JPH0713659B2 - Charged particle distribution measuring device - Google Patents

Charged particle distribution measuring device

Info

Publication number
JPH0713659B2
JPH0713659B2 JP29968289A JP29968289A JPH0713659B2 JP H0713659 B2 JPH0713659 B2 JP H0713659B2 JP 29968289 A JP29968289 A JP 29968289A JP 29968289 A JP29968289 A JP 29968289A JP H0713659 B2 JPH0713659 B2 JP H0713659B2
Authority
JP
Japan
Prior art keywords
particle
charged particle
electrode
distribution measuring
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29968289A
Other languages
Japanese (ja)
Other versions
JPH0348189A (en
Inventor
茂雄 佐々木
義雄 山根
和夫 吉田
文春 薮中
荘一郎 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29968289A priority Critical patent/JPH0713659B2/en
Publication of JPH0348189A publication Critical patent/JPH0348189A/en
Publication of JPH0713659B2 publication Critical patent/JPH0713659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、荷電粒子分布測定装置、例えば、イオンミ
キシング装置やイオン注入装置等に用いられる荷電粒子
分布測定装置であって、特に、大電流・大面積のビーム
の二次元分布を、ビームの偏向を用いずに、高分解能に
測定する荷電粒子分布測定装置に関するものである。
TECHNICAL FIELD The present invention relates to a charged particle distribution measuring apparatus, for example, a charged particle distribution measuring apparatus used in an ion mixing apparatus, an ion implantation apparatus, etc. The present invention relates to a charged particle distribution measuring device that measures a two-dimensional distribution of a large-area beam with high resolution without using beam deflection.

〔従来の技術〕[Conventional technology]

例えば、半導体への大電流・大面積イオン注入を行う場
合、イオンビームの注入面での均一性が重要である。
For example, when performing high-current / large-area ion implantation on a semiconductor, it is important to have uniformity on the implantation surface of the ion beam.

この電流密度分布を測定する簡易的方法として、イオン
ビームを蛍光物質に照射し、その発光から測定する方法
があるが、高精度の測定が困難であるとともに、イオン
ビームによる蛍光体の劣化・消耗が大きいという問題が
ある。
As a simple method to measure this current density distribution, there is a method of irradiating a fluorescent substance with an ion beam and measuring from the light emission, but it is difficult to measure with high accuracy, and the deterioration and consumption of the fluorescent substance due to the ion beam Is a big problem.

また、ビームの電流分布を計測する他の方法として、細
い金属線を上下左右に移動したり回転させ、その金属線
に流入する電流から分布を計るワイヤー ビーム プロ
ーブ法(Wire Beam Probe法例えばJ G Siekman etc:New
microprobe techniques for measuring the current d
istribution in an electron beam used for welding;J
ournal of Physics 1975 Vol.8)がある。しかし、この
方法はイオン照射時に金属線から二次電子が放出される
ため、相対的な電流密度分布のみの測定に限られる。
Another method to measure the current distribution of the beam is to move or rotate a thin metal wire up and down, left and right, and measure the distribution from the current flowing into the metal wire (Wire Beam Probe method such as JG Siekman). etc: New
microprobe techniques for measuring the current d
istribution in an electron beam used for welding; J
There is ournal of Physics 1975 Vol.8). However, this method is limited to the measurement of only the relative current density distribution because secondary electrons are emitted from the metal line during ion irradiation.

一方、ビームの絶対量も測定できる二次電子抑制電極を
有する従来例を次に示す。
On the other hand, the following is a conventional example having a secondary electron suppressing electrode capable of measuring the absolute amount of the beam.

第9図及び第10図は、例えば「電子・イオンビームハン
ドブック」の第275ページに示されている従来の荷電粒
子分布測定装置の模式図及びビーム電流を検出する部分
(以後ファラデーケージ部と呼ぶ)の構成断面図であ
る。
9 and 10 are schematic diagrams of a conventional charged particle distribution measuring apparatus shown in page 275 of "Electron / Ion Beam Handbook" and a portion for detecting a beam current (hereinafter referred to as a Faraday cage portion). ) Is a configuration cross-sectional view of FIG.

図において、符号(1)は複数の貫通孔の開いた粒子通
過部材である入射絞り板、(2)は入射絞り板(1)と
同じ箇所に貫通穴があいた反跳粒子捕捉部材である二次
電子抑制電極、(3)は入射絞り板(1)と二次電子抑
制電極(2)の貫通穴の背後に配置された円筒管状の粒
子捕捉部材であるコレクタ電極、(4)は複数のコレク
タ電極(3)の位置を構造的に規定すると共に、各々の
コレクタ電極(3)を電気的に絶縁する絶縁板、(5)
はコレクタ電極(3)と絶縁板(4)とを機械的に固定
する測定端子ボルト、(8)は荷電粒子ビーム、(7)
は上記装置の真空雰囲気を大気から遮断する真空槽、
(8a)は二次電子抑制電極(2)に接続され、図には省
略された電源から二次電子抑制電極(2)に負電位を与
える導線、(8b)は測定端子ボルト(5)に接続され、
図には省略された電流測定装置につながる測定線であ
る。
In the figure, reference numeral (1) is an entrance diaphragm plate which is a particle passage member having a plurality of through holes, and (2) is a recoil particle trapping member having a through hole at the same position as the entrance diaphragm plate (1). Secondary electron suppressing electrode, (3) is a collector electrode which is a cylindrical tubular particle trapping member arranged behind the through hole of the entrance diaphragm plate (1) and the secondary electron suppressing electrode (2), and (4) is a plurality of collector electrodes. An insulating plate (5) for structurally defining the position of the collector electrode (3) and electrically insulating each collector electrode (3).
Is a measuring terminal bolt for mechanically fixing the collector electrode (3) and the insulating plate (4), (8) is a charged particle beam, (7)
Is a vacuum chamber that shuts off the vacuum atmosphere of the above device from the atmosphere,
(8a) is a lead wire which is connected to the secondary electron suppression electrode (2) and gives a negative potential to the secondary electron suppression electrode (2) from a power source (not shown), and (8b) is connected to the measurement terminal bolt (5). Connected,
The measurement line connected to the current measuring device is omitted in the figure.

次に上記従来装置の動作について説明する。Next, the operation of the above conventional device will be described.

図には省略されている荷電粒子源から荷電粒子ビーム
(6)が飛来して入射絞り板(1)に達すると、貫通穴
以外の箇所の荷電粒子は入射絞り板(1)に衝突して止
められ、貫通穴の位置の荷電粒子ビーム(6)のみが入
射絞り板(1)を通過する。
When the charged particle beam (6) comes from a charged particle source (not shown in the figure) and reaches the entrance diaphragm plate (1), charged particles other than the through holes collide with the entrance diaphragm plate (1). Only the charged particle beam (6) at the position of the through hole which is stopped passes through the entrance diaphragm plate (1).

この入射絞り板(1)を通過した荷電粒子は二次電子抑
制電極(2)を通過してコレクタ電極(3)に衝突し、
測定端子ボルト(5)および測定線(8b)を通って大気
中の電流測定装置で計測される。
The charged particles passing through the entrance diaphragm plate (1) pass through the secondary electron suppressing electrode (2) and collide with the collector electrode (3),
It is measured by a current measuring device in the atmosphere through the measuring terminal bolt (5) and the measuring wire (8b).

各々のコレクタ電極(3)ら流入する電流計測値を比較
することによって二次元平面に固定配置されている入射
絞り板(1)の位置における荷電粒子ビーム(6)の電
流分布が測定される。
The current distribution of the charged particle beam (6) at the position of the entrance diaphragm plate (1) fixedly arranged on the two-dimensional plane is measured by comparing the measured current values flowing from the respective collector electrodes (3).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の荷電粒子分布測定装置は以上のように構成されて
いるので、この荷電粒子分布測定装置の二次元空間にお
ける分解能は入射絞り板(1)の穴の間隔すなわちコレ
クタ電極(3)の間隔によって制限されているために、
これらの機械的な制約から分解能を向上させることがで
きないという問題点を有しており、このような問題点を
解決するように課題を有していた。
Since the conventional charged particle distribution measuring apparatus is configured as described above, the resolution in the two-dimensional space of this charged particle distribution measuring apparatus depends on the distance between the holes of the entrance diaphragm plate (1), that is, the distance between the collector electrodes (3). Being limited,
There is a problem that the resolution cannot be improved due to these mechanical constraints, and there is a problem to solve such a problem.

この発明は、上記のような問題点を解決するためになさ
れたもので、二次元の空間における分解能が高くできる
荷電粒子分布測定装置を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a charged particle distribution measuring apparatus capable of increasing the resolution in a two-dimensional space.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係る荷電粒子分布測定装置は。第1発明にあ
っては、荷電粒子の軌道と交わる平面に設けられるとと
もに上記軌道に平行な複数の貫通孔を有する粒子通過部
材と、この粒子通過部材の各々の貫通孔を通過した荷電
粒子を捕捉する粒子捕捉部材とを有している粒子捕捉
部、及びこの粒子捕捉部を上記平面内の任意方向に移動
させる移動部を備えているものであり、また、第2発明
にあっては、粒子捕捉部材が、荷電粒子の軌道と交わる
平面に設けられかつ上記軌道方向に貫通する複数の穴を
有する絶縁板の上記穴内にそれぞれ設けられていること
にあるものである。
The charged particle distribution measuring device according to the present invention is. According to the first aspect of the present invention, there are provided a particle passage member having a plurality of through holes provided on a plane intersecting with the orbits of the charged particles and having a plurality of through holes parallel to the orbits, and the charged particles having passed through the through holes of the particle passage members. A particle capturing part having a particle capturing member for capturing, and a moving part for moving the particle capturing part in an arbitrary direction within the plane, and in the second invention, The particle trapping member is provided in each of the holes of the insulating plate which is provided on a plane intersecting with the trajectory of the charged particles and has a plurality of holes penetrating in the trajectory direction.

〔作用〕[Action]

この発明は上記のように構成されているので、第1発明
においては、粒子捕捉部が移動によって移動し、従っ
て、粒子通過部材の穴も移動し得るので、その貫通穴と
貫通穴との間の位置における荷電粒子ビーム電流量も測
定され、その結果、高分解能に測定できる。
Since the present invention is configured as described above, in the first invention, the particle capturing portion moves due to the movement, and therefore the hole of the particle passage member can also move, so that the space between the through hole and the through hole. The charged particle beam current amount at the position of is also measured, and as a result, it is possible to measure with high resolution.

また、第2発明においては、粒子捕捉部材が絶縁板の穴
内に設けられており、かつ、この穴は微細加工が可能で
あるので、穴間隔を小さくすることができ、従って、粒
子捕捉部を高密度に配設することが可能となって、高分
解能に測定することができる。
Further, in the second aspect of the invention, since the particle capturing member is provided in the hole of the insulating plate and the hole can be finely processed, the hole interval can be made small, and therefore the particle capturing portion can be It is possible to dispose at high density, and it is possible to measure with high resolution.

〔実施例〕〔Example〕

以下、この発明の第1発明を、その一実施例としてイオ
ン注入装置におけるイオンビーム電流密度分布測定の場
合を示す第1図に基づいて説明する。
The first invention of the present invention will be described below with reference to FIG. 1 showing the case of measuring an ion beam current density distribution in an ion implantation apparatus as one embodiment thereof.

図において、符号(1)〜(6)および(8b)により示
すものは、従来装置において同一符号で示したものと同
一又は同等のものである。
In the figure, the reference numerals (1) to (6) and (8b) are the same as or equivalent to those shown by the same reference numerals in the conventional device.

次に、符号(9)は粒子通過部材である入射絞り板
(1)を囲んでこれと電気的に接続されている囲み電
極、(10)は入射絞り板(1)および囲み電極(9)の
前に位置し、導線(8c)によって二次電子抑制電極
(2)とともに負の電圧を供給されているもう一枚の二
次電子抑制電極、(11)は上記入射絞り板(1)、二次
電子抑制電極(2)、コレクタ電極(3)、囲み電極
(9)、もう一枚の二次電子抑制電極(10)と一体に接
続された荷電粒子ビーム(6)の飛来方向に対して垂直
に2方向へ移動可能に構成されている移動部である可動
搭載台、(12)は可動搭載台(11)の基礎台、(13)は
真空槽(7a)と可動搭載台(11)とを接続し、かつ、真
空を大気から遮断可能で可撓性を有するベローズであ
る。なお、上記入射絞り板(1)、二次電子抑制電極
(2),(10)およびコレクタ電極(3)と囲み電極
(9)によって粒子捕捉部(14)が構成される。
Next, reference numeral (9) is a surrounding electrode which surrounds and is electrically connected to the entrance diaphragm plate (1) which is a particle passing member, and (10) is an entrance diaphragm plate (1) and the surrounding electrode (9). Another secondary electron suppressing electrode which is positioned in front of and is supplied with a negative voltage together with the secondary electron suppressing electrode (2) by the conducting wire (8c), (11) is the entrance diaphragm plate (1), The secondary electron suppressing electrode (2), the collector electrode (3), the surrounding electrode (9), and another secondary electron suppressing electrode (10) are integrally connected to the charged particle beam (6) in the direction of flight. The movable mount, which is a movable part configured to be vertically movable in two directions, (12) is the base of the movable mount (11), (13) is the vacuum tank (7a) and the movable mount (11). ) And a flexible bellows capable of blocking the vacuum from the atmosphere. The entrance diaphragm plate (1), the secondary electron suppressing electrodes (2) and (10), the collector electrode (3) and the surrounding electrode (9) form a particle trap (14).

この基本構成を具体的構造で示したのが第2図であり、
その中でファラデーケージ部のみを抽出したのが第3図
である。なお、第3図において、符号(15)はもう一枚
の二次電子抑制電極(10)と囲み電極(9)とを電気的
に絶縁している絶縁スペーサである。
FIG. 2 shows the basic structure in a concrete structure.
It is FIG. 3 that extracted only the Faraday cage part. In FIG. 3, reference numeral (15) is an insulating spacer that electrically insulates the other secondary electron suppressing electrode (10) and the surrounding electrode (9).

次に上記実施例の動作について説明する。Next, the operation of the above embodiment will be described.

図は省略されている荷電粒子源から荷電粒子ビーム
(6)が図の上方から飛来し、入射絞り板(1)に到達
すると、貫通穴以外の箇所の荷電粒子は入射絞り板
(1)に衝突して止められ、貫通穴の位置の荷電粒子ビ
ーム(6)のみが入射絞り板(1)を通過する。
When a charged particle beam (6) from a charged particle source (not shown) flies from the upper part of the figure and reaches the entrance diaphragm plate (1), charged particles in a place other than the through hole enter the entrance diaphragm plate (1). Only the charged particle beam (6) at the position of the through hole is collided and stopped, and passes through the entrance diaphragm plate (1).

この入射絞り板(1)を通過した荷電粒子は二次電子抑
制電極(2)を通過してコレクタ電極(3)に衝突し、
測定端子ボルト(5)および測定線(8b)を通って大気
中の電流測定装置で計測される。
The charged particles passing through the entrance diaphragm plate (1) pass through the secondary electron suppressing electrode (2) and collide with the collector electrode (3),
It is measured by a current measuring device in the atmosphere through the measuring terminal bolt (5) and the measuring wire (8b).

各々のコレクタ電極(3)に流入した電流計測値を比較
することによって二次元平面に固定配置されている入射
絞り板(1)の位置における荷電粒子ビーム(6)の電
流分布が測定されるのは従来装置と同様である。
The current distribution of the charged particle beam (6) at the position of the entrance diaphragm plate (1) fixedly arranged on the two-dimensional plane is measured by comparing the measured current values flowing into the respective collector electrodes (3). Is similar to the conventional device.

この発明では、上記の粒子捕捉部(14)が可動搭載台
(11)によって移動するので、入射絞り板(1)の穴の
間隔以下の移動を次々に行って最後に穴の間隔まで移動
すれば、入射絞り板(1)の穴の間隔以下の分解能が得
られる。
In this invention, since the above-mentioned particle capturing section (14) is moved by the movable mounting table (11), it is possible to move the entrance diaphragm plate (1) at a distance equal to or smaller than the distance between the holes, and finally move to the distance between the holes. For example, a resolution equal to or smaller than the distance between the holes of the entrance diaphragm plate (1) can be obtained.

例えば、入射絞り板(1)に直径1mmの穴を10mm間隔で
格子状に設けており、10mm間隔の穴を結ぶ軸をX軸と
し、X軸に直交する軸をY軸と仮定すると、X軸方向及
びY軸方向に1mmピッチでX軸方向10回×Y軸方向10回
すなわち100回移動されることによって、荷電粒子ビー
ム(6)の全域の分布を1ミリメータの分解能を計測す
ることができる。
For example, assuming that the entrance diaphragm plate (1) is provided with holes with a diameter of 1 mm at intervals of 10 mm in a grid pattern, the axis connecting the holes at intervals of 10 mm is the X axis, and the axis orthogonal to the X axis is the Y axis. It is possible to measure the distribution of the charged particle beam (6) with a resolution of 1 millimeter by moving 10 times in the X-axis direction and 10 times in the Y-axis direction, that is, 100 times in the 1 mm pitch in the axial direction and the Y-axis direction. it can.

上記の例からわかるように、 可動搭載台(11)の移動範囲は、最大入射絞り板
(1)の穴の間隔でよいため、真空を大気から遮断する
機能である可撓性ベローズ(13)の変形が小さくでき
る。
As can be seen from the above example, since the movable mounting base (11) can be moved within the range of the holes of the maximum entrance diaphragm plate (1), the flexible bellows (13) having a function of blocking vacuum from the atmosphere. Deformation can be reduced.

粒子捕捉部(14)を移動させる機構としての真空シ
ールに軸シールのような空気の巻き込みがないベローズ
(13)を用いているために、移動時に真空圧力が上昇す
ることがなく、常に10-6 Torr以下の高真空に保つことが
できる。
Due to the use of bellows (13) has no air entrainment, such as the shaft seal in the vacuum sealing of a mechanism for moving particle capture unit (14), without vacuum pressure rises during the movement, always 10 - Can maintain a high vacuum of 6 Torr or less.

たとえば半導体イオン注入のようなAs、Pなどの有
毒な物質を使用する場合、荷電粒子分布測定装置各部へ
の付着が起こり、メンテナンス時などの安全性の考慮が
必要となるが、上記装置構成では、粒子捕捉部など直接
有毒イオンに晒される部分以外は大気中に配置できる。
For example, when using toxic substances such as As and P for semiconductor ion implantation, adhesion to each part of the charged particle distribution measuring device occurs and it is necessary to consider safety during maintenance. The parts other than the part directly exposed to the toxic ions such as the particle trap can be placed in the atmosphere.

また、この実施例のように入射絞り板(1)を囲み電極
(9)で囲み、もう一枚の二次電子抑制電極(10)をそ
の前方に設置し、入射絞り板(1)に電流計を接続すれ
ばビームの全電流と分布が同時にしかも正確に計測する
ことができる。
In addition, as in this embodiment, the entrance diaphragm plate (1) is surrounded by the electrode (9), and the secondary electron suppression electrode (10) is installed in front of the entrance diaphragm plate (1) so that the entrance diaphragm plate (1) receives a current. If a meter is connected, the total current and distribution of the beam can be measured simultaneously and accurately.

なお、上記実施例ではベローズ(13)を用いたが、真空
度の低いものにあっては、オーリングなど他の可撓性真
空シールを用いることも可能である。
Although the bellows (13) is used in the above embodiment, other flexible vacuum seals such as O-rings can be used for those having a low degree of vacuum.

さらに、上記実施例では口径の大きいベローズ(13)を
使用しているが、第4図に示すように、口径の小さなベ
ローズ(13a)を1個以上設ける構造にすることによ
り、ベローズ(13a)の可撓性をあげるとともに、荷電
粒子ビーム(6)がベローズ(13)に直接照射しないよ
うにすることも可能である。
Furthermore, although the bellows (13) having a large diameter is used in the above-mentioned embodiment, as shown in FIG. 4, by providing one or more bellows (13a) having a small diameter, the bellows (13a) It is also possible to increase the flexibility and prevent the charged particle beam (6) from directly irradiating the bellows (13).

次ぎに、第2発明に示すように、さらに二次元の測定分
解能を一層高めるためには、第2発明の一実施例を示す
第5図及び第6図に示すように、絶縁板(16)を設け
て、入射絞り板(1)の穴と同一位置にある穴を形成
し、その穴に粒子捕捉部材であるコレクタ電極(3)を
挿着し、その端部に測定端子ボルト(5)を取り付ける
ようにして、上記コレクタ電極(3)およびその間隙と
ともに、入射絞り板(1)の穴径及び間隔を小さくする
ことによって達成できる。すなわち、入射絞り板(1)
にあけられた貫通穴及びコレクタ電極(3)の大きさを
直径0.2mmとし、これを0.2ミリメータ間隔で移動すれば
分解能は上記の例の5倍となる。その方法を第5図およ
び第6図に示す。なお、図において、(17)は二次電子
抑制電極(2)、コレクタ電極(3)、絶縁板(16)そ
して測定端子ボルト(5)を総称したコレクタ電極板で
あり、また、(18)は二次電子抑制電極用端子である。
Next, as shown in the second invention, in order to further enhance the two-dimensional measurement resolution, as shown in FIGS. 5 and 6 showing an embodiment of the second invention, an insulating plate (16) is used. To form a hole at the same position as the hole of the entrance diaphragm plate (1), the collector electrode (3) which is a particle trapping member is inserted into the hole, and the measurement terminal bolt (5) is attached to the end thereof. Can be achieved by reducing the hole diameter and the interval of the entrance diaphragm plate (1) together with the collector electrode (3) and the gap therebetween. That is, the entrance diaphragm plate (1)
The size of the through hole and the collector electrode (3) formed in the substrate is 0.2 mm, and if this is moved at intervals of 0.2 mm, the resolution becomes 5 times that of the above example. The method is shown in FIGS. 5 and 6. In the figure, (17) is a collector electrode plate which is a general term for the secondary electron suppressing electrode (2), collector electrode (3), insulating plate (16) and measuring terminal bolt (5), and (18) Is a terminal for secondary electron suppressing electrode.

コレクタ電極板(17)の製造プロセスは次のとおりであ
る。
The manufacturing process of the collector electrode plate (17) is as follows.

例えばアルミナなどの難加工材の絶縁板(16)の一
面に電子ビームあるいはレーザビームのエネルギービー
ムでコレクタ電極(3)を二次電子抑制電極用端子(1
8)の挿入孔を微細加工する。ただし、機械加工が可能
な絶縁板(16)にあってはドリル加工によってもよい。
エネルギービーム及びドリルによる最小加工孔寸法は0.
2ミリメータ程度であり、位置精度の良い加工が可能で
ある。
For example, a collector electrode (3) is attached to one surface of an insulating plate (16) made of a difficult-to-machine material such as alumina by an energy beam of an electron beam or a laser beam (2)
Micromachine the insertion hole in 8). However, the insulating plate (16) that can be machined may be drilled.
The minimum hole size by energy beam and drill is 0.
Since it is about 2 millimeters, it can be processed with high positional accuracy.

工程の微細加工を行った面のコレクタ電極(3)
の円周面にリング状にマスキングし、その全面を真空蒸
着などでメタライズする。この膜厚は、二次電子抑制電
極(2)の機能や後工程のボンディングあるいはろう付
処理を考慮して、数μmから数10μmとする。
Collector electrode (3) on the surface that has undergone fine processing in the process
Ring-shaped masking is applied to the circumferential surface of, and the entire surface is metallized by vacuum deposition or the like. This film thickness is set to several μm to several tens μm in consideration of the function of the secondary electron suppressing electrode (2) and the bonding or brazing process in the subsequent step.

測定端子ボルト(5)との接触部をマスキングし
て、絶縁板(16)の他面を工程と同様にメタライズす
る。
The contact portion with the measuring terminal bolt (5) is masked, and the other surface of the insulating plate (16) is metallized as in the process.

測定端子ボルト(5)と二次電子抑制電極用端子
(18)を挿入し、例えば金ろうで絶縁板(16)に密封接
合する。
The measurement terminal bolt (5) and the secondary electron suppressing electrode terminal (18) are inserted and hermetically joined to the insulating plate (16) with, for example, gold solder.

ワイヤボンディング、ハンダ付などで導線(8a)と
測定線(8b)を接合する。あるいは測定端子ボルト
(5)と二次電子抑制電極用端子(18)をピン構造に
し、コネクタで一括接続する。
Wire (8a) and measurement line (8b) are joined by wire bonding or soldering. Alternatively, the measuring terminal bolt (5) and the secondary electron suppressing electrode terminal (18) are made into a pin structure and connected together by a connector.

以上の工程で製造されたコレクタ電極板(17)を使用す
れば、上記したように、測定分解能を一層あげることが
できる。
If the collector electrode plate (17) manufactured in the above steps is used, the measurement resolution can be further increased as described above.

また、このコレクタ電極板(17)は穴径が小さくできる
ため、穴間隔も穴中心間で5ミリメータ程度に狭くでき
る。従って、分解能をそれほど高度に必要としない場合
には、コレクタ電極板(17)を可動とせずに固定状態で
使用しても良い。その例を第7図および第8図に示す。
Further, since the collector electrode plate (17) can have a small hole diameter, the hole interval can be narrowed to about 5 mm between the hole centers. Therefore, when the resolution is not so high, the collector electrode plate (17) may be used in a fixed state without being moved. Examples thereof are shown in FIGS. 7 and 8.

図において、符号(19)はガスケット、(20)は押さえ
フランジ、(21)は締め付けボルトである。
In the figure, reference numeral (19) is a gasket, (20) is a holding flange, and (21) is a tightening bolt.

コレクタ電極(17)、入射絞り板(1)、囲み電極
(9)、絶縁スペーサ(15)およびもう一枚の二次電子
抑制電極(10)を組み立てた後、ガスケット(19)と押
さえフランジ(20)を介し、真空槽(7)に締め付けボ
ルト(21)で固定する。
After assembling the collector electrode (17), the entrance diaphragm plate (1), the surrounding electrode (9), the insulating spacer (15) and another secondary electron suppressing electrode (10), the gasket (19) and the pressing flange ( It is fixed to the vacuum chamber (7) with the tightening bolts (21) through 20).

また、上記実施例のように、粒子捕捉部材と反跳捕捉部
材とを同一の電気絶縁部材で構成すると一層高い空間分
解能が得られる効果がある。
Further, as in the above-described embodiment, if the particle trapping member and the recoil trapping member are made of the same electric insulating member, there is an effect that a higher spatial resolution can be obtained.

なお、上記実施例ではイオンビームの場合について説明
したが、電子ビームに対しての装置であつてもよく、上
記実施例と同様の効果を奏する。
Although the case of using an ion beam has been described in the above embodiment, an apparatus for an electron beam may be used, and the same effect as that of the above embodiment can be obtained.

〔発明の効果〕〔The invention's effect〕

この発明は、以上説明したとおり、第1発明にあって
は、荷電粒子の軌道と交わる平面に設けられ、複数の貫
通穴を有する粒子通過部材と、この粒子通過部材の各々
の貫通穴を通過した荷電粒子を捕捉する粒子捕捉部材と
を備えている粒子捕捉部、およびこの粒子捕捉部を上記
平面内の任意方向に移動させる移動部を備えており、ま
た、第2発明にあっては、粒子捕捉部材を、絶縁板に形
成の穴内に設置するようにしているので、空間分解能の
高い荷電粒子分布測定装置が得られる効果を有してい
る。
As described above, according to the first aspect of the invention, in the first aspect of the invention, a particle passage member provided on a plane intersecting with the trajectory of charged particles and having a plurality of through holes, and passing through each of the through holes of the particle passage member. The particle trapping member for trapping the charged particles, and the moving unit for moving the particle trapper in any direction within the plane, and in the second invention, Since the particle trapping member is installed in the hole formed in the insulating plate, there is an effect that a charged particle distribution measuring device with high spatial resolution can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明における第1発明の一実施例による荷
電粒子分布測定装置の構成模式図、第2図は第1図によ
る荷電粒子分布測定装置の構成立体断面図、第3図は第
2図の一部を抽出した構成立体断面図、第4図はこの第
1発明の他の実施例による荷電粒子分布測定装置の構成
立体断面図、第5図はこの発明における第2発明の一実
施例による荷電粒子分布測定装置における粒子捕捉部の
概略断面図、第6図は第5図の立体断面図、第7図はこ
の第2発明の他の実施例による荷電粒子分布測定装置の
概略組立断面図、第8図は第7図の立体断面図、第9図
は従来の荷電粒子分布測定装置の模式構成図、第10図は
第9図の構成断面図である。 (1)……粒子通過部材(入射絞り板)、(2),(1
0)……反跳粒子捕捉部材(二次電子抑制電極)、
(3)……粒子捕捉部材(コレクタ電極)、(6)……
荷電粒子ビーム、(11)……移動部(可動搭載台)、
(14)……粒子捕捉部、(16)……絶縁板、(17)……
コレクタ電極板。 なお、各図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a schematic diagram of the configuration of a charged particle distribution measuring apparatus according to an embodiment of the first invention, FIG. 2 is a three-dimensional sectional view of the configuration of the charged particle distribution measuring apparatus according to FIG. 1, and FIG. FIG. 4 is a three-dimensional sectional view of a configuration in which a part of the drawing is extracted, FIG. 4 is a three-dimensional sectional view of a configuration of a charged particle distribution measuring apparatus according to another embodiment of the first invention, and FIG. FIG. 6 is a schematic sectional view of a particle trap in a charged particle distribution measuring apparatus according to an example, FIG. 6 is a three-dimensional sectional view of FIG. 5, and FIG. 7 is a schematic assembly of a charged particle distribution measuring apparatus according to another embodiment of the second invention. A sectional view, FIG. 8 is a three-dimensional sectional view of FIG. 7, FIG. 9 is a schematic configuration diagram of a conventional charged particle distribution measuring apparatus, and FIG. 10 is a configuration sectional view of FIG. (1) ...... Particle passing member (incident diaphragm), (2), (1
0) ... Recoil particle trapping member (secondary electron suppression electrode),
(3) …… Particle trapping member (collector electrode), (6) ……
Charged particle beam, (11) …… Movable part (movable platform),
(14) …… Particle trap, (16) …… Insulation plate, (17) ……
Collector electrode plate. In each figure, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 薮中 文春 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社生産技術研究所内 (72)発明者 奥田 荘一郎 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumiharu Yabunaka 8-1, 1-1 Tsukaguchihonmachi, Amagasaki City, Hyogo Prefecture Sanryo Electric Co., Ltd. Production Engineering Laboratory (72) Inventor Soichiro Okuda 8 Tsukaguchihonmachi, Amagasaki City, Hyogo Prefecture 1-chome Sanritsu Electric Co., Ltd. Central Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】荷電粒子の軌道と交わる平面に設けられか
つ上記軌道方向に貫通する複数の貫通孔を有する粒子通
過部材と、この粒子通過部材の各々の貫通孔を通過した
荷電粒子を捕捉する粒子捕捉部材とを備えている粒子捕
捉部、および、この粒子捕捉部を上記平面内の任意方向
に移動させる移動部を備えていることを特徴とする荷電
粒子分布測定装置。
1. A particle passage member having a plurality of through holes provided in a plane intersecting with orbits of charged particles and penetrating in the orbit direction, and charged particles having passed through each of the through holes of the particle passage member. A charged particle distribution measuring apparatus, comprising: a particle capturing section including a particle capturing member; and a moving section that moves the particle capturing section in an arbitrary direction within the plane.
【請求項2】荷電粒子の軌道と交わる平面に設けられか
つ上記軌道方向に貫通する複数の穴を有する絶縁板と、
上記穴内にそれぞれ設けられて上記穴に入射した電子ビ
ームを捕捉する粒子捕捉部材を備えていることを特徴と
する荷電粒子分布測定装置。
2. An insulating plate having a plurality of holes provided in a plane intersecting with the orbits of charged particles and penetrating in the orbital direction,
A charged particle distribution measuring apparatus, comprising: a particle trapping member provided in each of the holes to trap an electron beam incident on the hole.
JP29968289A 1988-12-22 1989-11-20 Charged particle distribution measuring device Expired - Lifetime JPH0713659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29968289A JPH0713659B2 (en) 1988-12-22 1989-11-20 Charged particle distribution measuring device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP32703288 1988-12-22
JP63-327032 1989-04-13
JP1-93717 1989-04-13
JP29968289A JPH0713659B2 (en) 1988-12-22 1989-11-20 Charged particle distribution measuring device

Publications (2)

Publication Number Publication Date
JPH0348189A JPH0348189A (en) 1991-03-01
JPH0713659B2 true JPH0713659B2 (en) 1995-02-15

Family

ID=26562034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29968289A Expired - Lifetime JPH0713659B2 (en) 1988-12-22 1989-11-20 Charged particle distribution measuring device

Country Status (1)

Country Link
JP (1) JPH0713659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009026946B4 (en) 2009-06-15 2012-03-08 Bruker Nano Gmbh Low-interference sensor head for a radiation detector and this low-radiation sensor head-containing radiation detector

Also Published As

Publication number Publication date
JPH0348189A (en) 1991-03-01

Similar Documents

Publication Publication Date Title
JP3186066B2 (en) Ion source for wide range ion implantation
US6822239B2 (en) Corpuscular beam image detector using gas amplification by pixel type electrodes
US7668297B2 (en) X-ray tube and nondestructive inspection equipment
TW201330043A (en) Apparatus for observing sample and method for observing sample
US5757012A (en) Charged-particle detectors and mass spectrometers employing the same
US5367218A (en) Ceramic electron multiplying structure, particularly for a photomultiplier and its production process
US6389103B2 (en) Method and an apparatus for radiography and a radiation detector
JP2872630B2 (en) Ion energy analyzer with electrically controlled geometric filter
US5491339A (en) Charged particle detection device and charged particle radiation apparatus
US6184525B1 (en) Environmental SEM with a multiple fields for improved secondary electron detection
US4992742A (en) Charged-particle distribution measuring apparatus
US20080149830A1 (en) Ameliorating charge trap in inspecting samples using scanning electron microscope
RU2180885C1 (en) Plant to form patterns on surface of plate
EP4176460A1 (en) Charged-particle multi-beam column, charged-particle multi-beam column array, inspection method
JPH0713659B2 (en) Charged particle distribution measuring device
JPS63231858A (en) Electron beam device
CN115524734A (en) Film air ionization chamber for detecting positions of protons and heavy ions
US7301159B2 (en) Charged particle beam apparatus and method of forming electrodes having narrow gap therebetween by using the same
JP2765851B2 (en) Electron detector and electron beam device using the same
US5025144A (en) Resistive anode encoder target and method producing baths charged and visual images
Stalder et al. Micromachined array of electrostatic energy analyzers for charged particles
JPH079460B2 (en) Monitor for particle beam measurement
US20070131860A1 (en) Quadrupole mass spectrometry chemical sensor technology
EP4386808A1 (en) Modular assembly
RU205154U1 (en) LOW ENERGY SPACE PARTICLE ANALYZER