JPH07136961A - Industrial robot control device - Google Patents

Industrial robot control device

Info

Publication number
JPH07136961A
JPH07136961A JP30754393A JP30754393A JPH07136961A JP H07136961 A JPH07136961 A JP H07136961A JP 30754393 A JP30754393 A JP 30754393A JP 30754393 A JP30754393 A JP 30754393A JP H07136961 A JPH07136961 A JP H07136961A
Authority
JP
Japan
Prior art keywords
robot
temperature
motor
reference value
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30754393A
Other languages
Japanese (ja)
Other versions
JP3348425B2 (en
Inventor
Hisao Osono
久男 大薗
Kazunobu Makishima
一伸 槇島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP30754393A priority Critical patent/JP3348425B2/en
Publication of JPH07136961A publication Critical patent/JPH07136961A/en
Application granted granted Critical
Publication of JP3348425B2 publication Critical patent/JP3348425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PURPOSE:To automatically correct the action of a motor according to the ambient temperature of a robot by lowering the acceleration/deceleration or speed of a motor for driving a robot in the case of the ambient temperature of the robot before the start of operation being lower than the reference value. CONSTITUTION:When the power supply of a robot control device 20 is turned on, the ambient temperature of a robot is measured by temperature sensors 10a, 10b, 10c. When the measured value is lower than the reference value, the temperature is calculated. The accelerating/decelerating time to be changed is determined by the degree of difference between the measured temperature and the reference value temperature and also by the acting attitude of the robot. The change of the set speed is then determined in the same way as the change of the accelerating/decelerating time. Reference torque to return to normal action is also determined. The commands of the accelerating/ decelerating time and set speed after the change of setting are supplied to a motor 12. At the same time, the contents of change is displayed on a display device such as a CRT. Simultaneously with motor starting, sampling time is started wherein generated torque is monitored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、産業用ロボットの制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller for an industrial robot.

【0002】[0002]

【従来の技術】従来は、図4に示すように、加減速時
間、動作速度は一定のパターンで指令されている。一
方、特開昭64−20990号公報には、ロボットを駆
動するサーボモータの温度を検出し、ロボットの動作速
度を自動的に増減させる技術が開示されている。
2. Description of the Related Art Conventionally, as shown in FIG. 4, acceleration / deceleration time and operation speed are commanded in a fixed pattern. On the other hand, Japanese Unexamined Patent Publication No. Sho 64-20990 discloses a technique of detecting the temperature of a servo motor that drives a robot and automatically increasing or decreasing the operating speed of the robot.

【0003】[0003]

【発明が解決しようとする課題】ところが、実際はサー
ボモータ自身の温度も問題になるが、運転開始前の周囲
温度の方がロボット動作に与える影響がより大きい場合
がある。すなわち、ロボットマニピュレータの駆動系に
使用されている減速機、ボールネジ、モータ等の摩擦ト
ルクは潤滑剤として使用されているグリース、オイルの
粘度の変化による影響等で温度が低くなると増大する。
その結果、低温における摩擦トルクの増大により、加減
速時のモータ必要トルクが増大し、所定の加減速時間で
は必要トルクがモータ発生トルクの最大値を超えること
になり、指令通りの動作ができなくなり、アラームが発
生し、ロボットが停止することになる。又、一定速度に
おいても特に高速の場合同様に必要トルクが増大、過負
荷アラームが発生し、ロボットが停止することになる。
特に、冬場、低温用途においてこの問題が発生し、結果
的に動作速度、加減速時間を変更して、対応していた。
このような問題を解決する方法として、周温が下がって
摩擦トルクが増大しても、必要な最大トルクを発生させ
ることができるモータを選定する案があるが、この方法
はモータ枠の増大、重量、寸法、および経済性が問題に
なる。この方法では、ロボットの場合、モータが負荷に
なり、モータ枠の増大、重量アップがロボットの機構構
成上難しい場合もあり、単純に解決案にならないことも
ある。そこで本発明は、ロボットの周囲温度に応じてモ
ータ動作を自動修正するようにした産業用ロボットの制
御装置を提供することを目的とする。
However, although the temperature of the servo motor itself actually becomes a problem, there are cases where the ambient temperature before the start of operation has a greater influence on the robot operation. That is, the friction torque of the speed reducer, the ball screw, the motor, etc. used in the drive system of the robot manipulator increases as the temperature decreases due to the influence of the change in the viscosity of the grease and oil used as the lubricant.
As a result, the increase in the friction torque at low temperature increases the motor required torque during acceleration / deceleration, and the required torque exceeds the maximum value of the motor-generated torque during the predetermined acceleration / deceleration time, making it impossible to operate as instructed. , An alarm will be generated and the robot will stop. Further, even at a constant speed, especially at a high speed, the required torque increases, an overload alarm occurs, and the robot stops.
In particular, this problem occurs in winter and low temperature applications, and as a result, the operating speed and the acceleration / deceleration time have been changed to cope with the problem.
As a method of solving such a problem, there is a plan to select a motor that can generate a necessary maximum torque even if the peripheral temperature decreases and the friction torque increases, but this method increases the motor frame, Weight, size, and economy are issues. In this method, in the case of a robot, the motor becomes a load, and it may be difficult to increase the motor frame and weight due to the robot's mechanical structure, and it may not be a simple solution. Therefore, an object of the present invention is to provide a control device for an industrial robot that automatically corrects the motor operation according to the ambient temperature of the robot.

【0004】[0004]

【課題を解決するための手段】本発明は、運転開始前の
ロボットの周囲温度を測定する温度センサと、前記温度
センサで測定した周囲温度が基準値より低い場合にはロ
ボットを駆動するモータの加減速度または速度を低くす
る手段と、を備えたことを特徴とするものである。
The present invention relates to a temperature sensor for measuring the ambient temperature of a robot before the start of operation, and a motor for driving the robot when the ambient temperature measured by the temperature sensor is lower than a reference value. And means for reducing the acceleration / deceleration or the speed.

【0005】[0005]

【作用】ロボットコントローラに電源、投入後、温度セ
ンサにより、ロボットマニピュレータ周辺の温度が測定
され、その結果と周囲温度の基準値が比較される。基準
値より周囲温度が高い場合はそのまま、設定されている
作業条件速度で運転される。基準値より低い場合は、基
準値との差の大きさによって、加減速時間と設定速度の
変更幅が決定され、その値で運転がスタートする。変更
されて運転された場合、運転を続けていくとグリース、
オイルの温度が上昇し、摩擦トルクが減少していくこと
になるので、スタート後常にモータ発生トルクを監視し
ておき、このトルクが変更された場合の温度差による発
生トルク基準値と比較し小さくなった場合は通常の作業
条件に戻し運転を続行する。
After the power is turned on to the robot controller, the temperature around the robot manipulator is measured by the temperature sensor, and the result is compared with the reference value of the ambient temperature. When the ambient temperature is higher than the reference value, the system is operated at the set work condition speed as it is. If it is lower than the reference value, the acceleration / deceleration time and the change range of the set speed are determined by the magnitude of the difference from the reference value, and the operation is started at that value. If changed and operated, grease will continue,
Since the oil temperature rises and the friction torque decreases, always monitor the motor generated torque after the start and compare it with the generated torque reference value due to the temperature difference when this torque is changed. If this happens, return to normal working conditions and continue operation.

【0006】[0006]

【実施例】以下、本発明の実施例を参照しながら具体的
に説明する。図1は本発明を実施する産業用ロボットの
ブロック図である。図中20はロボット制御装置、40
はサーボモータ12が取り付けられたロボット機構部で
ある。10aは温度センサがロボット制御装置に、10
bは温度センサがロボット機構部に、10cは温度セン
サがサーボモータの各軸あるいはどれかの1軸に取り付
けられた場合である。ただし、いずれの場合でも、取り
付けた部分の温度ではなく周囲の温度が測定できるよう
に取り付ける必要がある。制御装置20は、中央処理装
置(以下CPU)1を有し、CPU1にはROMからな
るメモリ2、RAMからなるメモリ3、軸制御部入出力
インターフェース8等がデータバス9で接続されてい
る。軸制御部6にはロボット各軸のサーボモータ12を
駆動するサーボアンプ7が接続されている。入出力イン
ターフェース8にはサーボアンプ7のオンオフするI/
O信号回路を備えている。ロボット周辺の温度はサーミ
スタ等の温度センサ10a、10b、10cで測定さ
れ、その測定値はA/Dコンバータ11でディジタル信
号に変換されて入出力インターフェース8を通して、中
央処理装置1に入力される。次に本実施例を図2のフロ
ーチャートで説明する。ロボット制御装置電源を投入す
ると(ステップ100)、ロボット周囲の温度が測定さ
れる(ステップ110)。測定された周囲温度と基準値
が比較される(ステップ120)。測定値が基準値より
低い場合は、その温度を計算する。変更する加減速時間
が前記測定温度と基準値温度の差との大きさによって、
又ロボットの動作姿勢によって決定される。次に設定さ
れている速度の変更が加減速時間の変更と同様な方法で
決定される。又通常動作に戻る基準トルクが決定される
(ステップ130)。設定変更後の加減速時間、設定速
度の指令がモータへ与えられる(ステップ140)。同
時にCRT等の表示装置に変更内容が表示される(ステ
ップ150)。モータスタートと同時に発生トルクの監
視があるサンプリング時間にスタートする(ステップ1
60)。設定変更時に決められていた通常動作に戻る場
合の基準トルクとサンプリング時間毎に比較する(ステ
ップ170)。基準値より大きい場合はそのまま、変更
状態で続行し運転する(ステップ140)。基準値より
小さくなっている場合は設定変更に戻し、運転を続行す
ると同時に変更の表示をやめる(ステップ180)。周
温が基準値より大きい場合は設定速度のまま運転する
(ステップ180)。電源投入時、常時前記のループを
繰り返す。
Embodiments will be specifically described below with reference to embodiments of the present invention. FIG. 1 is a block diagram of an industrial robot embodying the present invention. In the figure, 20 is a robot controller, 40
Is a robot mechanism unit to which the servo motor 12 is attached. In 10a, the temperature sensor is used in the robot controller.
Reference numeral b shows the case where the temperature sensor is attached to the robot mechanism portion, and reference numeral 10c shows the case where the temperature sensor is attached to each axis of the servomotor or any one of them. However, in any case, it is necessary to mount the sensor so that the ambient temperature can be measured instead of the temperature of the mounted part. The control device 20 has a central processing unit (hereinafter referred to as CPU) 1, and the CPU 1 is connected to a memory 2 formed of a ROM, a memory 3 formed of a RAM, an axis control unit input / output interface 8 and the like via a data bus 9. A servo amplifier 7 that drives a servo motor 12 for each axis of the robot is connected to the axis control unit 6. The I / O interface 8 turns on / off the servo amplifier 7
It has an O signal circuit. The temperature around the robot is measured by temperature sensors 10a, 10b, 10c such as thermistors, and the measured values are converted into digital signals by the A / D converter 11 and input to the central processing unit 1 through the input / output interface 8. Next, this embodiment will be described with reference to the flowchart of FIG. When the robot controller power is turned on (step 100), the temperature around the robot is measured (step 110). The measured ambient temperature and the reference value are compared (step 120). If the measured value is lower than the reference value, calculate the temperature. Depending on the magnitude of the difference between the measured temperature and the reference value temperature, the acceleration / deceleration time to be changed is
It is also determined by the operating posture of the robot. The change in the speed set next is determined in the same manner as the change in the acceleration / deceleration time. Further, the reference torque for returning to the normal operation is determined (step 130). The command of the acceleration / deceleration time after the setting change and the set speed is given to the motor (step 140). At the same time, the changed contents are displayed on a display device such as a CRT (step 150). When the motor starts, the generated torque is monitored and starts at a sampling time (step 1
60). The reference torque for returning to the normal operation determined when the setting is changed is compared for each sampling time (step 170). If it is larger than the reference value, the operation is continued in the changed state as it is (step 140). If the value is smaller than the reference value, the setting is changed back to continue the operation and the display of the change is stopped (step 180). If the ambient temperature is higher than the reference value, the operation is continued at the set speed (step 180). When the power is turned on, the above loop is constantly repeated.

【0007】[0007]

【発明の効果】上述したように、運転開始前の周囲温度
が基準値より低い場合に、加減速時間や設定速度を変更
することにより、摩擦トルク増大による、トルク不足が
発生しないので、ロボットを停止させることなく起動運
転ができる。又、運転経過後、摩擦トルクが減少してい
った場合、自動的に初期の設定速度に戻るのでオペレー
タを煩わすことなく、又、モータ枠をアップすることな
く低温における摩擦トルク増大に対応できる。
As described above, when the ambient temperature before the start of operation is lower than the reference value, by changing the acceleration / deceleration time and the set speed, the torque shortage due to the increase in friction torque does not occur. Start-up operation can be performed without stopping. Further, when the friction torque decreases after the operation, the initial setting speed is automatically returned, so that it is possible to cope with the increase in the friction torque at low temperature without bothering the operator and without increasing the motor frame.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する産業用ロボットのブロック図
である。
FIG. 1 is a block diagram of an industrial robot that implements the present invention.

【図2】本発明の実施例の動作を示すフローチャートで
ある。
FIG. 2 is a flowchart showing the operation of the embodiment of the present invention.

【図3】本実施例の加減速時間、定常速度指令を変更し
た場合の従来法との比較説明図である。
FIG. 3 is an explanatory diagram for comparison with a conventional method when the acceleration / deceleration time and the steady speed command of this embodiment are changed.

【図4】従来の加減速時間、定常速度指令の例を示す説
明図である。
FIG. 4 is an explanatory diagram showing an example of conventional acceleration / deceleration time and steady speed command.

【符号の説明】[Explanation of symbols]

1 CPU 2 メモリ(ROM) 3 メモリ(RAM) 4 操作パネル 5 ティーチボックス 6 軸制御部 7 サーボアンプ 8 入出力インターフェース 9 データバス 10a、10b、10c 温度センサ 11 A/Cコンバータ 12 サーボモータ 20 ロボット制御装置 40 ロボット機構部 41 作業用治工具 1 CPU 2 Memory (ROM) 3 Memory (RAM) 4 Operation Panel 5 Teach Box 6 Axis Controller 7 Servo Amplifier 8 Input / Output Interface 9 Data Bus 10a, 10b, 10c Temperature Sensor 11 A / C Converter 12 Servo Motor 20 Robot Control Device 40 Robot mechanism 41 Work jig

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 運転開始前のロボットの周囲温度を測定
する温度センサと、前記温度センサで測定した周囲温度
が基準値より低い場合にはロボットを駆動するモータの
加減速度または速度を低くする手段と、を備えたことを
特徴とする産業用ロボットの制御装置。
1. A temperature sensor for measuring the ambient temperature of a robot before the start of operation, and a means for lowering the acceleration / deceleration or the speed of a motor for driving the robot when the ambient temperature measured by the temperature sensor is lower than a reference value. An industrial robot control device comprising:
【請求項2】 前記加減速度または速度の変更幅は、検
出温度と基準温度の差に応じて自動設定されるようにし
た請求項1記載の産業用ロボットの制御装置。
2. The control device for an industrial robot according to claim 1, wherein the acceleration / deceleration or the change range of the speed is automatically set according to the difference between the detected temperature and the reference temperature.
【請求項3】 動作運転後、モータのトルクを監視し、
その値が変更した加減速度または速度に対応する基準値
と比較して小さくなれば、初期に設定された作業条件の
運転に戻す手段を設けた請求項1記載の産業用ロボット
の制御装置。
3. The motor torque is monitored after the operation,
The industrial robot controller according to claim 1, further comprising means for returning the operation to the initially set working condition when the value becomes smaller than the changed acceleration / deceleration or the reference value corresponding to the speed.
JP30754393A 1993-11-12 1993-11-12 Industrial robot control device Expired - Fee Related JP3348425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30754393A JP3348425B2 (en) 1993-11-12 1993-11-12 Industrial robot control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30754393A JP3348425B2 (en) 1993-11-12 1993-11-12 Industrial robot control device

Publications (2)

Publication Number Publication Date
JPH07136961A true JPH07136961A (en) 1995-05-30
JP3348425B2 JP3348425B2 (en) 2002-11-20

Family

ID=17970365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30754393A Expired - Fee Related JP3348425B2 (en) 1993-11-12 1993-11-12 Industrial robot control device

Country Status (1)

Country Link
JP (1) JP3348425B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106346465A (en) * 2015-07-17 2017-01-25 日本电产三协株式会社 Industrial robot and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112476423B (en) * 2020-11-12 2022-03-08 腾讯科技(深圳)有限公司 Method, device and equipment for controlling joint motor of robot and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106346465A (en) * 2015-07-17 2017-01-25 日本电产三协株式会社 Industrial robot and control method thereof
JP2017024096A (en) * 2015-07-17 2017-02-02 日本電産サンキョー株式会社 Industrial robot and control method for industrial robot

Also Published As

Publication number Publication date
JP3348425B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
US5834916A (en) Industrial robot and its control unit
EP2090407A1 (en) Robot controller having component protecting function and robot control method
JPH07132440A (en) Machining load monitoring system
US20010033146A1 (en) Controller for machine
JP2535366B2 (en) Method and device for confirming operation ability of industrial robot
KR0144650B1 (en) Method of detecting and regulating load on servomotor
EP0666138B1 (en) Tool breakage prevention system
JP2006154998A (en) Controller
JPH09282020A (en) Servo motor driving device
JP3348425B2 (en) Industrial robot control device
JPS63245389A (en) Method of controlling robot
US5448144A (en) Method and apparatus for controlling a robot
JPS61203883A (en) Servo motor control system
JPH06246674A (en) Method for detecting brake abnormality of industrical robot
EP0604663A1 (en) Method for estimating inertia and disturbance torque, and method for detecting abnormal load
JP2005071086A (en) Motion control system
JPH0751997A (en) Machining load monitoring method
JPH08263143A (en) Control gain switching system using disturbance observer
JPH0976144A (en) Machining state monitoring method in machine tool
JPH0751992A (en) Drilling work method
JP3855629B2 (en) Robot interference detection device
JPH08249030A (en) Numerical controller and positioning method
JPH0751993A (en) Machine element life estimating method for cnc
JPH09128037A (en) Pid controller
JP3209344B2 (en) Control method of industrial robot

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20070913

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080913

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090913

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100913

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110913

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130913

LAPS Cancellation because of no payment of annual fees