駆動電圧は1割増し程度となる
が、耐光性は同定度の寿命であった。
Using this liquid crystal composition, a display element was manufactured according to the example 3. According to this, compared to the case of Example 3, the scattering degree was about the same and the driving voltage was increased by about 10%, but the light resistance was the life of the identification degree.

【0111】ここでは実施例3の構成への応用を示した
が、これに限らず実施例2から実施例8までの構成にも
同様に応用できる。
Although the application to the configuration of the third embodiment is shown here, the present invention is not limited to this, and the same can be applied to the configurations of the second to eighth embodiments.

【0112】[0112]

【発明の効果】以上本発明によれば、高分子分散型液晶
表示素子または高分子配向分散型液晶表示素子に先に示
した液晶用添加化合物を混合した液晶を用いることによ
り、低駆動電圧と耐光性を両立することができた。これ
により、野外で用いることの多い携帯型情報機器の表示
装置として用いることができるようになった。信頼性の
高い大容量反射型ディスプレイを作製することも容易と
なった。また野外広告板に用いることも可能となった。
As described above, according to the present invention, it is possible to obtain a low driving voltage by using a liquid crystal in which the above-mentioned additive compound for liquid crystal is mixed in the polymer dispersion type liquid crystal display device or the polymer orientation dispersion type liquid crystal display device. It was possible to achieve both light resistance. As a result, it can be used as a display device of a portable information device that is often used outdoors. It has also become easy to fabricate a highly reliable large-capacity reflective display. It can also be used for outdoor advertising boards.

フロントページの続き (72)発明者 飯坂 英仁 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内Front Page Continuation (72) Inventor Hidehito Iizaka 3-3-5 Yamato, Suwa-shi, Nagano Seiko Epson Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高分子と液晶を互いに分散または配向分
散させた表示素子に用いる液晶組成物について、化合物
群I 【化1】 (Rはアルキル基またはアルコキシ基)化合物群II 【化2】 (Rはアルキル基またはアルコキシ基)化合物群III 【化3】 (Rはアルキル基またはアルコキシ基)化合物群IV 【化4】 (Rはアルキル基またはアルコキシ基)化合物群V 【化5】 (Rはアルキル基またはアルコキシ基)で示される化合
物群の少なくとも1化合物を含み、これらの化合物群の
組成比が5重量%から50重量%であることを特徴とす
る液晶組成物。
1. A liquid crystal composition used in a display device in which a polymer and a liquid crystal are dispersed or alignment dispersed in each other, and a compound group I (R is an alkyl group or an alkoxy group) Compound group II (R is an alkyl group or an alkoxy group) Compound group III (R is an alkyl group or an alkoxy group) Compound group IV (R is an alkyl group or an alkoxy group) Compound group V A liquid crystal composition comprising at least one compound of a compound group represented by (R is an alkyl group or an alkoxy group), and the composition ratio of these compound groups is 5% by weight to 50% by weight.
【請求項2】前記液晶 g成物中に、化合物群VI 【化6】 (Rはアルキル基またはアルコキシ基)化合物群VII 【化7】 (Rはアルキル基またはアルコキシ基)化合物群VII
I 【化8】 (Rはアルキル基またはアルコキシ基、R1は、フッ素
または水素、R2はフッ素またはアルキル基)で示され
る化合物群の少なくとも1化合物群を5%から90%含
むことを特徴とする請求項1記載の液晶組成物。
2. The compound group VI embedded image in the liquid crystal g composition. (R is an alkyl group or an alkoxy group) Compound group VII (R is an alkyl group or an alkoxy group) Compound group VII
I (R is an alkyl group or an alkoxy group, R1 is fluorine or hydrogen, and R2 is a fluorine or an alkyl group) 5 to 90% of at least one compound group is contained. Liquid crystal composition.
【請求項3】 前記液晶組成物中に2色性色素を含有す
ることを特徴とする請求項1記載の液晶組成物。
3. The liquid crystal composition according to claim 1, wherein the liquid crystal composition contains a dichroic dye.
JP28700593A 1993-11-16 1993-11-16 Liquid crystal composition Pending JPH07138568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28700593A JPH07138568A (en) 1993-11-16 1993-11-16 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28700593A JPH07138568A (en) 1993-11-16 1993-11-16 Liquid crystal composition

Publications (1)

Publication Number Publication Date
JPH07138568A true JPH07138568A (en) 1995-05-30

Family

ID=17711798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28700593A Pending JPH07138568A (en) 1993-11-16 1993-11-16 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPH07138568A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596350B2 (en) * 1998-04-30 2003-07-22 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid-crystalline medium
JP2007045963A (en) * 2005-08-11 2007-02-22 Dainippon Ink & Chem Inc Composition for polymer dispersion type liquid crystal-displaying element and polymer dispersion type liquid crystal-displaying element
US8354668B2 (en) 2009-06-29 2013-01-15 Nitto Denko Corporation Emissive triaryls
US8927121B2 (en) 2009-06-29 2015-01-06 Nitto Denko Corporation Emissive aryl-heteroaryl compounds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596350B2 (en) * 1998-04-30 2003-07-22 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid-crystalline medium
US7029731B2 (en) 1998-04-30 2006-04-18 Merck Patent Gmbh Liquid-crystalline medium
JP2007045963A (en) * 2005-08-11 2007-02-22 Dainippon Ink & Chem Inc Composition for polymer dispersion type liquid crystal-displaying element and polymer dispersion type liquid crystal-displaying element
US8354668B2 (en) 2009-06-29 2013-01-15 Nitto Denko Corporation Emissive triaryls
US8927121B2 (en) 2009-06-29 2015-01-06 Nitto Denko Corporation Emissive aryl-heteroaryl compounds

Similar Documents

Publication Publication Date Title
US6261650B1 (en) Polymer dispersed liquid crystal (PDLC) display element for use in an electronic apparatus
US5342545A (en) Polymer dispersion type liquid crystal display element and reflection type liquid crystal display device
JP3060656B2 (en) Liquid crystal display device
EP0563403B1 (en) Display element and its manufacturing method
JP3848921B2 (en) Liquid crystal display device and manufacturing method thereof
JP2851887B2 (en) Liquid crystal device, method of making the same, and display device
US6025895A (en) Liquid crystal display with mutually oriented and dispersed birefringent polymer and liquid crystal and random oriented twist alignment
JP4394317B2 (en) Method of using liquid crystal mixture, liquid crystal cell and dye
US5872607A (en) Liquid crystal display device and method for producing such
JPH07138568A (en) Liquid crystal composition
JP3708983B2 (en) Liquid crystal-containing / polymer microcapsule and liquid crystal electro-optical element
JPH06110045A (en) Display element
JP3952219B2 (en) Reflective liquid crystal display element
JP3407451B2 (en) Manufacturing method of liquid crystal display device
EP0851018B1 (en) Record display medium and use thereof
JP3362711B2 (en) Method for manufacturing liquid crystal polymer layer and method for manufacturing display element
JPS6180225A (en) Liquid crystal display device
JPH11160691A (en) Liquid crystal display element
JPH07238285A (en) Liquid crystal composition and display element using the same
JPH07218905A (en) Display element and display device formed by using the same
JPH07140447A (en) Display element
JPH03433B2 (en)
JPH05224181A (en) Display element
JPH08211369A (en) Liquid crystal display element
JP4196896B2 (en) Electronics