JPH07138563A - High-power infrared laser beam detector and its production - Google Patents

High-power infrared laser beam detector and its production

Info

Publication number
JPH07138563A
JPH07138563A JP15921194A JP15921194A JPH07138563A JP H07138563 A JPH07138563 A JP H07138563A JP 15921194 A JP15921194 A JP 15921194A JP 15921194 A JP15921194 A JP 15921194A JP H07138563 A JPH07138563 A JP H07138563A
Authority
JP
Japan
Prior art keywords
fluoride
phosphor
powder
laser light
infrared laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15921194A
Other languages
Japanese (ja)
Other versions
JP3425225B2 (en
Inventor
Michihiro Tanaka
道広 田中
Yukiko Kojima
有紀子 小島
Masaharu Ishiwatari
正治 石渡
Keitaro Okawa
桂太郎 大川
Uko Ou
宇湖 王
Masaaki Otsuka
正明 大塚
Shigeto Sawanobori
成人 沢登
Shinobu Nagahama
忍 永濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Sumita Optical Glass Inc
Original Assignee
Mitsubishi Materials Corp
Sumita Optical Glass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Sumita Optical Glass Inc filed Critical Mitsubishi Materials Corp
Priority to JP15921194A priority Critical patent/JP3425225B2/en
Publication of JPH07138563A publication Critical patent/JPH07138563A/en
Application granted granted Critical
Publication of JP3425225B2 publication Critical patent/JP3425225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a detector used for high-power infrared laser beams and having excellent durability and emission characteristics. CONSTITUTION:The detector is prepared by binding a powder of a phosphor which converts infrared laser beams into visible light and comprises a fluoride based on lead fluoride in which erbium fluoride and ytterbium fluoride are dissolved to form a solid solution with a glassy substrate. This detector shows a high damage threshold value even with respect to YAG laser beams, does not suffer from damage of phosphor by YAG laser beams, and has high reliability. When compared with conventional detectors, it has a remarkable high emission intensity and can sharply detect YAG laser beams.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外レーザ光を可視光
に変換して該赤外光の存在を肉眼で検知するための赤外
レーザ光検知体であり、特にYAGレーザ光などの高出
力赤外レーザ光に対する損傷閾値が高く耐久性に優れる
と共に発光効率の良い高出力赤外レーザ光検知体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared laser light detector for converting infrared laser light into visible light and detecting the presence of the infrared light with the naked eye. The present invention relates to a high-power infrared laser light detector which has a high damage threshold for a high-power infrared laser light, is excellent in durability, and has good emission efficiency.

【0002】[0002]

【従来技術とその課題】YAGレーザからは高出力の赤
外光が出力されるので切断機や溶接機に利用されてい
る。ところが光線自体は不可視光であるため光軸調整な
どの作業に危険が伴う。そこで該レーザ光の存在を検知
する簡易な検知体が必要となる。このような検知体とし
て、赤外光を可視光に変換する蛍光体粉末を基板上に塗
布し、赤外光を受光した蛍光体が光ることによってその
存在を検知できるようにした検知体が知られている。
2. Description of the Related Art YAG laser emits high-power infrared light and is used in cutting machines and welding machines. However, since the light beam itself is invisible light, there is a danger in operations such as optical axis adjustment. Therefore, a simple detector that detects the presence of the laser light is required. As such a detecting body, a detecting body is known, in which a phosphor powder that converts infrared light into visible light is applied on a substrate and the presence of the phosphor that receives infrared light can be detected by shining. Has been.

【0003】ところが、現在使用されている多くの検知
体は、耐熱ガラスまたは金属基板上にポリビニルアルコ
ールなどの有機結合材によって蛍光体粉末を接着したも
のであり、数ワット以上の出力の赤外光を長時間受光す
ると結合材が劣化し、赤外光の熱で揮発するなどの問題
がある。さらに、透明な樹脂基板の間に蛍光体を挟み込
んだ形状のものも知られているが、樹脂基板は耐熱性に
劣り、レーザ光によって基板に孔が生じ易い。
However, many of the detectors currently in use are obtained by adhering a phosphor powder on a heat-resistant glass or a metal substrate with an organic binder such as polyvinyl alcohol, and the infrared light having an output of several watts or more. When the light is received for a long time, there is a problem that the binder deteriorates and volatilizes due to the heat of infrared light. Further, a shape in which a phosphor is sandwiched between transparent resin substrates is also known, but the resin substrate is inferior in heat resistance, and holes are easily formed in the substrate by laser light.

【0004】このような欠点を解消する一例として、耐
熱基板表面に、水ガラス、低融点ガラスまたはセメント
などの無機結合材によって蛍光体粉末を付着したものが
知られている(実願平3−23547号)。しかし、こ
の検知体も数150W/cm2以下の出力を有する赤外光
がその使用限界であり、YAGレーザ光のように発振出
力が数KW/cm2 の高エネルギーを有する赤外光に対し
ては蛍光体層がレーザ光の熱で揮発し、孔が生じる欠点
がある。さらに蛍光体の揮発によって基板も損傷を受け
る虞があり、また蛍光体層が揮発すると、揮発物質がレ
ーザ光のビーム照射口に付着してビームの照射を妨げる
ので照射口の交換が必要になるなど深刻な問題を招き、
装置のメンテナンスが非常に煩雑になる。
As an example of solving such a drawback, there is known one in which phosphor powder is adhered to the surface of a heat-resistant substrate by an inorganic binder such as water glass, low melting point glass or cement (Practical application No. 3-). 23547). However, this detector also has a limit of use of infrared light having an output of several 150 W / cm 2 or less, and it can be used for infrared light having a high energy of lasing output of several KW / cm 2 such as YAG laser light. However, there is a drawback that the phosphor layer is volatilized by the heat of the laser beam to form pores. Furthermore, the substrate may be damaged by the volatilization of the phosphor, and if the phosphor layer volatilizes, the volatile substance adheres to the beam irradiation port of the laser light and interferes with the beam irradiation, so the irradiation port must be replaced. Causing serious problems such as
Maintenance of the device becomes very complicated.

【0005】検知体の損傷を避けるために、ビーム形状
の確認や光軸調整の際にビームの出力を下げることも行
われているが、出力の低下によってビーム形状などが影
響を受けるので、このような方法は微小領域でのレーザ
光による加工処理には適さない。以上のように、従来の
光検知体はYAGレーザ光のような高出力光によって損
傷され易く、YAGレーザ光に対して十分な耐久性と安
定性を有し、発光強度の高い光検知体は現在得られてい
ない。
In order to avoid damage to the detector, the output of the beam is also reduced at the time of checking the beam shape and adjusting the optical axis. However, the beam shape is affected by the decrease in the output. Such a method is not suitable for processing with a laser beam in a minute area. As described above, the conventional photodetector is easily damaged by high-power light such as YAG laser light, has sufficient durability and stability against YAG laser light, and has high emission intensity. Not currently obtained.

【0006】[0006]

【発明の解決課題】本発明は、従来の光検知体における
上記課題を解決したものであり、高出力赤外レーザ光に
対して優れた耐久性と発光強度を有する光検知体を提供
するものである。本発明は、フッ化鉛、フッ化イッテル
ビウム(以下、フッ化Yb)およびフッ化エルビウム
(以下、フッ化Er)を加熱溶融して得たフッ化物粉末
を蛍光体粉末とし、これにガラス物質を加えて固結する
ことにより、高出力なYAGレーザ光によっても損傷さ
れ難く、長期間安定な発光特性を保ち、しかも粉末状態
の蛍光体よりも優れた発光強度を有する光検知体を得た
ものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in conventional photodetectors, and provides a photodetector having excellent durability and emission intensity for high-power infrared laser light. Is. In the present invention, a fluoride powder obtained by heating and melting lead fluoride, ytterbium fluoride (hereinafter, Yb) and erbium fluoride (hereinafter, Er) is used as a phosphor powder, and a glass substance is added to the powder. In addition, by solidifying, a photodetector that is not easily damaged by high-power YAG laser light, maintains stable emission characteristics for a long time, and has an emission intensity superior to that of powdered phosphor is obtained. Is.

【0007】[0007]

【課題の解決手段】本発明によれば、以下の構成からな
る高出力赤外レーザ光検知体とその製造方法が提供され
る。 (1)赤外レーザ光を可視光に変換する蛍光体であっ
て、フッ化鉛を主体とし、ErおよびYbを含有するフ
ッ化物からなる蛍光体粉末をガラス物質によって固結し
てなることを特徴とする高出力赤外レーザ光検知体。 (2)蛍光体粉末が、フッ化鉛を主体とし、フッ化鉛中
にフッ化Erおよびフッ化Ybが固溶したフッ化物粉末
である上記(1) の高出力赤外レーザ光検知体。 (3)蛍光体粉末が、フッ化鉛を主体とし、5〜30原
子%のYb、0.5〜4.5原子%のErを含有するフ
ッ化物粉末である上記(1) の光検知体。 (4)蛍光体粉末100重量部にガラス物質2〜30重
量部を添加し、加圧成形後、焼結してなる上記(1) の光
検知体。 (5)フッ化鉛、フッ化Ybおよびフッ化Erの混合粉
末を大気中で800〜1200℃にて加熱溶融した後に
粉砕し、ガラス物質を添加して加圧成形後、大気中で焼
結することを特徴とする高出力赤外レーザ光検知体の製
造方法。
According to the present invention, there is provided a high-power infrared laser light detector having the following structure and a method for manufacturing the same. (1) A phosphor for converting infrared laser light into visible light, which comprises phosphor powder mainly composed of lead fluoride and made of a fluoride containing Er and Yb, which is solidified by a glass substance. Characteristic high power infrared laser light detector. (2) The high-power infrared laser light detector according to (1) above, wherein the phosphor powder is a fluoride powder containing lead fluoride as a main component and Er fluoride and Yb fluoride dissolved in lead fluoride. (3) The photodetector according to (1) above, wherein the phosphor powder is a fluoride powder mainly containing lead fluoride, containing 5 to 30 atom% of Yb and 0.5 to 4.5 atom% of Er. . (4) The photodetector according to (1) above, which is obtained by adding 2 to 30 parts by weight of a glass substance to 100 parts by weight of the phosphor powder, press-molding and sintering. (5) A mixed powder of lead fluoride, Yb fluoride, and Er fluoride is heated and melted at 800 to 1200 ° C. in the air, crushed, added with a glass substance, pressure-molded, and then sintered in the air. A method for manufacturing a high-power infrared laser light detector, comprising:

【0008】[0008]

【具体的な説明】本発明を実施例と共に以下に詳細に説
明する。本発明の光検知体は、高出力レーザ光に対して
優れた耐久性と発光特性を有する赤外可視光変換蛍光体
であって、フッ化鉛中に少量のYbおよびErを含有す
るフッ化物粉末を蛍光体粉末として用い、これをガラス
物質によって固結したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below along with examples. The photodetector of the present invention is an infrared-visible light conversion phosphor having excellent durability and emission characteristics for high-power laser light, and is a fluoride containing a small amount of Yb and Er in lead fluoride. The powder is used as a phosphor powder and is solidified by a glass substance.

【0009】赤外光を可視光に変換する光変換蛍光体と
して、従来、蓄光性の硫化物蛍光体(ZnS、CaSな
ど)が知られている。この種の蛍光体は予め励起を受け
た蛍光体が赤外線を受光して発光する輝尽現象を利用し
たものであるが、予備励起が不可欠である。予備励起が
不要な蛍光体として、希土類イオンのエネルギー準位を
利用したものが知られており、Erなどの希土類元素を
発光関与物質として含む希土類酸化物や希土類ハロゲン
化物が提案されている。
[0009] As a light conversion phosphor for converting infrared light into visible light, a phosphorescent sulfide phosphor (ZnS, CaS, etc.) is conventionally known. This type of phosphor utilizes the photostimulation phenomenon in which a phosphor that has been previously excited receives infrared light and emits light, but pre-excitation is indispensable. A phosphor utilizing the energy level of rare earth ions is known as a phosphor that does not require pre-excitation, and a rare earth oxide or a rare earth halide containing a rare earth element such as Er as a light emission participating substance has been proposed.

【0010】これらの希土類酸化物や希土類ハロゲン化
物のうち、ErやYbなどの発光関与物質は酸化物より
もハロゲン化物において励起され易く、また希土類ハロ
ゲン化物のうち、塩化物、臭化物はフッ化物に比べて安
定性および耐水性が乏しく、さらにフッ化物は酸化物よ
りも希土類元素を多く含有できる利点を有している。そ
こで本発明は希土類フッ化物を蛍光体粉末として用い
る。
Of these rare earth oxides and rare earth halides, the substances involved in light emission such as Er and Yb are more easily excited in the halides than the oxides, and among the rare earth halides, chlorides and bromides are converted into fluorides. Compared with the above, the stability and the water resistance are poor, and the fluoride has an advantage that it can contain more rare earth elements than the oxide. Therefore, the present invention uses rare earth fluoride as the phosphor powder.

【0011】本発明の希土類フッ化物はフッ化鉛を母材
とし、これにフッ化Ybおよびフッ化Erを添加混合
し、加熱溶融して得たものである。本発明において蛍光
体として用いるフッ化物粉末のX線回折チャートの一例
を図1に示す(図1(a) )。なお併せて原料のフッ化
鉛、フッ化Yb、フッ化ErのX線回折チャートを同図
に示した(図1(b),(c),(d) )。図示するように、本発
明のフッ化物は、概ね26度、31度、44度、51
度、70度の各回折角度において回折ピークを有し、母
材のフッ化鉛に類似したX線回折ピークを有するが、対
比して示したフッ化鉛(PbF2 ) の回折ピークに比べると
何れのピークもフッ化鉛よりは高角度側に1〜2度ずれ
ており、また相当量含まれているフッ化Yb、フッ化E
rの回折ピークが殆ど検出されない。この結果から判断
すると、本発明のフッ化物は、母材のフッ化鉛中にフッ
化Yb、フッ化Erが固溶したものであると考えられ
る。
The rare earth fluoride of the present invention is obtained by using lead fluoride as a base material, adding and mixing Yb fluoride and Er fluoride, and heating and melting. An example of the X-ray diffraction chart of the fluoride powder used as the phosphor in the present invention is shown in FIG. 1 (FIG. 1 (a)). In addition, X-ray diffraction charts of the raw materials lead fluoride, Yb fluoride and Er fluoride are also shown in the same figure (FIGS. 1 (b), (c) and (d)). As shown in the figure, the fluoride of the present invention is approximately 26 degrees, 31 degrees, 44 degrees, 51 degrees.
And has an X-ray diffraction peak similar to the lead fluoride of the base material at each diffraction angle of 70 degrees, but compared to the diffraction peak of lead fluoride (PbF 2 ) shown by comparison. All the peaks are shifted from the lead fluoride by 1 to 2 degrees on the higher angle side, and a considerable amount of Yb fluoride and E fluoride are contained.
Almost no diffraction peak of r is detected. Judging from this result, it is considered that the fluoride of the present invention is a solid solution of Yb fluoride and Er fluoride in the lead fluoride of the base material.

【0012】上記フッ化物蛍光体において、Erは発光
中心元素であり、Ybは励起エネルギーの伝達媒体であ
る。YbイオンはYAGレーザ光(波長1.06μm )によ
って励起されるエネルギー準位を有し、YAGレーザ光
の照射を受けて励起され、エネルギーを放出する。この
エネルギーはErイオンに吸収され、Erイオンのエネ
ルギー準位を高めて発光させる。このようにErイオン
はYbイオンとの共存によって発光し、Erイオン単独
では発光しない。ErイオンはYbイオンとの共存下で
約900〜1100nmの赤外光を吸収し、緑色光(5
50nm付近)および赤色光(665nm付近)を生じ
ることが知られている。
In the above-mentioned fluoride phosphor, Er is an emission center element and Yb is an excitation energy transfer medium. Yb ions have an energy level excited by YAG laser light (wavelength 1.06 μm), and are excited by being irradiated with YAG laser light and emit energy. This energy is absorbed by the Er ions and raises the energy level of the Er ions to emit light. Thus, Er ions emit light when coexisting with Yb ions, and Er ions alone do not emit light. Er ions absorb infrared light of about 900 to 1100 nm in the coexistence with Yb ions and emit green light (5
It is known to produce red light (around 50 nm) and red light (around 665 nm).

【0013】フッ化鉛は蛍光体の母材であるが、従来知
られているフッ化Baを母材としたものよりも発光強度
が高い。また、Er、Ybなどの希土類元素をフッ化Z
rなどのガラス母材中に含有させた各種のフッ化ガラス
が知られているが、本発明の蛍光体はこれらのフッ化ガ
ラスとは異なり、上記のとおり特有のX線回折ピークを
有する結晶質のフッ化物粉末を用いたものである。ガラ
ス材はかなり広い範囲でフォノンエネルギーを制御でき
るので、種々の希土類フッ化物ガラスが検討されている
が、ガラス形成能を有する母材が限られ、またガラス化
する成分範囲も限定されるなどの制約がある。本発明は
上記フッ化物粉末を固結した不透明の蛍光体であるが、
従来のフッ化物ガラスよりも発光強度に優れガラス化の
ための熱処理が不要であるため製造が簡単である。
Although lead fluoride is the base material of the phosphor, it has higher emission intensity than the conventionally known base material of Ba fluoride. Further, rare earth elements such as Er and Yb are fluorinated Z
Various kinds of fluorinated glass contained in a glass base material such as r are known, but the phosphor of the present invention is different from these fluorinated glasses and has a crystal having a unique X-ray diffraction peak as described above. Quality fluoride powder is used. Since glass materials can control phonon energy in a fairly wide range, various rare earth fluoride glasses have been studied, but the base material having glass forming ability is limited, and the range of components for vitrification is also limited. There are restrictions. The present invention is an opaque phosphor obtained by consolidating the above-mentioned fluoride powder,
It is superior in light emission intensity to the conventional fluoride glass and does not require heat treatment for vitrification, so that it is easy to manufacture.

【0014】発光強度は発光関与物質であるErとYb
の含有量によって影響され、後述の実施例に示すよう
に、一定範囲内で概ねErの量が多いほど発光強度が強
いが、一定濃度を超えると濃度消光によって発光は弱く
なる。一方、Erの含有量が少な過ぎると十分な発光強
度が得られない。すなわち、フッ化物中のErの含有量
は0.5原子%以上、好ましくは1原子%以上であっ
て、4.5原子%以下、好ましくは2.5原子%以下が
適当である。また、Erの量はYbの1/5以下、好ま
しくは、1/10程度が適当である。Erの含有量がY
bより多いと発光強度が低下する。一方、Ybの含有量
は5原子%以上、好ましくは10原子%以上であって、
30原子%以下、好ましくは20原子%以下が適当であ
る。Ybの含有量が上記範囲より少ないと励起不足にな
り十分な発光強度が得られず、また上記範囲を越えても
発光強度は向上しない。さらに、ErおよびYbの含有
量は、その合計量が5原子%以上、好ましくは10原子
%以上であって、30原子%以下、好ましくは20原子
%以下が適当である。
The emission intensity depends on Er and Yb, which are substances involved in emission.
As shown in Examples described later, the emission intensity is stronger as the amount of Er is generally larger within a certain range, but when the concentration exceeds a certain level, the emission becomes weak due to concentration quenching. On the other hand, if the Er content is too low, sufficient emission intensity cannot be obtained. That is, the content of Er in the fluoride is 0.5 atom% or more, preferably 1 atom% or more, and 4.5 atom% or less, preferably 2.5 atom% or less. Further, the amount of Er is 1/5 or less of Yb, preferably about 1/10. Er content is Y
When it is more than b, the emission intensity is lowered. On the other hand, the content of Yb is 5 atom% or more, preferably 10 atom% or more,
30 atomic% or less, preferably 20 atomic% or less is suitable. When the content of Yb is less than the above range, the excitation is insufficient and sufficient emission intensity cannot be obtained, and even when it exceeds the above range, the emission intensity is not improved. Further, the total content of Er and Yb is 5 atom% or more, preferably 10 atom% or more, and 30 atom% or less, preferably 20 atom% or less.

【0015】以上のように本発明の蛍光体に用いるフッ
化物はフッ化鉛、フッ化Ybおよびフッ化Erからなる
ものであるが、上述の発光強度および損傷閾値を損なう
ことなく他の元素を少量添加することができる。Erお
よびYbのほかにY、Gd、Laなどの希土類元素を少
量添加することにより従来の有機結合材によって蛍光体
粉末を固結してなる光検知体より発光の持続性が良く、
かつ損傷閾値も高い蛍光体が得られる。
As described above, the fluoride used in the phosphor of the present invention is composed of lead fluoride, Yb fluoride and Er fluoride, but other elements can be added without impairing the above-mentioned emission intensity and damage threshold. A small amount can be added. In addition to Er and Yb, by adding a small amount of rare earth elements such as Y, Gd, and La, the emission persistence is better than that of a conventional photodetector obtained by consolidating phosphor powder with an organic binder.
Moreover, a phosphor having a high damage threshold value can be obtained.

【0016】本発明の光検知体は上記フッ化物蛍光体粉
末を少量のガラス物質によって固結してなるものであ
る。原料のフッ化鉛、フッ化Ybおよびフッ化Erの各
粉末を均一に混合し加熱溶融すると上記フッ化物が得ら
れ、これを冷却後、粉砕して蛍光体粉末を得る。粉砕前
のフッ化物も粉砕した後のフッ化物粉末も、赤外光に対
する発光強度はほぼ同等であるが、これをガラス物質に
よって固結し緻密性を高めたものは粉末状のものよりも
発光強度が高い。また、ガラス物質を加えない粉末状態
のものは、YAGレーザ光の高出力エネルギーによって
揮発し、発光強度も低いのでYAGレーザ光用検知体と
しては実用性がない。ガラス物質を加えて固結し、緻密
性を高めることによって発光強度が向上する理由は明ら
かではないが、ガラス物質が結合材として作用するほか
に上記フッ化物の発光機構に何等かの影響を及ぼしてい
るものと考えられる。
The photodetector of the present invention is obtained by consolidating the above-mentioned fluoride phosphor powder with a small amount of glass substance. Raw materials of lead fluoride, Yb fluoride and Er fluoride are uniformly mixed and heated and melted to obtain the above-mentioned fluoride, which is cooled and pulverized to obtain a phosphor powder. Although the emission intensity for infrared light is almost the same for both the fluoride before pulverization and the fluoride powder after pulverization, the one that is consolidated with a glass substance to increase the denseness emits light more than the powdery one. High strength. Further, the powder state without adding the glass substance volatilizes due to the high output energy of the YAG laser light and has a low emission intensity, so that it is not practical as a YAG laser light detector. The reason why the emission intensity is improved by adding a glass substance to consolidate and increase the denseness is not clear, but in addition to the glass substance acting as a binder, it has some influence on the emission mechanism of the fluoride. It is considered that

【0017】ガラス物質の種類としては、650〜85
0℃の軟化点を有するものが適当であり、市販の粉末ガ
ラスを用いることができる。具体的にはSiO2 −B2
3−PbO、SiO2 −B2 3 −RO、SiO2
Al2 3 −RO(Rはアルカリ土類元素)のケイ酸ガ
ラスおよびZnO−B2 3 −PbOなどの酸化亜鉛系
ガラスなどを用いることができる。軟化点が850℃よ
り高いと焼結時にフッ化物粉末が再溶融するので好まし
くない。また650未満の軟化点では高出力の赤外線に
対する固結性が不十分になる。
The type of glass substance is 650-85.
Those having a softening point of 0 ° C. are suitable, and commercially available powdered glass can be used. Specifically, SiO 2 -B 2
O 3 -PbO, SiO 2 -B 2 O 3 -RO, SiO 2 -
Al 2 O 3 —RO (R is an alkaline earth element) silicate glass, zinc oxide based glass such as ZnO—B 2 O 3 —PbO, or the like can be used. When the softening point is higher than 850 ° C, the fluoride powder is remelted during sintering, which is not preferable. Further, if the softening point is less than 650, the solidification property to high-power infrared rays becomes insufficient.

【0018】ガラス物質の添加量は蛍光体粉末100重
量部に対して2〜30重量部が適当であり、5〜15重
量部が好ましい。ガラスの種類にもよるが添加量が30
重量部を上回ると相対的に上記フッ化物の量が少なくな
り発光強度が低下する。またガラス物質が2重量部より
少ないと成形性に劣り、また発光強度も低下する。
The glass substance is added in an amount of 2 to 30 parts by weight, preferably 5 to 15 parts by weight, per 100 parts by weight of the phosphor powder. Addition amount is 30 depending on the type of glass
When the amount is more than parts by weight, the amount of the above-mentioned fluoride is relatively decreased and the emission intensity is lowered. If the amount of the glass substance is less than 2 parts by weight, the moldability will be poor and the emission intensity will be low.

【0019】次に上記蛍光体の製造方法について説明す
る。上記フッ化物原料粉末を最終的に所定量になるよう
に白金ルツボに装入し、800〜1200℃、好ましく
は950〜1050℃の温度範囲で加熱する。加熱時に
原料のフッ化物に由来する酸化物を低減する目的でフッ
化アンモニウムなどのフッ化剤を添加しても良い。加熱
温度が800℃以下ではこの溶融が不十分になり発光強
度が低下する。一方、1200℃以上で溶融しても発光
強度に大きな差はない。溶融時の雰囲気は大気中が好ま
しい。アルゴンや窒素などの不活性ガス雰囲気下で溶融
すると生成物が黒変し、蛍光体の発光特性を低下させ
る。
Next, a method for manufacturing the above phosphor will be described. The above fluoride raw material powder is charged into a platinum crucible so that the final amount becomes a predetermined amount, and the powder is heated in a temperature range of 800 to 1200 ° C, preferably 950 to 1050 ° C. A fluorinating agent such as ammonium fluoride may be added for the purpose of reducing oxides derived from the fluoride of the raw material during heating. When the heating temperature is 800 ° C. or lower, this melting is insufficient and the emission intensity is reduced. On the other hand, there is no great difference in the emission intensity even if the material is melted at 1200 ° C. or higher. The atmosphere during melting is preferably in the air. When the product is melted in an atmosphere of an inert gas such as argon or nitrogen, the product turns black and the emission characteristics of the phosphor are degraded.

【0020】上記加熱処理により原料のフッ化物は溶融
ないし半溶融の状態になり、冷却した結晶質のフッ化物
が得られる。このフッ化物は、図1(a) に示すように母
材の高温型フッ化鉛(図1(b) )と類似したX線回折ピ
ークを有するが、既に述べたように、フッ化鉛の回折ピ
ークに比べると何れのピークもフッ化鉛よりは低角度側
に1〜2度ずれており、また相当量含まれているフッ化
Yb、フッ化Erの回折ピークが殆ど検出されないこと
から、母材のフッ化鉛中にフッ化Ybおよびフッ化Er
が固溶したものであると考えられる。
By the above heat treatment, the raw material fluoride is brought into a molten or semi-molten state, and cooled crystalline fluoride is obtained. This fluoride has an X-ray diffraction peak similar to that of the high temperature type lead fluoride (Fig. 1 (b)) of the base material as shown in Fig. 1 (a). Compared to the diffraction peaks, all the peaks are shifted from the lead fluoride by 1 to 2 degrees to the lower angle side, and since the diffraction peaks of Yb fluoride and Er fluoride contained in a considerable amount are hardly detected, Yb fluoride and Er fluoride in lead fluoride of the base material
Is considered to be a solid solution.

【0021】上記フッ化物の溶融物を冷却後、粉砕して
蛍光体粉末を得る。この蛍光体粉末に上記ガラス物質を
添加して約1ton/cm2 の加圧下で成形し、引続き、50
0℃以上の温度に加熱して焼結させる。成形圧力が50
0 Kg/cm2 程度では成形体が崩れ易い。焼結温度がガラ
ス物質の軟化点より高いと成形体が変形する。また焼結
温度がガラスの軟化点よりかなり低く、450℃以下で
あると成形体が脆く取扱いが困難になる。焼結雰囲気は
大気中が好ましい。不活性ガス雰囲気では蛍光体が黒変
し、変色部分のレーザ光による損傷閾値が低くなる。
After cooling the melt of the above-mentioned fluoride, it is pulverized to obtain a phosphor powder. The above-mentioned glass material was added to this phosphor powder and molded under a pressure of about 1 ton / cm 2 , and then 50
Sinter by heating to a temperature of 0 ° C. or higher. Molding pressure is 50
If it is about 0 Kg / cm 2 , the molded body tends to collapse. If the sintering temperature is higher than the softening point of the glass material, the compact will deform. If the sintering temperature is considerably lower than the softening point of the glass and is 450 ° C. or lower, the molded body becomes brittle and handling becomes difficult. The sintering atmosphere is preferably in the air. In an inert gas atmosphere, the fluorescent material turns black and the threshold value of damage to the discolored portion due to the laser light becomes low.

【0022】[0022]

【実施例および比較例】以下に本発明の実施例を比較例
と共に示す。本実施例は例示であり発明の範囲を限定す
るものではない。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the present invention are shown below together with comparative examples. This example is an illustration and does not limit the scope of the invention.

【0023】実施例1 酸化Yb155gに市販特級塩酸250mlと蒸留水50
mlを加えて加熱溶解後、市販フッ化水素酸117mlを添
加してフッ化Yb沈殿を生成させた。これを濾過、洗浄
後、150℃にて乾燥し、粗粉砕後、350℃で焼成し
てフッ化Ybを得た。さらに酸化Ybに代えて酸化Er
150gを用い、同様にしてフッ化Erを得た。フッ化
鉛は市販特級試薬を用いた。これらのフッ化Er、フッ
化Ybおよびフッ化鉛を 1.7:18.3: 81 の量比に混合
し、980℃に加熱して溶融し、溶融物を冷却後、粉砕
して蛍光体粉末を得た。この蛍光体粉末のX線回折チャ
ートを図1(a) に示す。なお、原料のフッ化鉛、フッ化
Erおよびフッ化YbのX線回折チャートも併せて同図
に示した。この蛍光体粉末に表1に示す市販のガラス材
粉末を所定量混合し、1ton/cm2 の加圧下でペレット状
に成形し、表1の温度で焼成することにより固形の光検
知体を得た。
Example 1 To 155 g of Yb oxide, 250 ml of commercially available special grade hydrochloric acid and 50 parts of distilled water
After adding ml and heating and dissolving, 117 ml of commercial hydrofluoric acid was added to generate a Yb fluoride precipitate. This was filtered, washed, dried at 150 ° C., coarsely pulverized, and fired at 350 ° C. to obtain Yb fluoride. Further, instead of Yb oxide, Er oxide is oxidized
Fluorinated Er was similarly obtained using 150 g. As lead fluoride, a commercially available special grade reagent was used. These fluorinated Er, Yb fluoride and lead fluoride were mixed in an amount ratio of 1.7: 18.3: 81, heated to 980 ° C. to melt, and the melt was cooled and pulverized to obtain a phosphor powder. . An X-ray diffraction chart of this phosphor powder is shown in FIG. The X-ray diffraction charts of the raw materials lead fluoride, Er fluoride and Yb fluoride are also shown in the same figure. A predetermined amount of the commercially available glass material powder shown in Table 1 is mixed with this phosphor powder, molded into pellets under a pressure of 1 ton / cm 2 , and baked at the temperature shown in Table 1 to obtain a solid photodetector. It was

【0024】この光検知体について、その発光強度およ
び損傷閾値を測定した。照射試験は次のように行った。
まずYAGレーザ光強度をパワーメータにて測定後、同
一条件下で蛍光体ブロックにYAGレーザ光を60秒間
連続照射した。照射後、蛍光体ブロック層からの揮発成
分の有無を確認し、また蛍光体ブロックの照射位置での
孔の有無を目視にて確認した。この測定を照射強度を変
化させて複数回実施し、蛍光体ブロックに孔が発生しな
い最高照射強度を損傷閾値とした。また、発光強度は3
0W/cm2 の照射強度にてYAGレーザ光を試料に照射
し、目視にて発光の強さを判断し、これを強、中、弱の
3段階で評価した。この結果を表1に示した。この結果
から明らかなように、本例の蛍光体は発光強度が高く、
またYAGレーザ光に対して損傷閾値が高い。
The emission intensity and damage threshold of this photodetector were measured. The irradiation test was conducted as follows.
First, after measuring the intensity of YAG laser light with a power meter, the phosphor block was continuously irradiated with YAG laser light for 60 seconds under the same conditions. After the irradiation, the presence or absence of volatile components from the phosphor block layer was confirmed, and the presence or absence of holes at the irradiation position of the phosphor block was visually confirmed. This measurement was performed multiple times while changing the irradiation intensity, and the maximum irradiation intensity at which no holes were formed in the phosphor block was set as the damage threshold. The emission intensity is 3
The sample was irradiated with YAG laser light at an irradiation intensity of 0 W / cm 2, and the intensity of light emission was visually determined, and this was evaluated in three grades of strong, medium and weak. The results are shown in Table 1. As is clear from this result, the phosphor of this example has high emission intensity,
Further, the damage threshold is high with respect to the YAG laser light.

【0025】比較例1 実施例1と同様にしてフッ化鉛−フッ化Yb−フッ化E
rからなる蛍光体粉末(実施例1と同一の量比)を得
た。この蛍光体粉末にガラス物質を加えず、粉末状態の
発光強度および損傷閾値を実施例1と同一条件下で測定
した。この結果を表1に示した。本例の蛍光体は実施例
1と同一量比のフッ化物からなるが、発光強度が低く、
損傷閾値も格段に低い。
Comparative Example 1 Lead fluoride-fluoride Yb-fluoride E was prepared in the same manner as in Example 1.
A phosphor powder of r (the same quantitative ratio as in Example 1) was obtained. A glass substance was not added to this phosphor powder, and the emission intensity and damage threshold value in the powder state were measured under the same conditions as in Example 1. The results are shown in Table 1. The phosphor of this example is composed of the same amount ratio of fluoride as in Example 1, but has low emission intensity.
The damage threshold is also extremely low.

【0026】実施例2 実施例1と同様にして製造したフッ化Yb粉末およびフ
ッ化Er粉末と市販特級フッ化鉛の粉末を表2に示す量
比に混合し、980℃に加熱溶融し、冷却後粉砕し、こ
れに市販の粉末ガラス10重量%加えて、1ton/cm2
加圧下でペレット状に成形し、540℃に焼成して蛍光
成形体を得た。この蛍光体を用いて実施例1と同様に発
光強度を測定した。この結果を表2に示した。本例の結
果から明らかなように、上記蛍光体粉末中のErおよび
Ybの含有量は、 Er0.5〜4.5原子%、Yb5
〜30原子%であって、その合計量が5.5〜35原子
%が適当である。
Example 2 Yb fluoride powder and Er fluoride powder produced in the same manner as in Example 1 and a powder of commercially available special grade lead fluoride were mixed in an amount ratio shown in Table 2, and heated and melted at 980 ° C. After cooling, the mixture was pulverized, 10% by weight of commercially available powdered glass was added thereto, the mixture was molded into pellets under a pressure of 1 ton / cm 2 , and fired at 540 ° C. to obtain a fluorescent molded body. Using this phosphor, the emission intensity was measured in the same manner as in Example 1. The results are shown in Table 2. As is clear from the results of this example, the content of Er and Yb in the phosphor powder was Er 0.5 to 4.5 at%, Yb 5
.About.30 atom%, and the total amount thereof is suitably 5.5 to 35 atom%.

【0027】比較例2 実施例1と同様にして製造したフッ化Erおよびフッ化
Yb粉末を用い、このフッ化Er、フッ化Ybと市販特
級フッ化Ba粉末とを 1.6:18.2:80.2の量比に混合
し、1350℃に加熱して溶融し、冷却後粉砕し、これ
に市販ケイ酸ガラス粉末10重量%加えて、1ton/cm2
の加圧下でペレット状に成形し、570℃に焼成して蛍
光成形体を得た。この結果を表2に示した。本例の結果
から、蛍光体が発光関与物質としてフッ化Erおよびフ
ッ化Ybを含有してもフッ化Baを母材とするものは本
発明の蛍光体粉末よりも発光強度が劣る。
Comparative Example 2 Fluorinated Er and Yb powders produced in the same manner as in Example 1 were used, and Er, Yb fluoride and commercially available special grade Ba fluoride powder were added in an amount of 1.6: 18.2: 80.2. Mix to the ratio, heat to 1350 ℃ to melt, cool and pulverize, then add 10 wt% of commercially available silicate glass powder to 1 ton / cm 2
Was molded into pellets under pressure and baked at 570 ° C. to obtain a fluorescent molded body. The results are shown in Table 2. From the results of this example, even when the phosphor contains Er fluoride and Yb fluoride as the substances involved in light emission, the one having Ba fluoride as the base material is inferior in emission intensity to the phosphor powder of the present invention.

【0028】比較例3 実施例1で得た蛍光体粉末に市販のケイ酸ガラスガラス
粉末を10重量%混合し、0.1、0.3、0.5ton/
cm2 の圧力で成形した他は実施例1と同様にして製造し
た蛍光成形体について、実施例1と同様の発光試験を行
った。この結果、表1に示すように、本例の蛍光体は発
光強度が何れも粉末の場合と大差なく、損傷閾値も大幅
に低かった。
Comparative Example 3 10% by weight of commercially available silicate glass glass powder was mixed with the phosphor powder obtained in Example 1 to obtain 0.1, 0.3, 0.5 ton /
A fluorescent molded body manufactured in the same manner as in Example 1 except that the molding was carried out at a pressure of cm 2 was subjected to the same light emission test as in Example 1. As a result, as shown in Table 1, the phosphors of this example had almost the same emission intensity as that of the powder, and the damage threshold value was also significantly low.

【0029】実施例3 フッ化鉛、フッ化Ybおよびフッ化Erと共に表3に示
す元素のフッ化物粉末を原料とし、これらを同表に示す
量比に混合して実施例1と同様の方法で蛍光体の成形体
を製造し、発光強度および損傷閾値を測定したところ、
同表に示すように、本例の蛍光成形体は従来の有機結合
材によって蛍光体粉末を固結してなる光検知体より発光
の持続性が良く、かつ損傷閾値も高いものであった。
Example 3 Fluoride powder of the elements shown in Table 3 was used as a raw material together with lead fluoride, Yb fluoride and Er fluoride, and these were mixed in the ratios shown in the table, and the same method as in Example 1 was performed. When a molded article of the phosphor was manufactured with, and the emission intensity and the damage threshold were measured,
As shown in the same table, the fluorescent molded article of this example had a better sustainability of light emission and a higher damage threshold than the photodetector obtained by consolidating the phosphor powder with the conventional organic binder.

【0030】比較例4 蛍光体粉末を得る際の加熱処理温度を400℃とした他
は実施例1と同様の方法でフッ化物の粉末を製造した。
このフッ化物粉末のX線回折チャートには原料のフッ化
鉛、フッ化Ybおよびフッ化Erの各回折ピークが混在
しており、従って原料のフッ化物粒子が混在して焼結し
た状態のものであり、フッ化Ybおよびフッ化Erがフ
ッ化鉛中に固溶したものではない。このフッ化物粉末を
用い、実施例1と同様にしてガラス物質添加後、加圧成
形し焼成して成形体を得た。この成形体について発光試
験を行ったところ、発光は認められなかった。
Comparative Example 4 A fluoride powder was produced in the same manner as in Example 1 except that the heat treatment temperature for obtaining the phosphor powder was 400 ° C.
In the X-ray diffraction chart of this fluoride powder, raw material lead fluoride, Yb fluoride, and Er fluoride diffraction peaks coexist, so that the raw material fluoride particles coexist and are sintered. Therefore, Yb fluoride and Er fluoride are not solid solutions in lead fluoride. Using this fluoride powder, a glass material was added in the same manner as in Example 1, followed by pressure molding and firing to obtain a molded body. When a luminescence test was conducted on this molded product, no luminescence was observed.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】本発明の光検知体は、高出力のYAGレ
ーザ光に対しても損傷閾値が高く、繰り返し長時間使用
してもYAGレーザ光によって蛍光体が損傷を受けるこ
とがなく、信頼性が高い。また従来の検知体に比べて発
光強度が格段に大きく、YAGレーザ光の検知が明瞭で
ある。
INDUSTRIAL APPLICABILITY The photodetector of the present invention has a high damage threshold even for high-output YAG laser light, and the phosphor is not damaged by YAG laser light even after repeated use for a long time. It is highly likely. Further, the emission intensity is remarkably higher than that of the conventional detector, and the detection of the YAG laser light is clear.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (a)は実施例1で製造したフッ化物蛍光体
粉末のX線回折チャートであり、同図(b)(c)
(d)は原料粉末であるフッ化鉛、フッ化Yb、フッ化
ErのX線回折チャートである。
1 (a) is an X-ray diffraction chart of the fluoride phosphor powder manufactured in Example 1, and FIG. 1 (b) (c).
(D) is an X-ray diffraction chart of raw material powders of lead fluoride, Yb fluoride, and Er fluoride.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石渡 正治 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社中央研究所内 (72)発明者 大川 桂太郎 東京都千代田区大手町1丁目5番1号 三 菱マテリアル株式会社内 (72)発明者 王 宇湖 東京都千代田区神田須田町1丁目28番地 株式会社住田光学ガラス内 (72)発明者 大塚 正明 東京都千代田区神田須田町1丁目28番地 株式会社住田光学ガラス内 (72)発明者 沢登 成人 東京都千代田区神田須田町1丁目28番地 株式会社住田光学ガラス内 (72)発明者 永濱 忍 東京都千代田区神田須田町1丁目28番地 株式会社住田光学ガラス内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shoji Ishiwata, 1-297 Kitabukuro-cho, Omiya-shi, Saitama, Central Research Laboratory, Mitsubishi Materials Corporation (72) Keitaro Okawa 1-1-5, Otemachi, Chiyoda-ku, Tokyo Sanryo Materials Co., Ltd. (72) Inventor Wu Uko 1-28 Kandasudacho, Chiyoda-ku, Tokyo Sumita Optical Glass Co., Ltd. (72) Inventor Masaaki Otsuka 1-28 Kandasuda-cho, Chiyoda-ku, Tokyo Shares Company Sumita Optical Glass (72) Inventor Sawa Noboru 1-228 Kandasudacho, Chiyoda-ku, Tokyo Sumita Optical Glass Co., Ltd. (72) Shinobu Nagahama 1-28 Kandasudacho, Chiyoda-ku, Tokyo Sumita Co., Ltd. In optical glass

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 赤外レーザ光を可視光に変換する蛍光体
であって、フッ化鉛を主体とし、エルビウムおよびイッ
テルビウムを含有するフッ化物からなる蛍光体粉末をガ
ラス物質によって固結してなることを特徴とする高出力
赤外レーザ光検知体。
1. A phosphor for converting infrared laser light into visible light, which comprises lead fluoride as a main component and a phosphor powder made of a fluoride containing erbium and ytterbium, which is solidified by a glass substance. A high-power infrared laser light detector characterized by the above.
【請求項2】 蛍光体粉末が、フッ化鉛を主体とし、フ
ッ化鉛中にフッ化エルビウムおよびフッ化イッテルビウ
ムが固溶したフッ化物粉末である請求項1の高出力赤外
レーザ光検知体。
2. The high-power infrared laser photodetector according to claim 1, wherein the phosphor powder is a fluoride powder containing lead fluoride as a main component and erbium fluoride and ytterbium fluoride as a solid solution in lead fluoride. .
【請求項3】 蛍光体粉末が、フッ化鉛を主体とし、5
〜30原子%のイッテルビウム、0.5〜4.5原子%
のエルビウムを含有するフッ化物粉末である請求項1の
光検知体。
3. The phosphor powder is mainly composed of lead fluoride, and 5
~ 30 atom% ytterbium, 0.5-4.5 atom%
2. The photodetector according to claim 1, which is a fluoride powder containing erbium.
【請求項4】 蛍光体粉末100重量部にガラス物質2
〜30重量部を添加し、加圧成形後、焼結してなる請求
項1の光検知体。
4. The glass substance 2 in 100 parts by weight of the phosphor powder.
The photodetector according to claim 1, which is obtained by adding -30 parts by weight, press-molding, and sintering.
【請求項5】 フッ化鉛、フッ化イッテルビウムおよび
フッ化エルビウムの混合粉末を大気中で800〜120
0℃にて加熱溶融した後に粉砕し、ガラス物質を添加し
て加圧成形後、大気中で焼結することを特徴とする高出
力赤外レーザ光検知体の製造方法。
5. A mixed powder of lead fluoride, ytterbium fluoride and erbium fluoride in air at 800 to 120.
A method for producing a high-power infrared laser light detector, which comprises heating and melting at 0 ° C., crushing, adding a glass substance, press-molding, and sintering in the air.
JP15921194A 1993-06-18 1994-06-17 High-power infrared laser light detector and manufacturing method thereof Expired - Fee Related JP3425225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15921194A JP3425225B2 (en) 1993-06-18 1994-06-17 High-power infrared laser light detector and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17230593 1993-06-18
JP5-172305 1993-06-18
JP15921194A JP3425225B2 (en) 1993-06-18 1994-06-17 High-power infrared laser light detector and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07138563A true JPH07138563A (en) 1995-05-30
JP3425225B2 JP3425225B2 (en) 2003-07-14

Family

ID=26486082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15921194A Expired - Fee Related JP3425225B2 (en) 1993-06-18 1994-06-17 High-power infrared laser light detector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3425225B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255362A (en) * 2008-05-26 2008-10-23 Nippon Electric Glass Co Ltd Emitting color conversion member
JP2010132923A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Light emission color conversion member
JP2010132922A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Composite component for light emission color conversion
JP2010174246A (en) * 2010-02-25 2010-08-12 Nippon Electric Glass Co Ltd Emitting color conversion member
CN104099094A (en) * 2013-04-09 2014-10-15 海洋王照明科技股份有限公司 Holmium-and-ytterbium-codoped lead fluoride up-conversion luminescent material, and preparation method and application thereof
WO2015140854A1 (en) * 2014-03-19 2015-09-24 パナソニックIpマネジメント株式会社 Wavelength conversion element manufacturing method
CN109023523A (en) * 2018-07-26 2018-12-18 暨南大学 Infrared ytterbium erbium dysprosium three mixes lead fluoride laser crystal and preparation method thereof in a kind of 2.7-3 micron waveband

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255362A (en) * 2008-05-26 2008-10-23 Nippon Electric Glass Co Ltd Emitting color conversion member
JP2010132923A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Light emission color conversion member
JP2010132922A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Composite component for light emission color conversion
JP2010174246A (en) * 2010-02-25 2010-08-12 Nippon Electric Glass Co Ltd Emitting color conversion member
CN104099094A (en) * 2013-04-09 2014-10-15 海洋王照明科技股份有限公司 Holmium-and-ytterbium-codoped lead fluoride up-conversion luminescent material, and preparation method and application thereof
WO2015140854A1 (en) * 2014-03-19 2015-09-24 パナソニックIpマネジメント株式会社 Wavelength conversion element manufacturing method
CN109023523A (en) * 2018-07-26 2018-12-18 暨南大学 Infrared ytterbium erbium dysprosium three mixes lead fluoride laser crystal and preparation method thereof in a kind of 2.7-3 micron waveband

Also Published As

Publication number Publication date
JP3425225B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
Mawlud et al. Spectroscopic properties of Sm3+ doped sodium-tellurite glasses: Judd-Ofelt analysis
Auzel et al. Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up‐conversion
CN103597374B (en) Clear glass scintillator, preparation method and application device
Jayasimhadri et al. Optical properties of Dy3+ ions in alkali tellurofluorophosphate glasses for laser materials
EP1695946A2 (en) An oxide glass capable of exhibiting a long lasting afterglow and photostimulated luminescence
EP0802169A1 (en) Rare earth doped oxyhalide laser glass
Mahraz et al. Spectroscopic investigations of near-infrared emission from Nd3+-doped zinc-phosphate glasses: Judd-Ofelt evaluation
EP0662933B1 (en) Novel composites for glass
Kaewnuam et al. The photoluminescence, optical and physical properties of Sm3+-doped lithium yttrium borate glasses
US20160152515A1 (en) Phosphor-Dispersed Glass and Method for Producing Same
JP3425225B2 (en) High-power infrared laser light detector and manufacturing method thereof
Qiu et al. Highly efficient green up-conversion luminescence of Nd 3+–Yb 3+–Ho 3+ codoped fluorite-type nanocrystals in transparent glass ceramics
Prabhu et al. 0.25–30 kGy γ Irradiation-induced modifications on the density, optical absorption, thermo-, and photo-luminescence of the 10BaO–20ZnO–20LiF-49.3 B2O3-0.7 Er2O3 glass
EP0589198B1 (en) Rare earth-doped, stabilized cadmium halide glasses
JP2951358B2 (en) Up conversion glass
JPWO2006006640A1 (en) Fluorescent glass
Anjaiah et al. Concentration dependent luminescence and energy transfer properties of samarium doped LLSZFB glasses
CN1391536A (en) Fluorotellurite amplifier glasses
Seshadri et al. Luminescent glass for lasers and solar concentrators
Bouabdalli et al. Photoluminescence and Judd-Ofelt Analysis of Europium Containing in a Strontium Phosphate Glasses for Photonic Application
Murata et al. Fast-response and low-afterglow cerium-doped lithium 6 fluoro-oxide glass scintillator for laser fusion-originated down-scattered neutron detection
Denis et al. Compositional dependence of infrared to blue and red conversion luminescence in oxyfluoride glass-ceramics co-doped with Tm 3+ and Yb 3+ ions
JPH0986958A (en) Glass material for converting wavelength
EP1022823B1 (en) Optical fiber for optical amplifier
Yang et al. Thermal analysis and optical transition of Yb 3+, Er 3+ co-doped lead–germanium–tellurite glasses

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030408

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees