JPH07138374A - Preparation of aqueous highly pure polymer compound solution for production of semiconductor element - Google Patents

Preparation of aqueous highly pure polymer compound solution for production of semiconductor element

Info

Publication number
JPH07138374A
JPH07138374A JP17104893A JP17104893A JPH07138374A JP H07138374 A JPH07138374 A JP H07138374A JP 17104893 A JP17104893 A JP 17104893A JP 17104893 A JP17104893 A JP 17104893A JP H07138374 A JPH07138374 A JP H07138374A
Authority
JP
Japan
Prior art keywords
polymer compound
aqueous solution
ultrafiltration
solution
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17104893A
Other languages
Japanese (ja)
Inventor
Iehiro Kodama
家弘 小玉
Makoto Oura
誠 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP17104893A priority Critical patent/JPH07138374A/en
Publication of JPH07138374A publication Critical patent/JPH07138374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a polymer compound solution by ultrafiltering an aqueous solution of a polymer compound. CONSTITUTION:An aqueous solution of a water-soluble polymer compound such as a partially saponified PVA having a viscosity of 3-10000cP (20 deg.C) and containing about 100-5000ppm of metallic ions such as Na, K, Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu and Zn ions is caused to pass through an ultrafilter provided with several laid ultrafilter membranes having a separation capacity of a fractionation molecular weight of 1000-1000000 and excellent permeability and made of e.g. a polyether sulfone under a pressure of 0.5-2kg/cm<2> and is allowed to circulate. By repeating such ultrafiltration several times, an aqueous highly pure polymer compound solution having a specified concentration and a metallic ion concentration of as low as about 0.1ppm or below for each kind of metal can be obtained. This solution is diluted to a viscosity of 3-10000cP, and the diluted solution is applied to a semiconductor element base by spin coating and dried at about 20-100 deg.C to form a film of a thickness of about 0.05-10mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子製造に使用
する高純度高分子化合物水溶液を調製する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing an aqueous solution of a high-purity polymer compound used for manufacturing a semiconductor device.

【0002】[0002]

【従来技術】トランジスタ、ダイオード、IC、LS
I、薄膜磁気ヘッド等の半導体素子の製造工程におい
て、高分子化合物により形成される被膜は、半導体基板
の損傷を防止するための保護膜や、レジストとコントラ
スト増強層との接触を防止するためのバリヤーコートと
して用いられている。上記の高分子化合物としては、ポ
リビニルアルコール、ポリビニルピロリドン等の水溶性
の高分子化合物が好適に用いられている。一般に、上記
の高分子化合物の被膜は、該高分子化合物の水溶液を半
導体基板にスピンコートして形成される。このため、ス
ピンコートするのに適した粘度であるほか、1回のスピ
ンコートで必要な膜厚を得なければならない。このた
め、厚膜を得る場合は高濃度又は高粘度の高分子化合物
水溶液を調製する必要がある。
2. Description of the Related Art Transistors, diodes, ICs, LSs
I, in a manufacturing process of a semiconductor element such as a thin film magnetic head, a film formed of a polymer compound is used for preventing a damage of a semiconductor substrate, a protective film, and a contact between a resist and a contrast enhancing layer. It is used as a barrier coat. As the above-mentioned polymer compound, water-soluble polymer compounds such as polyvinyl alcohol and polyvinylpyrrolidone are preferably used. Generally, the above-mentioned polymer compound film is formed by spin-coating a semiconductor substrate with an aqueous solution of the polymer compound. Therefore, in addition to having a viscosity suitable for spin coating, it is necessary to obtain a required film thickness by one spin coating. Therefore, when obtaining a thick film, it is necessary to prepare a high-concentration or high-viscosity polymer compound aqueous solution.

【0003】一方、半導体素子の特性は、金属又は金属
イオンの付着により大きく変化する。従って、金属等が
付着すると半導体素子の性能は大きく低下する。半導体
素子の製造工程では、材料に含まれる金属等による半導
体基板の汚染等により、半導体素子が作動不良を起こす
等の問題がある。このため、金属等の不純物を含まない
高純度高分子化合物水溶液を調製する必要がある。具体
的には、一般に原料として使用される水溶性の高分子化
合物は、不純物である様々な金属イオンを 100〜5,000p
pm含んでおり、使用前にそれらを除去する必要がある。
半導体素子製造用に適した高分子化合物水溶液において
は、金属イオンの濃度は固形分当たり1ppm 以下である
必要がある。特にNa, K, Mg, Ca, Cr, Mn, Fe, Co, N
i, Cu及びZnのイオンの場合には、さらに0.1ppm以下で
あることが望まれている。
On the other hand, the characteristics of the semiconductor device are greatly changed by the adhesion of metal or metal ions. Therefore, if metal or the like adheres, the performance of the semiconductor device will be greatly reduced. In the process of manufacturing a semiconductor element, there is a problem that the semiconductor element may malfunction due to contamination of the semiconductor substrate by metal or the like contained in the material. Therefore, it is necessary to prepare a high-purity polymer compound aqueous solution containing no impurities such as metals. Specifically, water-soluble polymer compounds that are generally used as raw materials contain various metal ions, which are impurities, at 100 to 5,000 p
pm contains and needs to be removed before use.
In a polymer compound aqueous solution suitable for semiconductor device production, the concentration of metal ions needs to be 1 ppm or less per solid content. Especially Na, K, Mg, Ca, Cr, Mn, Fe, Co, N
In the case of ions of i, Cu and Zn, it is desired that the content be 0.1 ppm or less.

【0004】一般に、スピンコートするのに好適な粘度
を有し、金属等を含まない高純度高分子化合物水溶液を
調製する方法としては、(A)高分子化合物をアルコー
ル等の溶剤で洗浄したり、再沈殿させたりして不純物を
除去し乾燥した後、得られる高分子化合物の粉末を水に
溶解する方法、及び(B)イオン交換により希薄な高分
子水溶液から金属等の不純物を除去し、厚膜を得る場合
は更に減圧下で加熱し濃縮する方法が知られている。
Generally, as a method for preparing a high-purity polymer compound aqueous solution having a viscosity suitable for spin coating and containing no metal or the like, (A) a polymer compound is washed with a solvent such as alcohol. After removing impurities by reprecipitation or the like and drying, the resulting polymer compound powder is dissolved in water, and (B) ion exchange is performed to remove impurities such as metals from a dilute polymer aqueous solution. To obtain a thick film, a method of further heating under reduced pressure and concentrating is known.

【0005】しかし、(A)の方法は、多量に溶剤を使
用すること;処理作業に時間を要すること;処理作業が
煩雑であること;高分子化合物のかなりの部分が溶剤に
流出してしまうこと;洗浄、再沈澱等に使用した溶剤中
に微量の金属イオンが残留してしまうために或いは容器
への移替え時に新たな汚染が生じるために金属イオン含
有量を1ppm 以下(対高分子固形分)にすることが困難
であること等の欠点がある。また、(B)の方法は、高
分子化合物の損失がないこと等の利点があるものの、イ
オン交換する際に100cP 以上の高粘度液の処理が困難な
ので厚膜作製に必要な高粘度の高分子化合物水溶液を調
製できないこと、希薄溶液を加熱濃縮する際に装置内等
で不純物が混入すること、気泡が発生するので操作性が
悪いこと等の欠点がある。
However, in the method (A), a large amount of solvent is used; the processing work requires a long time; the processing work is complicated; a considerable part of the polymer compound flows out into the solvent. The metal ion content is 1 ppm or less (relative to polymer solids) because a trace amount of metal ions remain in the solvent used for washing or reprecipitation, or new contamination occurs when transferring to a container. However, there is a drawback in that In addition, the method (B) has advantages such as no loss of polymer compound, but it is difficult to process a high viscosity liquid of 100 cP or more at the time of ion exchange, so that the high viscosity required for thick film production is high. There are drawbacks such as the inability to prepare an aqueous solution of a molecular compound, the inclusion of impurities in the apparatus or the like when the dilute solution is heated and concentrated, and the poor operability because bubbles are generated.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、高分
子化合物の損失がなく、短時間で金属イオンを含まない
高純度高分子化合物水溶液を容易に調製することができ
る半導体素子製造用の高分子化合物水溶液の調製方法を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to produce a semiconductor device for producing a semiconductor device, which is capable of easily preparing an aqueous solution of a high-purity polymer compound containing no metal ions without loss of the polymer compound and in a short time. It is intended to provide a method for preparing a polymer compound aqueous solution.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記の課題
を解決するため鋭意検討した結果、限外ろ過法が半導体
素子製造用の高純度高分子化合物水溶液の調製に適用可
能であることを見出し本発明に至った。即ち、本発明に
より、高分子化合物の水溶液を限外ろ過することからな
る半導体素子製造用の高純度高分子化合物水溶液の調製
方法が提供される。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventor has found that the ultrafiltration method can be applied to the preparation of a high-purity polymer compound aqueous solution for semiconductor device production. This led to the present invention. That is, the present invention provides a method for preparing an aqueous solution of a high-purity polymer compound for producing a semiconductor device, which comprises ultrafiltration of an aqueous solution of a polymer compound.

【0008】以下、本発明を詳細に説明する。高分子化合物の水溶液を限外ろ過する工程 本発明の特徴である高分子化合物の水溶液を限外ろ過す
る工程について説明する。該工程は、金属イオン及び水
の分子量が高分子化合物の分子量に比べ極めて小さいこ
とを利用し、限外ろ過法により不純物として金属イオン
を含む高分子化合物の水溶液から金属イオンを除去する
工程である。具体的には、不純物である金属イオンは通
過するが特定の値以上の分子量を有する高分子化合物は
通過しない大きさの細孔を有する限外ろ過膜に、不純物
として金属イオンを含む高分子化合物の水溶液を通すこ
とからなる。即ち、該工程は該水溶液を限外ろ過膜を通
過できる金属イオンを含む水溶液と限外ろ過膜を通過で
きない高分子化合物を含む水溶液とに分離する工程であ
る。
The present invention will be described in detail below. Step of ultrafiltering aqueous solution of polymer compound The step of ultrafiltering aqueous solution of polymer compound, which is a feature of the present invention, will be described. This step is a step for removing metal ions from an aqueous solution of a polymer compound containing metal ions as impurities by an ultrafiltration method by utilizing the fact that the molecular weights of metal ions and water are extremely smaller than the molecular weight of polymer compounds. . Specifically, a polymer compound containing a metal ion as an impurity in an ultrafiltration membrane having pores of a size that does not allow a polymer compound having a molecular weight of a specific value or more to pass a metal ion as an impurity. Of water. That is, this step is a step of separating the aqueous solution into an aqueous solution containing metal ions that can pass through the ultrafiltration membrane and an aqueous solution containing a polymer compound that cannot pass through the ultrafiltration membrane.

【0009】限外ろ過 本工程では、通常、粘度で3〜10,000cP( 20℃、以下粘
度の表示は20℃での値を示す。)に調製された高分子化
合物の水溶液を限界ろ過に供する。該水溶液の粘度が高
過ぎるとろ過抵抗が大きくなりろ過に多大な時間を要す
る。また、該水溶液の濃度又は粘度が低過ぎてもろ過す
る高分子化合物の水溶液が多量になるのでろ過に時間を
要する。次いで、高分子化合物の水溶液を加圧下で3〜
10,000cPの粘度範囲を保ちながら限外ろ過膜に通し限外
ろ過する。この際の圧力範囲は、 0.5〜2.0kg/cm2 が好
ましい。所望の純度、粘度等を得るために、限外ろ過を
繰り返し行ってもよい。イオン交換により高分子化合物
からある程度金属イオンを除去した後、得られる水溶液
を限外ろ過し高分子化合物の水溶液の純度を高めてもよ
い。
Ultrafiltration In this step, an aqueous solution of a polymer compound prepared to have a viscosity of 3 to 10,000 cP (20 ° C., hereinafter the viscosity is shown at 20 ° C.) is usually subjected to ultrafiltration . . If the viscosity of the aqueous solution is too high, the filtration resistance becomes large, and a long time is required for filtration. Also, even if the concentration or viscosity of the aqueous solution is too low, the amount of the aqueous solution of the polymer compound to be filtered becomes large, so that it takes time to filter. Then, an aqueous solution of the polymer compound is added under pressure to
Perform ultrafiltration through an ultrafiltration membrane while maintaining the viscosity range of 10,000 cP. The pressure range at this time is preferably 0.5 to 2.0 kg / cm 2 . Ultrafiltration may be repeated to obtain desired purity, viscosity, and the like. After removing some metal ions from the polymer compound by ion exchange, the resulting aqueous solution may be subjected to ultrafiltration to increase the purity of the aqueous solution of the polymer compound.

【0010】限外ろ過膜 前記の限外ろ過膜の材料は特に限定されず、例えば、ポ
リエーテルスルホン系化合物、セルロース系化合物、フ
ッ素化合物等の限外ろ過膜が挙げられる。これらの中で
も特に有機溶剤に強く、分離性と透過性の優れたポリエ
ーテルスルホン系化合物の限外ろ過膜が好適に用いられ
る。限外ろ過膜の選択は、通常、分画分子量により行わ
れる。本発明において好適に使用される限外ろ過膜とし
ては、例えば、分画分子量が1,000 〜1,000,000 の範囲
のものから目的に応じて一種又は分画分子量の異なる二
種以上のものを適宜選択できる。該分画分子量が小さ過
ぎる限外ろ過膜を用いると高分子の損失は少ないが、ろ
過に多大な時間を要したり目詰まりを起こしたりしやす
い。また、該分画分子量が大き過ぎる限外ろ過膜を用い
ると水溶液中の大部分の高分子化合物が限外ろ過膜を通
過してしまい、所望の水溶液が効率よく得られない。
[0010] Materials of the ultrafiltration membrane wherein the ultrafiltration membrane is not particularly limited, for example, polyethersulfone compounds, cellulose-based compounds, ultrafiltration membrane of fluorine compounds. Among these, the ultrafiltration membrane of a polyethersulfone compound which is particularly resistant to organic solvents and has excellent separability and permeability is preferably used. Selection of the ultrafiltration membrane is usually carried out by the molecular weight cutoff. As the ultrafiltration membrane preferably used in the present invention, for example, one having a molecular weight cutoff of 1,000 to 1,000,000 and two or more having a different molecular weight cutoff can be appropriately selected depending on the purpose. When an ultrafiltration membrane having a too small molecular weight cutoff is used, the loss of the polymer is small, but it takes a long time for filtration and is likely to cause clogging. Further, if an ultrafiltration membrane having an excessively large molecular weight cutoff is used, most of the polymer compound in the aqueous solution will pass through the ultrafiltration membrane, and the desired aqueous solution cannot be obtained efficiently.

【0011】高分子化合物 本発明の方法は、通常、半導体素子製造工程で使用され
るいずれの水溶性の高分子化合物にも適用することがで
きる。上記の水溶性の高分子化合物としては、例えば、
完全けん化ポリビニルアルコール、部分けん化ポリビニ
ルアルコール(けん化度70mol %以上)、ポリビニルア
ルコールの再エステル化物等のビニルアルコール系重合
体;ポリビニルピロリドン、ビニルピロリドン−酢酸ビ
ニル共重合体、ビニルピロリドン−アクリル酸共重合
体、ビニルピロリドン−スチレン共重合体等のビニルピ
ロリドン系重合体;メチルセルロース、エチルセルロー
ス、ベンジルセルロース、シアノエチルセルロース、カ
ルボキシメチルセルロース、カルボキシエチルセルロー
ス、ヒドロキシプロピルセルロース等のセルロース誘導
体等が挙げられる。
Polymer Compound The method of the present invention can be applied to any water-soluble polymer compound that is usually used in a semiconductor device manufacturing process. Examples of the water-soluble polymer compound, for example,
Completely saponified polyvinyl alcohol, partially saponified polyvinyl alcohol (saponification degree 70 mol% or more), vinyl alcohol-based polymers such as re-esterified products of polyvinyl alcohol; polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymer, vinylpyrrolidone-acrylic acid copolymer Vinylpyrrolidone-based polymers such as coalesce and vinylpyrrolidone-styrene copolymers; cellulose derivatives such as methylcellulose, ethylcellulose, benzylcellulose, cyanoethylcellulose, carboxymethylcellulose, carboxyethylcellulose, and hydroxypropylcellulose.

【0012】上記の水溶性の高分子化合物の中でも特に
ポリビニルアルコールは、製膜性及び酸素遮断性に優れ
る点、有機溶剤に侵されにくい点、及び使用後水洗すれ
ば半導体基板から容易に除去することができる点で半導
体素子の製造に好適に用いられるものであるが、本発明
の方法によればかかるポリビニルアルコールも容易に高
純度化することができる。
Among the above water-soluble polymer compounds, polyvinyl alcohol is particularly excellent in film forming property and oxygen barrier property, is not easily attacked by organic solvent, and is easily removed from a semiconductor substrate by washing with water after use. The polyvinyl alcohol is suitable for use in the production of semiconductor devices in that it can be obtained. However, the polyvinyl alcohol can be easily highly purified by the method of the present invention.

【0013】用途 本発明の方法により得られる高純度高分子化合物水溶液
は、半導体素子の製造に用いられる。具体的には、例え
ば、半導体基板表面に0.05〜10μm 厚膜になるようスピ
ンコートにより塗布され20〜100 ℃の温度で乾燥し、該
基板上に被膜を形成するのに用いられる。このとき、ス
ピンコートするのに好適な該水溶液の粘度範囲は3〜1
0,000cPであり、より好ましくは3〜1,000cP である。
該水溶液の粘度が低過ぎると膜厚が薄くなり半導体基板
の損傷を防止するための保護膜や、レジストとコントラ
スト増強層との接触を防止するためのバリヤーコートと
しての機能を発揮しない。また、該粘度が高過ぎると膜
厚が厚くなり膜の均一性が低下する。本発明の方法によ
れば、このように半導体素子の製造に求められる好適な
粘度範囲3〜10,000cPを有する水溶液として前記の高純
度高分子化合物水溶液を調製できる。
Applications The high-purity polymer compound aqueous solution obtained by the method of the present invention is used for manufacturing semiconductor devices. Specifically, for example, it is used for forming a film on a semiconductor substrate by spin coating so as to form a film having a thickness of 0.05 to 10 μm and drying at a temperature of 20 to 100 ° C. At this time, the viscosity range of the aqueous solution suitable for spin coating is 3 to 1
It is 0,000 cP, more preferably 3 to 1,000 cP.
If the viscosity of the aqueous solution is too low, the film thickness becomes too thin to function as a protective film for preventing damage to the semiconductor substrate or as a barrier coat for preventing contact between the resist and the contrast enhancing layer. On the other hand, if the viscosity is too high, the film thickness becomes large and the film uniformity deteriorates. According to the method of the present invention, the high-purity polymer compound aqueous solution can be prepared as an aqueous solution having a suitable viscosity range of 3 to 10,000 cP required for the production of semiconductor devices.

【0014】[0014]

【実施例】以下、本発明の実施例を説明するが、本発明
は以下の実施例に何ら限定されない。以下、限外ろ過装
置は富士フィルター工業(株)のフィルトロンミニセッ
ト(商品名)を使用し、限外ろ過膜としてはポリエーテ
ルスルホン膜を用いた。限外ろ過膜の面積は700 cm2 /
枚であった。送液圧力を2.0kg/cm2 G として、限外ろ過
を行った。金属イオン濃度は原子吸光法(JIS K0121 に
基づく) により測定した。電気電導度は、堀場製作所製
導電率計を用い、20℃の溶液で測定した。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to the following examples. Hereinafter, as the ultrafiltration device, Filtron miniset (trade name) manufactured by Fuji Filter Industry Co., Ltd. was used, and as the ultrafiltration membrane, a polyethersulfone membrane was used. The area of ultrafiltration membrane is 700 cm 2 /
It was a sheet. Ultrafiltration was carried out at a liquid feeding pressure of 2.0 kg / cm 2 G. The metal ion concentration was measured by the atomic absorption method (based on JIS K0121). The electric conductivity was measured using a conductivity meter manufactured by Horiba, Ltd. in a solution at 20 ° C.

【0015】実施例1 平均分子量18,000の部分けん化ポリビニルアルコール
(けん化度80モル%)の5重量%水溶液(水溶液中のNa
イオン濃度:6ppm )10リットルを、分画分子量10,000
の限外ろ過膜を2枚重ねて取付けた限外ろ過装置で連続
循環処理し、限外ろ過残液が2リットルになるまで限外
ろ過した。限外ろ過に要した時間は1時間であった。得
られた水溶液中のポリビニルアルコール濃度は24.5重量
%であった。得られた水溶液を超純水で該ポリビニルア
ルコール濃度が5重量%になるまで希釈した後、溶液中
のNaイオン濃度を測定したところ1.2ppmであった。
Example 1 5% by weight aqueous solution of partially saponified polyvinyl alcohol having an average molecular weight of 18,000 (saponification degree: 80 mol%) (Na in the aqueous solution)
Ion concentration: 6ppm) 10 liters, molecular weight cut off 10,000
Continuous ultrafiltration was carried out by an ultrafiltration device equipped with two ultrafiltration membranes of No. 1 and ultrafiltration was performed until the ultrafiltration residual liquid reached 2 liters. The time required for ultrafiltration was 1 hour. The polyvinyl alcohol concentration in the obtained aqueous solution was 24.5% by weight. The obtained aqueous solution was diluted with ultrapure water until the polyvinyl alcohol concentration became 5% by weight, and the Na ion concentration in the solution was measured and found to be 1.2 ppm.

【0016】上記の限外ろ過を4回繰り返し行った後の
高分子化合物の水溶液のポリビニルアルコール濃度は2
4.5重量%、粘度は600cP であった。この水溶液を超純
水で該ポリビニルアルコールの濃度が5重量%になるよ
う希釈した後の溶液中のNaイオン濃度は15ppb 、粘度は
5cPであった。希釈して得られた水溶液を半導体素子基
板にスピンコーティング(回転数3000rpm 、10秒)した
ところ、厚さ 0.1μm の均一な塗膜が得られた。
The polyvinyl alcohol concentration in the aqueous solution of the polymer compound after repeating the above ultrafiltration four times was 2
The content was 4.5% by weight and the viscosity was 600 cP. This aqueous solution was diluted with ultrapure water so that the concentration of the polyvinyl alcohol was 5% by weight, and the Na ion concentration in the solution was 15 ppb and the viscosity was 5 cP. When the semiconductor device substrate was spin-coated with the diluted aqueous solution (rotation speed: 3000 rpm, 10 seconds), a uniform coating film with a thickness of 0.1 μm was obtained.

【0017】実施例2 金属イオンを表1のように含むヒドロキシプロピルセル
ロース5重量%水溶液5リットルを、分画分子量10,000
の限外ろ過膜を3枚重ねて取付けた限外ろ過装置に送液
した。ろ過残液に超純水を10リットル/ 時で投入撹拌し
ながら、10リットル/ 時で送液し繰り返し連続的に限外
ろ過を行った。送液開始から4時間経過後のろ過残液の
濃度は 4.9重量%、粘度は10cPであった。該セルロース
水溶液の限外ろ過の前後における金属イオン濃度及び電
気伝導度を測定したところ、表1に示す結果が得られ
た。限外ろ過後のセルロース水溶液を半導体基板にスピ
ンコーティング(回転数4000rpm 、10秒) したところ、
厚さ 0.2μm の均一な塗膜が得られた。
Example 2 5 liters of a 5% by weight aqueous solution of hydroxypropylcellulose containing metal ions as shown in Table 1 was subjected to a molecular weight cut-off of 10,000.
The solution was sent to an ultrafiltration device having three ultrafiltration membranes of No. 3 attached. Ultrapure water was added to the filtration residue at 10 liters / hour, and the mixture was stirred and fed at 10 liters / hour for repeated ultrafiltration. After 4 hours from the start of liquid feeding, the concentration of the filtration residual liquid was 4.9% by weight and the viscosity was 10 cP. When the metal ion concentration and the electric conductivity were measured before and after the ultrafiltration of the aqueous cellulose solution, the results shown in Table 1 were obtained. Spin coating of the aqueous cellulose solution after ultrafiltration on a semiconductor substrate (rotation speed 4000 rpm, 10 seconds)
A uniform coating having a thickness of 0.2 μm was obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例3 平均分子量18,000の部分けん化ポリビニルアルコール
(けん化度80モル%)の5重量%水溶液(水溶液中のNa
イオン濃度:6ppm )60リットルを調製し、イオン交換
を行って高純度ポリビニルアルコール水溶液を得た。こ
のイオン交換後の水溶液のポリビニルアルコール濃度は
4.9重量%、粘度は4.5cP であった。次に、該水溶液55
リットルを分画分子量10,000の限外ろ過膜を3枚重ねて
取付けた限外ろ過装置で該水溶液が10リットルになるま
で限外ろ過した( 所要時間:4時間) 。上記の限外ろ過
後の水溶液の粘度は 650cPで半導体基板上にスピンコー
ティング(回転数2000rpm 、20秒)したところ、8μm
の均一な塗膜が得られた。
Example 3 A 5% by weight aqueous solution of partially saponified polyvinyl alcohol having an average molecular weight of 18,000 (saponification degree: 80 mol%) (Na in the aqueous solution)
Ion concentration: 6 ppm) 60 liters were prepared and subjected to ion exchange to obtain a high-purity polyvinyl alcohol aqueous solution. The polyvinyl alcohol concentration of the aqueous solution after this ion exchange is
It was 4.9% by weight and the viscosity was 4.5 cP. Next, the aqueous solution 55
The liter was ultrafiltered by an ultrafiltration device equipped with three ultrafiltration membranes having a molecular weight cut off of 10,000 so that the aqueous solution reached 10 liters (required time: 4 hours). The viscosity of the aqueous solution after the above ultrafiltration was 650 cP and spin coating (rotation speed 2000 rpm, 20 seconds) on the semiconductor substrate gave 8 μm.
A uniform coating film was obtained.

【0020】比較例1 Naイオン120ppmを含む平均分子量25,000の部分けん化ポ
リビニルアルコール(けん化度88モル%)粉末500gにメ
タノール5kgを加えた。得られた混合物を60℃で1時間
加熱撹拌し、ポリビニルアルコール粉末をメタノールに
溶解した。この水溶液を室温に冷却しポリビニルアルコ
ールを沈澱させた後、吸引ろ過により、沈澱したポリビ
ニルアルコールと水溶液とを分離した。得られたポリビ
ニルアルコール沈澱物を再びメタノール5kgと混合し、
得られた混合物を上記と同じ条件で加熱攪拌し吸引ろ過
した。上記の混合から分離にわたる一連の作業を4回繰
り返した後、得られたポリビニルアルコールを乾燥し粉
末とした。該ポリビニルアルコール粉末の量は325g、該
粉末中のNaイオン含有量は6ppm であった。上記の一連
の作業を4回繰り返すのに要した時間は35時間、ポリビ
ニルアルコールの回収率は65%であった。
Comparative Example 1 5 kg of methanol was added to 500 g of partially saponified polyvinyl alcohol (saponification degree: 88 mol%) powder having an average molecular weight of 25,000 and containing 120 ppm of Na ions. The obtained mixture was heated and stirred at 60 ° C. for 1 hour, and the polyvinyl alcohol powder was dissolved in methanol. After this aqueous solution was cooled to room temperature to precipitate polyvinyl alcohol, the precipitated polyvinyl alcohol and the aqueous solution were separated by suction filtration. The polyvinyl alcohol precipitate obtained was mixed again with 5 kg of methanol,
The resulting mixture was heated and stirred under the same conditions as above, and suction filtered. After repeating a series of operations from the above mixing to separation four times, the obtained polyvinyl alcohol was dried to give a powder. The amount of the polyvinyl alcohol powder was 325 g, and the Na ion content in the powder was 6 ppm. The time required to repeat the above-described series of operations four times was 35 hours, and the polyvinyl alcohol recovery rate was 65%.

【0021】比較例2 平均分子量18,000の部分けん化ポリビニルアルコール
(けん化度80モル%)の15重量%水溶液(粘度:65cP、
水溶液中のNaイオン濃度:18ppm )10リットルを限外ろ
過に供さずにイオン交換樹脂(アンバライトMB-2、日本
オルガノ社製)2リットルを充填した内径6cmのカラム
に圧送(2kg/cm2 )した。イオン交換に要した時間は3
0時間であった。得られた水溶液中のポリビニルアルコ
ール濃度は15重量%であった。この脱イオン水溶液のNa
イオン濃度を測定したところ0.3ppmであった。
Comparative Example 2 Partially saponified polyvinyl alcohol having an average molecular weight of 18,000 (saponification degree: 80 mol%) in a 15% by weight aqueous solution (viscosity: 65 cP,
Na ion concentration in the aqueous solution: 18 ppm) 10 liters were not pumped to ultrafiltration, but pressure fed to a column with an inner diameter of 6 cm filled with 2 liters of ion exchange resin (Amberlite MB-2, manufactured by Organo Japan) (2 kg / cm 2 ) I did. The time required for ion exchange is 3
It was 0 hours. The polyvinyl alcohol concentration in the obtained aqueous solution was 15% by weight. Na in this deionized aqueous solution
When the ion concentration was measured, it was 0.3 ppm.

【0022】[0022]

【発明の効果】本発明の方法によれば、高分子化合物の
水溶液に不純物として含まれる金属イオンを容易に取り
除くことができるので、半導体素子製造用として好適で
ある、金属イオンを含まない高純度高分子化合物水溶液
が短時間で効率よく、かつ容易に得られる。また、本発
明は、従来の半導体素子製造用の高純度高分子化合物水
溶液の調製方法に見られる洗浄溶剤による高分子化合物
の流失、加熱による該水溶液の変質、装置内壁材の混入
等による該水溶液の汚染等の問題もない。本発明の方法
は、高分子化合物の水溶液を半導体素子製造の際利用さ
れるスピンコーティングに適する粘度で調製することが
できる。よって、本発明により得られる高純度高分子化
合物水溶液から作成された被膜は、半導体素子基板の損
傷を防止するための保護膜、レジストとコントラスト増
強層との接触を防止するためのバリヤーコート等に好適
である。
EFFECTS OF THE INVENTION According to the method of the present invention, metal ions contained as impurities in an aqueous solution of a polymer compound can be easily removed. Therefore, metal ions-free high purity suitable for semiconductor device production can be obtained. A polymer compound aqueous solution can be obtained efficiently in a short time and easily. Further, the present invention provides a method for preparing a high-purity polymer compound aqueous solution for semiconductor device production, wherein the polymer compound is washed away by a cleaning solvent, the aqueous solution is altered by heating, and the inner wall material of the apparatus is mixed. There is no problem such as pollution. The method of the present invention can prepare an aqueous solution of a polymer compound with a viscosity suitable for spin coating used in the production of semiconductor devices. Therefore, the coating film prepared from the high-purity polymer compound aqueous solution obtained by the present invention is used as a protective film for preventing damage to the semiconductor element substrate, a barrier coat for preventing contact between the resist and the contrast enhancing layer, and the like. It is suitable.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高分子化合物の水溶液を限外ろ過するこ
とからなる半導体素子製造用の高純度高分子化合物水溶
液の調製方法。
1. A method for preparing an aqueous solution of a high-purity polymer compound for producing a semiconductor device, which comprises ultrafiltration of an aqueous solution of a polymer compound.
JP17104893A 1993-06-17 1993-06-17 Preparation of aqueous highly pure polymer compound solution for production of semiconductor element Pending JPH07138374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17104893A JPH07138374A (en) 1993-06-17 1993-06-17 Preparation of aqueous highly pure polymer compound solution for production of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17104893A JPH07138374A (en) 1993-06-17 1993-06-17 Preparation of aqueous highly pure polymer compound solution for production of semiconductor element

Publications (1)

Publication Number Publication Date
JPH07138374A true JPH07138374A (en) 1995-05-30

Family

ID=15916120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17104893A Pending JPH07138374A (en) 1993-06-17 1993-06-17 Preparation of aqueous highly pure polymer compound solution for production of semiconductor element

Country Status (1)

Country Link
JP (1) JPH07138374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029459A1 (en) * 1996-12-27 1998-07-09 Kao Corporation Method for the purification of ionic polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029459A1 (en) * 1996-12-27 1998-07-09 Kao Corporation Method for the purification of ionic polymers

Similar Documents

Publication Publication Date Title
JP6807667B2 (en) Manufacturing method of metal nanowire dispersion liquid and manufacturing method of metal nanowire ink
KR101787122B1 (en) Reverse osmosis composite membrane for boron removal
WO2012078590A2 (en) Stable dispersions of monocrystalline nanometric silver particles
CN108187512A (en) A kind of high throughput compound nanometer filtering membrane of polyamide and preparation method thereof
EP2533884A1 (en) Self-assembled block copolymer membrane
TWI665037B (en) Silver nanowire and manufacturing method thereof and silver nanowire ink
TW202138043A (en) Method for producing silver nanowires dispersion liquid
CN110801738B (en) Preparation method of high-dispersion titanium dioxide doped polyamide nanofiltration membrane
EP3354333B1 (en) Water treatment membrane and method for manufacturing same
WO2005014150A1 (en) Pvc hollow filtration membrane and the preparation method thereof
CN101721926A (en) Sulfonated copolymerized arylene ether ketone compound nano filtration membrane containing Chinazolin ketone and preparation method thereof
JPH07138374A (en) Preparation of aqueous highly pure polymer compound solution for production of semiconductor element
US11786871B2 (en) Composite poly (aryl ether ketone) membranes, their preparation and use thereof
TW201934526A (en) Method for purifying dihydroxynaphthalene
JP3593200B2 (en) Low metal content polybenzimidazole material and its production method
CN115007003A (en) High-flux positively-charged composite nanofiltration membrane, preparation method and application
CN105582819B (en) A kind of solvent-resisting sulfonated poly aryl ether ketone milipore filter and preparation method thereof
CN111085117B (en) High-water-permeability reverse osmosis membrane and preparation method thereof
JP2001089520A (en) Method for producing polyvinyl acetal resin
CN111644071A (en) Preparation method of graphene oxide nanofiltration membrane suitable for operation under high operating pressure
TW202003726A (en) Silver nanowire ink, method for producing transparent conductive film, and transparent conductive film
JPWO2002094954A1 (en) Method for producing metal colloid high concentration solution
US20220134293A1 (en) Low metal content polyolefin filter membrane
CN111644075B (en) Application of graphene oxide nanofiltration membrane under high operating pressure
JP2878798B2 (en) Composite semipermeable membrane and method for producing the same