JPH07133934A - Infrared surface-heating system - Google Patents

Infrared surface-heating system

Info

Publication number
JPH07133934A
JPH07133934A JP5281123A JP28112393A JPH07133934A JP H07133934 A JPH07133934 A JP H07133934A JP 5281123 A JP5281123 A JP 5281123A JP 28112393 A JP28112393 A JP 28112393A JP H07133934 A JPH07133934 A JP H07133934A
Authority
JP
Japan
Prior art keywords
infrared
far
infrared rays
heating system
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5281123A
Other languages
Japanese (ja)
Inventor
Takeru Koike
長 小池
Chozaburo Matsumoto
長三郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5281123A priority Critical patent/JPH07133934A/en
Publication of JPH07133934A publication Critical patent/JPH07133934A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Control Of Resistance Heating (AREA)
  • Central Heating Systems (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

PURPOSE:To rapidly obtain comfortable surface-heating by using a low-cost far infrared radioactive surface material. CONSTITUTION:An infrared surface-heating system comprises a far infrared lamp (primary heat source) 1, a far infrared radioactive ceiling surface material (secondary heat source) 2, and a convex mirror 3 provided under the lamp 1, wherein the lamp l is fired by turning ON a power source to radiate a far infrared ray. In this case, the ray emitted upward is absorbed to the material 2 to become heat. Thus, the material 2 is raised at its temperature to surface- radiate the ray responsive to its temperature rising degree toward a floor. On the other side, the ray radiated to the floor side (in a direction separate from the material 2) is collected and reflected by the corresponding mirror 3, and introduced to the material 2 to be converted to heat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、赤外線面暖房システ
ムに係り、詳しくは、天井面や壁面等から遠赤外線を面
状に放射して室内等を暖める赤外線面暖房システムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared surface heating system, and more particularly to an infrared surface heating system for warming a room by radiating far infrared rays from a ceiling surface or a wall surface.

【0002】[0002]

【従来の技術】赤外線は、波長0.75〜100μmの
電磁波として空気中を伝搬し、被放射体の分子を共鳴振
動させて発熱させる作用を示すことから、一般に、熱線
とも呼ばれている。特に、波長3μm〜30μmの遠赤
外線は、振動数が人体を構成する有機物分子や人体に含
まれる水分子の固有振動数と一致するため、人体に吸収
され易く、皮膚の表面から真皮の上層までの分子を一様
に共鳴振動させてほぼ同時に発熱させる上、生じた温熱
は、真皮の上層に分布するルッフィニ小体(暖かさを感
ずる神経受容器)によってすぐに感覚されるために、体
の芯から温まり、やわらかな温熱的快適感を人に与える
といわれている。
2. Description of the Related Art Infrared rays are generally called "heat rays" because they propagate in the air as electromagnetic waves having a wavelength of 0.75 to 100 [mu] m and cause the molecules of a radiated body to resonate and vibrate to generate heat. Especially, the far-infrared ray having a wavelength of 3 μm to 30 μm is easily absorbed by the human body because its frequency matches the natural frequency of the organic molecules that make up the human body and the water molecules contained in the human body, from the surface of the skin to the upper layer of the dermis. In addition to causing the molecules of to uniformly resonate and vibrate at about the same time, the resulting heat is immediately sensed by the Ruffini bodies (neuron receptors that sense warmth) distributed in the upper layer of the dermis, and It is said that it warms from the core and gives people a warm and comfortable feeling.

【0003】赤外線の示す上記熱作用に着目して、例え
ば、特開平1−187241号公報に記載されているよ
うに、赤外線面暖房システムを採り入れた構築物や、特
開平2−40885号公報に記載されているような赤外
線面状発熱体(板状発熱体)が提供されている。特開平
1−187241号公報記載の赤外線面暖房システム
は、居室等の内壁表面に、二次熱源として遠赤外線を放
射する遠赤外線放射シートを貼着することによって構成
され、この暖房システムを採用する構築物においては、
内壁表面に貼着された上記遠赤外線放射シートが、ガス
ストーブ、ファンヒータ又はクリーンヒータ等の一次熱
源から熱を吸収して、遠赤外線の形態で再び熱を居住空
間に戻すので、非常に快適な温熱的環境となる。一方、
特開平2−40885号公報記載の赤外線面状発熱体
は、導電材料が分散され、通電により発熱するようにさ
れた無機質板状成形体の放熱面に遠赤外線放射セラミッ
クス層を設けて構成され、遠赤外線放射セラミックス層
が、無機質板状成形体によって加熱されると、遠赤外線
を放射する。
Focusing on the above-mentioned thermal action of infrared rays, for example, as described in JP-A-1-187241, a construction incorporating an infrared surface heating system and JP-A-2-40885 are described. Infrared planar heating elements (plate-shaped heating elements) as described above are provided. The infrared surface heating system described in JP-A-1-187241 is configured by attaching a far infrared radiation sheet that radiates far infrared rays as a secondary heat source to the inner wall surface of a living room or the like, and adopts this heating system. In the construct,
The far-infrared radiation sheet attached to the inner wall surface absorbs heat from a primary heat source such as a gas stove, a fan heater or a clean heater, and returns the heat to the living space in the form of far-infrared rays, which is very comfortable. It becomes a warm thermal environment. on the other hand,
The infrared planar heating element described in JP-A-2-40885 is configured by providing a far infrared radiating ceramic layer on the radiating surface of an inorganic plate-shaped molded body in which a conductive material is dispersed and which generates heat when energized. When the far-infrared emitting ceramics layer is heated by the inorganic plate-shaped molded body, it emits far-infrared rays.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記従来の
赤外線面暖房システムにあっては、上述したように、一
次熱源として、ガスストーブやファンヒータ等が用いら
れるので、一次熱源から二次熱源(遠赤外線放射シー
ト)への熱伝達は、主に、空気を媒介とする対流伝熱及
び熱伝導の機構に従って起こるため、伝熱効率が悪く、
熱伝達に時間がかかる、という欠点がある。また、これ
らガスストーブやファンヒータ等は、人体等を暖めるこ
とが直接的目的であり、遠赤外線放射シートを昇温させ
て遠赤外線を放射させることは副次的目的であるため、
人体等を真っ先に暖める観点から配置され、遠赤外線放
射シートを暖めることは二の次である。それ故、ガスス
トーブやファンヒータ等を用いて、遠赤外線放射シート
から遠赤外線を多量にかつ一様に放射させることは、そ
もそも期待できないという問題がある。
By the way, in the above-mentioned conventional infrared surface heating system, as described above, since the gas stove, the fan heater or the like is used as the primary heat source, the primary heat source to the secondary heat source ( Heat transfer to the far-infrared radiation sheet) occurs mainly according to the mechanism of convective heat transfer and heat transfer mediated by air, so the heat transfer efficiency is poor,
The disadvantage is that heat transfer takes time. Further, these gas stoves, fan heaters, etc. have a direct purpose of warming the human body and the like, and raising the temperature of the far infrared radiation sheet to emit far infrared rays is a secondary purpose,
It is arranged from the viewpoint of warming the human body first, and warming the far-infrared radiation sheet is secondary. Therefore, there is a problem in that the far-infrared radiation sheet cannot be expected to radiate a large amount of far-infrared radiation uniformly using a gas stove, a fan heater, or the like.

【0005】一方、上記赤外線面状発熱体を大面積化し
て居室等の壁面に取り付ければ、一次熱源としてのガス
ストーブやファンヒータが不要となるので好ましい。し
かしながら、大面積の板状発熱体を通電加熱するには、
多大な電力が必要であり、また、これを壁面に取り付け
るとなると、防火対策にも注意を払わねばならず、この
ため、高品質のものが要求され、コスト高になるという
問題がある。この発明は、上述の事情に鑑みてなされた
もので、安価な遠赤外線放射性面材を用いて、快適な暖
房が速く得られる赤外線面暖房システムを提供すること
を目的としている。
On the other hand, it is preferable to increase the area of the infrared heating element and attach it to the wall surface of a living room or the like, since a gas stove or a fan heater as a primary heat source becomes unnecessary. However, in order to electrically heat a large area plate-shaped heating element,
A large amount of electric power is required, and when it is attached to a wall surface, it is necessary to pay attention to fire prevention measures, and therefore, there is a problem that high quality is required and cost is increased. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an infrared surface heating system that can obtain comfortable heating quickly by using an inexpensive far-infrared radiation surface material.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の赤外線面暖房システムは、電源の投
入により近赤外線をピークとして赤外線を放射する赤外
線放射手段と、該赤外線放射手段から放射される赤外線
を吸収して、該赤外線を吸収したと同一の面から遠赤外
線を加温対象に向け放射する遠赤外線放射性面材と、上
記赤外線放射手段から所定の領域に向けて放射される赤
外線を上記遠赤外線放射性面材に入射させて吸収させる
ための反射板とを備えてなることを特徴としている。ま
た、請求項2記載の赤外線面暖房システムは、請求項1
記載の赤外線面暖房システムにおいて、上記反射板に
は、加温対象に向けて近赤外線を通過させるための複数
の開口部が設けられていることを特徴としている。さら
にまた、請求項3記載の赤外線面暖房システムは、電源
の投入により近赤外線をピークとして赤外線を放射する
赤外線放射手段と、該赤外線放射手段から放射される赤
外線を吸収して、該赤外線を吸収したと同一の面から遠
赤外線を加温対象に向け放射する第1の遠赤外線放射性
面材と、上記赤外線放射手段と加温対象との間に置か
れ、上記赤外線放射手段から放射される赤外線を吸収し
て、該赤外線を吸収したと反対側の面から遠赤外線を上
記加温対象に向けて放射する第2の遠赤外線放射性面材
とを備えてなることを特徴としている。
In order to solve the above-mentioned problems, the infrared surface heating system according to claim 1 is an infrared radiating means for radiating infrared rays with a peak of near infrared rays when power is turned on, and the infrared radiating means. Far-infrared emitting face material that absorbs infrared rays emitted from the infrared ray emitting means and emits far-infrared rays toward the object to be heated from the same surface that has absorbed the infrared rays, and is emitted from the infrared ray emitting means toward a predetermined area. And a reflection plate for allowing the far infrared ray emitting surface material to enter and absorb the infrared ray. The infrared surface heating system according to claim 2 is the infrared ray heating system according to claim 1.
The infrared surface heating system described above is characterized in that the reflector is provided with a plurality of openings for passing near infrared rays toward a heating target. Still further, the infrared surface heating system according to claim 3 absorbs the infrared rays radiated from the infrared radiating means, which radiates infrared rays with a peak of near infrared rays when power is turned on, and absorbs the infrared rays. The first far-infrared radiation surface material that radiates far-infrared rays toward the object to be heated from the same surface as the above, and the infrared rays that are placed between the infrared-ray emitting means and the object to be heated and are emitted from the infrared-ray emitting means. And a second far-infrared radiation surface material that radiates far-infrared rays toward the object to be heated from the surface on the side opposite to the side where the infrared rays are absorbed.

【0007】[0007]

【作用】請求項1記載の構成において、例えば、天井に
懸吊ないしは埋設された一次熱源としての赤外線放射手
段(赤外線ランプ)に電源を投入すると、瞬く間に加熱
されたフィラメントから近赤外線(波長0.75〜3μ
m)を多量に含む赤外線が放射される。上記赤外線放射
手段から放射された赤外線は、例えば天井面又は壁面等
に貼着された二次熱源としての遠赤外線放射性面材に吸
収される。これにより、遠赤外線放射性面材が昇温さ
れ、その表面から遠赤外線が加温対象である人体等に向
けて放射される。上記赤外線放射手段から放射される赤
外線のうち、例えば遠赤外線放射性面材に直接向かわな
い方向に放射される赤外線は、当該方向に設置された上
記反射板で反射されて、遠赤外線放射性面材に入射され
る。
In the structure of claim 1, for example, when the infrared radiating means (infrared lamp) as a primary heat source suspended or buried in the ceiling is turned on, the filament heated in a short time emits near infrared rays (wavelength). 0.75-3μ
Infrared rays containing a large amount of m) are emitted. The infrared rays emitted from the infrared ray emitting means are absorbed by a far infrared ray emitting surface material as a secondary heat source attached to, for example, a ceiling surface or a wall surface. As a result, the far-infrared radiation surface material is heated, and far-infrared rays are radiated from the surface toward the human body or the like to be heated. Among the infrared rays emitted from the infrared ray emitting means, for example, infrared rays emitted in a direction that does not directly face the far infrared ray emitting surface material, are reflected by the reflection plate installed in the direction, to the far infrared ray emitting surface material. It is incident.

【0008】上記構成によれば、赤外線放射手段から遠
赤外線放射性面材への熱伝達は、空気を媒介としない放
射伝熱の機構に従って起こることに加え、反射板を設置
したことにより、上記赤外線放射手段から放射される赤
外線量を上記遠赤外線放射性面材の中に、より一層取り
込むことができるので、遠赤外線放射性面材は迅速に昇
温される。したがって、例えば天井面や壁面から遠赤外
線が多量にかつ迅速に面放射されるので、温熱的に非常
に快適な環境が得られる。また、赤外線放射手段(赤外
線ランプ)は、一般に棒形状又は球形状のものとして存
在する。それ故、天井面全体、壁面全体に高価な発熱体
を張り巡らす必要がないので、システムを安価に構成で
きる。なお、遠赤外線放射性面材としては、それ自身
が、壁材又は天井材を構成するものでも良い。
According to the above construction, the heat transfer from the infrared radiating means to the far infrared radiating surface material occurs according to the mechanism of radiative heat transfer which does not use air as a medium. Since the amount of infrared rays radiated from the radiating means can be further taken into the far-infrared radiation surface material, the far-infrared radiation surface material is quickly heated. Therefore, for example, a large amount of far-infrared rays are rapidly radiated from the ceiling surface or the wall surface, so that a very comfortable environment in terms of heat can be obtained. Further, the infrared emitting means (infrared lamp) is generally present as a rod-shaped or spherical shape. Therefore, since it is not necessary to stretch expensive heating elements around the entire ceiling surface and the entire wall surface, the system can be constructed at low cost. The far-infrared radiation surface material may itself be a wall material or a ceiling material.

【0009】請求項2記載の構成では、電源が投入され
ると、赤外線放射手段から瞬く間に放射される近赤外線
を多量に含む赤外線の一部が、上記反射板に設けられた
複数の開口部から漏れ出て人体を照射する。それ故、人
体は主として近赤外線によってすばやく暖められ、人
は、「寒」から「暖」に瞬時に変わったことで、温熱的
に心地よく思う。一方、上記赤外線放射手段から放射さ
れた赤外線の一部は、上記遠赤外線放射性面材によって
吸収され、遠赤外線放射性面材の温度を上昇させる。所
定時間経過後所定温度まで上昇した遠赤外線放射性面材
から人体に向けて遠赤外線が放射される。それ故、近赤
外線の主たる寄与によって、「寒」から「暖」になった
後は、遠赤外線の寄与によって、人は、ほど良く暖めら
れ、やわらかな温熱的快適感が持続される。
According to the second aspect of the present invention, when the power is turned on, a part of the infrared rays containing a large amount of near infrared rays emitted from the infrared ray emitting means in a blink of an eye are partially provided in the plurality of openings provided in the reflection plate. It leaks from the area and irradiates the human body. Therefore, the human body is quickly warmed mainly by the near infrared rays, and the person feels warm and comfortable because of the instant change from "cold" to "warm". On the other hand, a part of the infrared rays emitted from the infrared ray emitting means is absorbed by the far-infrared radiation surface material and raises the temperature of the far-infrared radiation surface material. Far infrared rays are radiated toward the human body from the far infrared ray emitting surface material that has risen to a predetermined temperature after a predetermined time has elapsed. Therefore, after "cold" to "warm" due to the main contribution of near-infrared rays, the contribution of far-infrared rays warms up a person moderately and maintains a soft thermal comfort.

【0010】請求項3記載の構成では、例えば天井面や
壁面等に貼着され、上記赤外線放射手段から放射される
赤外線を吸収して、該赤外線を吸収したと同一の面から
遠赤外線を人体側に放射する第1の遠赤外線放射性面材
と、赤外線放射手段と人体との間に置かれ、赤外線放射
手段から放射される赤外線を吸収して、人体に向け遠赤
外線を放射する第2の遠赤外線放射性面材とを備えてな
るものなので、キッチン等、特に暖めたい所望の領域に
対して遠赤外線を特別多量に照射できる。
According to the third aspect of the present invention, for example, it is attached to a ceiling surface or a wall surface, absorbs infrared rays emitted from the infrared ray emitting means, and emits far infrared rays from the same side where the infrared rays are absorbed. The first far-infrared ray radiating material which radiates to the side, and the second far-infrared ray radiating means which is placed between the infrared ray radiating means and the human body, absorbs the infrared ray emitted from the infrared ray radiating means, and radiates the far infrared ray toward the human body Since it is provided with a far-infrared radiation surface material, it is possible to irradiate a particularly large amount of far-infrared rays to a desired area to be warmed, such as a kitchen.

【0011】[0011]

【実施例】以下、図面を参照して、この発明の実施例に
ついて説明する。 ◇第1実施例 図1は、この発明の第1実施例である赤外線面暖房シス
テムの外観構成を示す斜視図、また、図2は、同赤外線
面暖房システムの作用を説明するための説明図である。
図1に示すように、この例の赤外線面暖房システムは、
一次熱源である棒状の近赤外線ランプ1と、この近赤外
線ランプ1から熱の供給を受けて二次熱源として作用す
る遠赤外線放射性天井面材(以下、単に天井面材ともい
う)2と、近赤外線ランプ1から天井面材2への熱伝達
を仲介する概略半円筒形の凸面鏡(反射鏡)3とから概
略構成されている。なお、この例においては、3本の赤
外線ランプ1、及び、これに対応して、3枚の凸面鏡3
が用いられている。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a perspective view showing an external configuration of an infrared surface heating system according to a first embodiment of the present invention, and FIG. 2 is an explanatory view for explaining the operation of the infrared surface heating system. Is.
As shown in FIG. 1, the infrared surface heating system of this example is
A rod-shaped near-infrared lamp 1 which is a primary heat source, a far-infrared radiation ceiling surface material (hereinafter, also simply referred to as a ceiling surface material) 2 which receives heat from the near-infrared lamp 1 and acts as a secondary heat source, The semi-cylindrical convex mirror (reflecting mirror) 3 that mediates heat transfer from the infrared lamp 1 to the ceiling surface material 2 is roughly configured. In this example, three infrared lamps 1 and three convex mirrors 3 corresponding thereto are provided.
Is used.

【0012】上記近赤外線ランプ1は、棒状石英バルブ
の長手方向中央にコイル状に保持された図示せぬフィラ
メント(タングステン線)の電気抵抗により電気エネル
ギが熱エネルギに変換され、約2000℃に加熱された
フィラメントから、外部へ、近赤外領域(波長0.75
〜3μm)に放射率ピークを示す分光分布態様で赤外線
が放射されるように構成されている。この例の近赤外線
ランプ1には、棒状石英バルブの中に沃素や塩素等のハ
ロゲンが封入された近赤外線ハロゲンランプが好適に用
いられる。この近赤外線ハロゲンランプでは、封入され
たハロゲンと加熱蒸発するタングステンとの循環再生反
応(ハロゲンサイクル)の効果により、バルブが小さく
とも黒化せず、近赤外線の安定した出力が可能となって
いる。近赤外線ランプ1は、両端の電極部が一対の支持
がいし4,4に嵌着され、各支持がいし4がブラケット
5の下端部に係着されることにより天井から懸吊されて
いる。
In the near-infrared lamp 1, electric energy is converted into heat energy by electric resistance of a filament (tungsten wire) (not shown) held in a coil shape in the longitudinal center of a rod-shaped quartz bulb, and heated to about 2000.degree. To the outside from the irradiated filament in the near infrared region (wavelength 0.75
Infrared rays are radiated in a spectral distribution mode showing an emissivity peak at ˜3 μm). As the near-infrared lamp 1 of this example, a near-infrared halogen lamp having a rod-shaped quartz bulb filled with halogen such as iodine or chlorine is preferably used. In this near-infrared halogen lamp, due to the effect of the circulation regeneration reaction (halogen cycle) between the enclosed halogen and the heat-vaporized tungsten (halogen cycle), even if the bulb is small, blackening does not occur, and stable output of near-infrared light is possible . The near-infrared lamp 1 is suspended from the ceiling by fitting the pair of support insulators 4 and 4 with the electrode portions at both ends and the support insulators 4 being attached to the lower ends of the brackets 5.

【0013】また、上記天井面材2は、図示せぬ天井野
縁に取着されていて、近赤外線ランプ1から上方へ放射
される近赤外線を吸収すると、床面に向けて遠赤外線を
多量に放射する。ここで、天井面材2は、例えば、石膏
ボード等の表面に、二酸化マンガン(MnO2)、酸化
クロム(Cr23)、酸化鉄(Fe23)、酸化コバル
ト(CoO)等の金属酸化物、酸化銅(CuO)又はジ
ルコニア(ZrO2),アルミナ(Al23),ジルコ
ン(ZrO2・SiO2),チタニア(TiO2)等を単
独で又は複合で使用したシリコーン樹脂系の遠赤外線放
射塗料を塗布して構成されている。また、上記凸面鏡3
は、アルミやステンレス等の概略半円筒形凸面の金属板
に金鍍金又はクロム鍍金を施すことにより形成されたも
ので、近赤外線ランプ1の下方にその長手方向に沿っ
て、かつ、凸面(反射面)を近赤外線ランプ1に向けた
状態で天井から懸吊されている。
The ceiling surface material 2 is attached to a ceiling edge (not shown), and when absorbing near infrared rays emitted upward from the near infrared lamp 1, a large amount of far infrared rays are directed toward the floor surface. Radiate to. Here, the ceiling surface material 2 includes, for example, manganese dioxide (MnO 2 ), chromium oxide (Cr 2 O 3 ), iron oxide (Fe 2 O 3 ), cobalt oxide (CoO), etc. on the surface of a gypsum board or the like. Silicone resin system using metal oxide, copper oxide (CuO) or zirconia (ZrO 2 ), alumina (Al 2 O 3 ), zircon (ZrO 2 · SiO 2 ), titania (TiO 2 ) etc. alone or in combination. Far infrared radiation paint is applied. In addition, the convex mirror 3
Is formed by applying gold plating or chrome plating to an approximately semi-cylindrical convex metal plate such as aluminum or stainless steel, and is provided below the near-infrared lamp 1 along its longitudinal direction and along the convex surface (reflection surface). It is suspended from the ceiling with its surface facing toward the near-infrared lamp 1.

【0014】上記構成において、人6がシステムの電源
スイッチ7(図1)を押下すると、近赤外線ランプ1,
1,…に電力が供給され、図2に示すように、近赤外線
ランプ1,1,…が"点灯"して、近赤外線(同図実線矢
印で示される)が放射される。このとき、上方に放射さ
れる近赤外線は、天井面材2,2,…に吸収され、これ
により、天井面材2,2,…は昇温し、昇温の程度に応
じた遠赤外線(同図破線矢印で示される)を床面に向け
て放射する。一方、床面側(すなわち、天井面材2から
離反する方向)に放射される近赤外線は、対応する凸面
鏡3,3,…で捉えられ反射されて、天井面材2に入射
させられる。
In the above structure, when the person 6 presses the power switch 7 (FIG. 1) of the system, the near infrared lamps 1,
2, electric power is supplied to the near-infrared lamps 1, 1, ... As shown in FIG. 2, the near-infrared lamps 1, 1 ,. At this time, the near-infrared rays radiated upward are absorbed by the ceiling surface materials 2, 2, ..., As a result, the ceiling surface materials 2, 2 ,. (Indicated by a dashed arrow in the figure) is radiated toward the floor surface. On the other hand, the near infrared rays radiated toward the floor surface side (that is, the direction away from the ceiling surface material 2) are captured by the corresponding convex mirrors 3, 3, ... And reflected, and are incident on the ceiling surface material 2.

【0015】上記構成によれば、近赤外線ランプ1,
1,…から天井面材2,2,…への熱伝達は、空気を媒
介としない放射伝熱の機構に従って起こるので、天井面
材2,2,…が迅速に昇温される。加えて、凸面鏡3,
3,…の反射作用により、近赤外線ランプ1,1,…か
ら放射される近赤外線を、無駄なく遠赤外線に変換する
ことができる。また、凸面鏡3の発散作用により、反射
される近赤外線を天井面材2の隅々にまで入射させるこ
とができる。それ故、天井面から遠赤外線が、多量に、
むらなく、かつ迅速に面放射されるので、温熱的に非常
に快適な環境が得られる。また、近赤外線ランプ1は、
棒形状故、天井面全体に高価な発熱体を張り巡らす必要
がないので、システムを安価に構成できる。
According to the above structure, the near infrared lamps 1,
Since heat transfer from 1, ... To the ceiling surface materials 2, 2, ... occurs according to a mechanism of radiative heat transfer that does not use air as a medium, the ceiling surface materials 2, 2 ,. In addition, the convex mirror 3,
The near infrared rays radiated from the near infrared lamps 1, 1, ... Can be converted into far infrared rays without waste by the reflecting action of 3 ,. Further, due to the diverging action of the convex mirror 3, the reflected near infrared rays can be made to enter every corner of the ceiling surface material 2. Therefore, a lot of far infrared rays from the ceiling surface,
Since the surface radiation is uniform and rapid, a very comfortable environment can be obtained in terms of heat. Also, the near infrared lamp 1
Because of the rod shape, it is not necessary to stretch expensive heating elements all over the ceiling surface, so the system can be constructed at low cost.

【0016】なお、第1実施例の変形例として、図3に
示すように、凸面鏡3に代えて、幅方向中央部が凸面7
aで、幅方向周辺部が平面7b,7bである凸平面鏡
(反射鏡)7を用いるようにしても良い。このようにす
れば、近赤外線の漏れが一層少なくなり、その分、天井
面材2に入射する近赤外線の量が増加するので、電気エ
ネルギから遠赤外線への変換効率を一層高めることがで
きる。また、第1実施例の別の変形例として、凸面鏡3
に代えて、図示せぬフレネルタイプの反射鏡を用いるよ
うにすれば、反射鏡の厚みを減らすことができる。
As a modification of the first embodiment, as shown in FIG. 3, instead of the convex mirror 3, the central portion in the width direction has a convex surface 7.
It is also possible to use a convex plane mirror (reflecting mirror) 7 having a flat surface 7b, 7b at the peripheral portion in the width direction a. By doing so, the leakage of near-infrared rays is further reduced, and the amount of near-infrared rays incident on the ceiling surface material 2 is correspondingly increased, so that the conversion efficiency from electric energy to far-infrared rays can be further enhanced. As another modification of the first embodiment, the convex mirror 3
Instead of this, if a Fresnel type reflecting mirror (not shown) is used, the thickness of the reflecting mirror can be reduced.

【0017】◇第2実施例 次に、この発明の第2実施例について説明する。図4
は、この発明の第2実施例である赤外線面暖房システム
の構成を示す断面図である。この図に示すように、この
例の赤外線面暖房システムは、主として、近赤外線を放
射する近赤外線ランプ1と、この近赤外線ランプ1から
熱の供給を受けて遠赤外線を放射する天井面材2及び遠
赤外線放射性壁面材(以下、単に壁面材ともいう)8
と、近赤外線ランプ1から天井面材2及び壁面材8への
熱伝達を仲介する下部平面鏡9及び上部平面鏡10とか
ら概略構成されている。なお、図4において、図1に示
す赤外線面暖房システムと同一構成各部については同一
の符号を付してその説明を省略する。また、この例にお
いても、赤外線ランプ1が3本用いられている。上記壁
面材8は、建物の居室を構成する壁枠組の内面に取着さ
れていて、近赤外線ランプ1から斜め下方へ放射される
近赤外線を吸収すると、居室内に遠赤外線を多量に放射
する。ここで、壁面材8は、例えば、石膏ボードや硬質
木片セメント板等の表面に、二酸化マンガン(Mn
2)、酸化クロム(Cr23)、酸化鉄(Fe
23)、酸化コバルト(CoO)等の金属酸化物、酸化
銅(CuO)又はジルコニア(ZrO2),アルミナ
(Al23),ジルコン(ZrO2・SiO2),チタニ
ア(TiO2)等を単独で又は複合で使用したシリコー
ン樹脂系の遠赤外線放射塗料を塗布して構成されてい
る。
Second Embodiment Next, a second embodiment of the present invention will be described. Figure 4
FIG. 4 is a sectional view showing the configuration of an infrared surface heating system that is a second embodiment of the present invention. As shown in this figure, the infrared surface heating system of this example mainly includes a near-infrared lamp 1 that emits near-infrared rays, and a ceiling surface member 2 that receives heat from the near-infrared lamp 1 and emits far-infrared rays. And far-infrared radiation wall material (hereinafter also simply referred to as wall material) 8
And a lower plane mirror 9 and an upper plane mirror 10 which mediate heat transfer from the near-infrared lamp 1 to the ceiling surface material 2 and the wall surface material 8. 4, the same components as those of the infrared surface heating system shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Also in this example, three infrared lamps 1 are used. The wall material 8 is attached to the inner surface of the wall framework that constitutes the living room of the building, and when absorbing the near infrared rays emitted obliquely downward from the near infrared lamp 1, emits a large amount of far infrared rays into the living room. . Here, the wall surface material 8 is, for example, manganese dioxide (Mn) on the surface of a gypsum board or a hard wood chip cement board.
O 2 ), chromium oxide (Cr 2 O 3 ), iron oxide (Fe
2 O 3 ), metal oxides such as cobalt oxide (CoO), copper oxide (CuO) or zirconia (ZrO 2 ), alumina (Al 2 O 3 ), zircon (ZrO 2 · SiO 2 ), titania (TiO 2 ). And the like are used alone or in combination to apply a silicone resin-based far infrared radiation paint.

【0018】また、下部平面鏡9及び上部平面鏡10
は、凸面鏡3と同一素材を用いて長尺状に形成され、近
赤外線ランプ1を上下から挟む状態で、互いに対をなし
て配置されている。すなわち、下部平面鏡9は、近赤外
線ランプ1の下方にその長手方向に沿って、かつ、鏡面
(反射面)を近赤外線ランプ1に向けた状態で天井から
懸吊されている。一方、上部平面鏡10は鏡面を近赤外
線ランプ1に向けた状態で天井面材2に当接されて固定
されている。
The lower plane mirror 9 and the upper plane mirror 10 are also provided.
Are made of the same material as the convex mirror 3 and are formed in a long shape, and are arranged in pairs with the near-infrared lamp 1 being sandwiched from above and below. That is, the lower plane mirror 9 is suspended below the near-infrared lamp 1 along its longitudinal direction and with its mirror surface (reflection surface) facing the near-infrared lamp 1. On the other hand, the upper flat mirror 10 is fixed to the ceiling surface member 2 by contacting it with the mirror surface of the near-infrared lamp 1.

【0019】上記構成において、人6がシステムの図示
せぬ電源スイッチ7を押下すると、近赤外線ランプ1,
1,…に電力が供給され、図4に示すように、近赤外線
ランプ1,1,…が"点灯"して、近赤外線(同図実線矢
印で示される)が放射される。このとき、斜め上方に放
射される近赤外線は、天井面材2に吸収され、これによ
り、天井面材2は昇温し、昇温の程度に応じた遠赤外線
(同図破線矢印で示される)を床面に向けて放射する。
また、斜め下方に放射される近赤外線は、壁面材8,8
に吸収され、これにより、壁面材8,8は昇温し、昇温
の程度に応じた遠赤外線(同図破線矢印で示される)を
居室中央に向けて放射する。また、床面側に放射される
近赤外線は、下部平面鏡9で捉えられ反射されて、その
反射近赤外線の一部は、天井面材2に入射させられる。
一方、反射近赤外線の残りは上部平面鏡10に捉えられ
再び反射されて、最終的に、壁面材8,8に入射させら
れる。また、直上方に放射される近赤外線は、上部平面
鏡10で捉えられ反射されて、その反射近赤外線の一部
は、壁面材8,8に入射させられる。一方、反射近赤外
線の残りは下部平面鏡9,9,…に捉えられ再び反射さ
れて、最終的に、天井面材2に入射させられる。
In the above structure, when the person 6 presses the power switch 7 (not shown) of the system, the near infrared lamps 1,
4, electric power is supplied to the near-infrared lamps 1, 1, ... As shown in FIG. 4, the near-infrared lamps 1, 1, ... Are lit, and near-infrared rays (indicated by solid arrows in the figure) are radiated. At this time, the near-infrared rays radiated obliquely upward are absorbed by the ceiling surface material 2, whereby the ceiling surface material 2 rises in temperature and far infrared rays (indicated by a broken line arrow in the figure) corresponding to the degree of temperature increase. ) Toward the floor.
Further, the near infrared rays radiated obliquely downward are the wall materials 8 and 8.
Is absorbed by the wall materials 8 and 8 and the far wall infrared rays (indicated by a broken line arrow in the figure) corresponding to the degree of the temperature rise are radiated toward the center of the living room. Further, the near infrared rays radiated to the floor surface side are captured and reflected by the lower plane mirror 9, and a part of the reflected near infrared rays is made incident on the ceiling surface material 2.
On the other hand, the rest of the reflected near-infrared rays is captured by the upper plane mirror 10, is reflected again, and is finally incident on the wall members 8, 8. Further, the near-infrared rays emitted directly above are reflected by the upper plane mirror 10, and a part of the reflected near-infrared rays is made incident on the wall members 8, 8. On the other hand, the rest of the reflected near-infrared rays is captured by the lower plane mirrors 9, 9, ... And reflected again, and finally is incident on the ceiling surface material 2.

【0020】上記構成によれば、天井面材2のみなら
ず、壁面材8からも遠赤外線が放射される。加えて、下
部平面鏡9と上部平面鏡10との多重反射作用により、
近赤外線ランプ1,1,…から放射される近赤外線が、
天井面材2と壁面材8とに無駄なく、かつ、所望の部位
(広がり)に入射させられる。それ故、天井面及び壁面
から遠赤外線が、多量に、むらなく、かつ迅速に面放射
されるので、温熱的快適性を一段と確実に実感できる。
なお、第2実施例の変形例として、図5に示すように、
一対の平面鏡9,10に代えて、互いに対をなす凸平面
鏡11と凸面鏡12とを用いて多重反射鏡を構成しても
良い。このようにすれば、近赤外線の漏れが一層少なく
なり、その分、天井面材2及び壁面材8に入射する近赤
外線の量が増加するので、電気エネルギから遠赤外線へ
の変換効率を一層高めることができる。
According to the above construction, far infrared rays are emitted not only from the ceiling surface material 2 but also from the wall surface material 8. In addition, due to the multiple reflection action of the lower plane mirror 9 and the upper plane mirror 10,
The near infrared rays emitted from the near infrared lamps 1, 1, ...
The light can be made incident on a desired portion (spread) on the ceiling surface material 2 and the wall surface material 8 without waste. Therefore, a large amount of far-infrared rays are uniformly and rapidly emitted from the ceiling surface and the wall surface, so that thermal comfort can be more reliably realized.
As a modification of the second embodiment, as shown in FIG.
Instead of the pair of plane mirrors 9 and 10, a convex plane mirror 11 and a convex plane mirror 12 that make a pair may be used to form a multiple reflection mirror. By doing so, the leakage of near infrared rays is further reduced, and the amount of near infrared rays incident on the ceiling surface material 2 and the wall surface material 8 is increased accordingly, so that the conversion efficiency from electric energy to far infrared rays is further enhanced. be able to.

【0021】◇第3実施例 次に、この発明の第3実施例について説明する。図6
は、この発明の第3実施例である赤外線面暖房システム
の構成を示す断面図である。この例の赤外線面暖房シス
テムが、第1実施例の構成(図2)と異なるところは、
図6に示すように、凸面鏡3に代えて、多数のスリット
13,13,…を有するスリット付き凸面鏡14を備え
るようにした点である。上記構成において、人6がシス
テムの電源スイッチを押下すると、近赤外線ランプ1,
1,…に電力が供給され、同図に示すように、近赤外線
ランプ1,1,…が"点灯"して、近赤外線(同図実線矢
印で示される)が瞬時に放射される。このとき、近赤外
線ランプ1,1,…から放射される近赤外線の一部は、
上記スリット13,13,…から下方に漏れ出て人体に
直接照射される。人体は、照射される近赤外線によっ
て、すばやく暖められ、人は、「寒」から「暖」に瞬時
に変わったことで、温熱的に心地よく思う。一方、近赤
外線ランプ1,1,…から放射された近赤外線の大部分
は、(スリット付き凸面鏡14の助けも借りて)天井面
材2,2,…に吸収されて熱に変換される。このように
して、天井面材2,2,…に発生した熱は、遠赤外線
(同図破線矢印で示される)の形態で床側の人体に向け
て放出するので、人は、温熱的快適性を実感できる。な
お、天井面材2,2,…から遠赤外線が放射されるよう
になるまでには、電源の投入後、立上がり時間として暫
時時間が経過するが、その間は、上述したように、人
は、スリット13,13,…から漏れ出る近赤外線の寄
与によって暖められる。
Third Embodiment Next, a third embodiment of the present invention will be described. Figure 6
FIG. 6 is a sectional view showing the configuration of an infrared surface heating system that is a third embodiment of the present invention. The infrared surface heating system of this example is different from the configuration of the first embodiment (FIG. 2) in that
As shown in FIG. 6, in place of the convex mirror 3, a convex mirror with a slit 14 having a large number of slits 13, 13, ... Is provided. In the above configuration, when the person 6 presses the power switch of the system, the near infrared lamp 1,
Electric power is supplied to 1, ... As shown in the figure, the near-infrared lamps 1, 1, ... "light up", and near-infrared rays (indicated by solid line arrows in the figure) are instantaneously radiated. At this time, part of the near infrared rays emitted from the near infrared lamps 1, 1, ...
The light leaks downward from the slits 13, 13, ... and is directly irradiated to the human body. The human body is quickly warmed by the near-infrared rays that are emitted, and the person feels warm and comfortable because of the instant change from "cold" to "warm". On the other hand, most of the near-infrared rays emitted from the near-infrared lamps 1, 1, ... Are absorbed by the ceiling surface materials 2, 2, ... (With the help of the convex mirror 14 with a slit) and converted into heat. In this way, the heat generated in the ceiling surface materials 2, 2, ... Is radiated to the human body on the floor side in the form of far infrared rays (indicated by the broken line arrow in the figure), so that the person is warm and comfortable. You can feel the sex. It should be noted that, until the far infrared rays are radiated from the ceiling surface materials 2, 2, ..., A temporary time elapses as a rising time after the power is turned on, but during that time, as described above, the person It is warmed by the contribution of near infrared rays leaking from the slits 13, 13, ....

【0022】上記構成によれば、人は、近赤外線の寄与
によって高速に暖められ、かつ、暖房の初期段階では近
赤外線の寄与によって、その後は、遠赤外線の作用によ
って温熱的快適感を持続できる。
According to the above structure, a person can be warmed at high speed by the contribution of near infrared rays, and can maintain a thermal comfort by the contribution of near infrared rays at the initial stage of heating and thereafter by the action of far infrared rays. .

【0023】◇第4実施例 次に、この発明の第4実施例について説明する。図7
は、この発明の第4実施例である赤外線面暖房システム
の構成を示す断面図である。この例の赤外線面暖房シス
テムが、第1実施例の構成(図2)と異なるところは、
図7に示すように、凸面鏡3に代えて、かつ、凸面鏡3
が設けられていた位置に、長尺の遠赤外線放射パネル1
5を備えるようにした点、これに付随して、遠赤外線ラ
ンプ1の背面に反射鏡16を設けた点、さらに天井面材
2に代えて、壁面材8を貼着するようにした点である。
上記遠赤外線放射パネル15は、図8に示すように、ア
ルミやステンレス等の熱伝導性に優れる金属基板16
と、この金属基板16の上面に積層され、近赤外線ラン
プ1から放射される近赤外線を吸収するための近赤外線
吸収層17と、金属基板16の下面に積層され、所定の
温度にまで昇温されると、床面(人体)に向けて多量の
遠赤外線を放射する遠赤外線放射層18とから構成され
ている。
Fourth Embodiment Next, a fourth embodiment of the present invention will be described. Figure 7
FIG. 8 is a sectional view showing a configuration of an infrared surface heating system that is a fourth embodiment of the present invention. The infrared surface heating system of this example is different from the configuration of the first embodiment (FIG. 2) in that
As shown in FIG. 7, instead of the convex mirror 3, the convex mirror 3
The long far-infrared radiation panel 1 is installed at the position where the
5 is provided, in addition to this, a reflection mirror 16 is provided on the back surface of the far-infrared lamp 1, and a wall material 8 is attached instead of the ceiling surface material 2. is there.
As shown in FIG. 8, the far-infrared radiation panel 15 includes a metal substrate 16 such as aluminum or stainless steel having excellent thermal conductivity.
And a near-infrared absorption layer 17 that is laminated on the upper surface of the metal substrate 16 and absorbs near-infrared rays emitted from the near-infrared lamp 1, and is laminated on the lower surface of the metal substrate 16 and heated to a predetermined temperature. Then, the far infrared ray emitting layer 18 that emits a large amount of far infrared ray toward the floor surface (human body) is formed.

【0024】上記近赤外線吸収層17は、近赤外線Kを
良く吸収する黒色顔料を金属基板16の上面に一様に塗
布して焼付処理することにより形成されている。また、
上記遠赤外線放射層18は、例えば、シリカ(Si
2),アルミナ(Al23),ジルコニア(Zr
2),チタニア(TiO2)、ベリリア(BeO)、酸
化錫(SnO2)、コージライト(2MgO・2Al2
3・5SiO2)、βスポジューメン(LiO2・Al2
3・4SiO2)、チタン酸アルミニウム(Al23・T
iO2)等のII〜IV族の金属酸化物セラミックス、酸化
クロム(Cr23)、酸化鉄(Fe23)、酸化コバル
ト(CoO)、酸化ニッケル(NiO)等のII〜VIII族
の金属酸化物セラミックス、又は炭化珪素(SiC)等
の非酸化セラミックスを金属基板16の下面にコーティ
ングしてさらに焼付処理することにより形成されてい
る。また、上記反射鏡16は、近赤外線ランプ1の上方
に放射される近赤外線を遠赤外線放射パネル15及び壁
面材8に入射せるために設けられる。上記構成によれ
ば、近赤外線ランプ1の下部から遠赤外線が多量に照射
させるので、キッチンや更衣室等、特に、暖めたい場所
が局在する場合に、そのほぼ真上に適用して好適であ
る。
The near-infrared absorbing layer 17 is formed by uniformly applying a black pigment that absorbs near-infrared rays K onto the upper surface of the metal substrate 16 and baking it. Also,
The far-infrared radiation layer 18 is, for example, silica (Si
O 2 ), alumina (Al 2 O 3 ), zirconia (Zr
O 2 ), titania (TiO 2 ), beryllia (BeO), tin oxide (SnO 2 ), cordierite (2MgO · 2Al 2 O)
3 · 5SiO 2), β-spodumene (LiO 2 · Al 2 O
3 · 4SiO 2), aluminum titanate (Al 2 O 3 · T
II-IV group metal oxide ceramics such as iO 2 ), chromium oxide (Cr 2 O 3 ), iron oxide (Fe 2 O 3 ), cobalt oxide (CoO), nickel oxide (NiO) group II-VIII It is formed by coating the lower surface of the metal substrate 16 with the metal oxide ceramics (1) or non-oxidizing ceramics such as silicon carbide (SiC) and further baking it. Further, the reflecting mirror 16 is provided for causing the near infrared rays emitted above the near infrared ray lamp 1 to enter the far infrared ray emitting panel 15 and the wall material 8. According to the above configuration, a large amount of far-infrared rays is emitted from the lower part of the near-infrared lamp 1, so that it is suitable to be applied almost directly above a place to be warmed, such as a kitchen or a changing room. is there.

【0025】以上、この発明の実施例を図面により詳述
してきたが、具体的な構成はこの実施例に限られるもの
ではなく、この発明の要旨を逸脱しない範囲の設計の変
更等があってもこの発明に含まれる。例えば、近赤外線
ランプの個数は3個に限定されず任意であり、また、棒
状の近赤外線ランプに限らず、球状の近赤外線ランプを
用いても良い。また、上述の実施例においては、遠赤外
線放射性天井面材及び遠赤外線放射性壁面材を用いる場
合について述べたが、適宜、遠赤外線放射性床面材を用
いても良く、これらの組み合わせは任意である。また、
これら遠赤外線放射性面材は、合成樹脂又紙等を基板と
して、通常の天井材、壁材等の表面に貼着するようにし
ても良く、表面に装飾を施しても良い。
The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific structure is not limited to this embodiment, and there are design changes and the like within the scope not departing from the gist of the present invention. Also included in the present invention. For example, the number of near-infrared lamps is not limited to three, and may be arbitrary, and not limited to a rod-shaped near-infrared lamp, a spherical near-infrared lamp may be used. Further, in the above-mentioned embodiment, the case where the far infrared radiation ceiling surface material and the far infrared radiation wall material are used is described, but the far infrared radiation floor material may be appropriately used, and a combination of these is arbitrary. . Also,
These far-infrared radiation surface materials may be attached to the surface of ordinary ceiling materials, wall materials, etc. using a synthetic resin or paper as a substrate, or the surface may be decorated.

【0026】また、上述の実施例においては、天井面材
2及び壁面材8を石膏ボード等の面材表面に遠赤外線放
射塗料を塗布して構成するようにした場合について述べ
たが、これに限らず、石膏ボード等の表面に上述の遠赤
外線放射セラミックスをコーティングして構成しても良
い。同様に、遠赤外線放射パネル15には、遠赤外線放
射セラミックスに代えて、遠赤外線放射塗料を用いて遠
赤外線放射層18を構成しても良い。
Further, in the above-mentioned embodiment, the case where the ceiling surface material 2 and the wall material 8 are constituted by applying far infrared radiation paint to the surface of the surface material such as gypsum board has been described. Not limited to this, the surface of a gypsum board or the like may be coated with the above far-infrared radiation ceramics. Similarly, in the far-infrared radiation panel 15, the far-infrared radiation layer 18 may be formed by using far-infrared radiation paint instead of the far-infrared radiation ceramics.

【0027】[0027]

【発明の効果】以上説明したように、請求項1記載の赤
外線面暖房システムによれば、赤外線放射手段から遠赤
外線放射性面材への熱伝達は、空気を媒介としない放射
伝熱の機構に従って起こることに加え、反射板を設置し
たことにより、上記赤外線放射手段から放射される赤外
線量を上記遠赤外線放射性面材の中に、より一層取り込
むことができるので、遠赤外線放射性面材は迅速に昇温
される。したがって、例えば天井面や壁面から遠赤外線
が多量にかつ迅速に面放射されるので、温熱的に非常に
快適な環境が得られる。また、赤外線放射手段(赤外線
ランプ)は、一般に棒形状又は球形状のものとして存在
する。それ故、天井面全体、壁面全体に高価な発熱体を
張り巡らす必要がないので、システムを安価に構成でき
る。
As described above, according to the infrared surface heating system of the first aspect, the heat transfer from the infrared radiating means to the far infrared radiative surface material is based on the mechanism of radiative heat transfer which does not use air as a medium. In addition to the above, by installing the reflection plate, the amount of infrared rays emitted from the infrared ray emitting means can be further taken into the far infrared ray emitting surface material, so that the far infrared ray emitting surface material can be quickly supplied. The temperature is raised. Therefore, for example, a large amount of far-infrared rays are rapidly radiated from the ceiling surface or the wall surface, so that a very comfortable environment in terms of heat can be obtained. Further, the infrared emitting means (infrared lamp) is generally present as a rod-shaped or spherical shape. Therefore, since it is not necessary to stretch expensive heating elements around the entire ceiling surface and the entire wall surface, the system can be constructed at low cost.

【0028】また、請求項2記載の構成では、電源が投
入されると、赤外線放射手段から瞬く間に放射される近
赤外線を多量に含む赤外線の一部が、上記反射板に設け
られた複数の開口部から漏れ出て人体を照射するので、
人体は主として近赤外線によってすばやく暖められ、人
は、「寒」から「暖」に瞬時に変わったことで、温熱的
に心地よく思う。一方、上記赤外線放射手段から放射さ
れた赤外線の一部は、上記遠赤外線放射性面材によって
吸収され、遠赤外線放射性面材の温度を上昇させる。所
定時間経過後所定温度まで上昇した遠赤外線放射性面材
から人体に向けて遠赤外線が放射される。それ故、近赤
外線の主たる寄与によって、「寒」から「暖」になった
後は、遠赤外線の寄与によって、人は、ほど良く暖めら
れ、やわらかな温熱的快適感が持続される。
According to the second aspect of the present invention, when the power is turned on, a part of the infrared rays containing a large amount of near infrared rays emitted from the infrared ray emitting means in a blinking manner are partially provided on the reflection plate. Since it leaks from the opening of the body and irradiates the human body,
The human body is quickly warmed mainly by the near infrared rays, and the human being feels warm and comfortable because of the instant change from "cold" to "warm". On the other hand, a part of the infrared rays emitted from the infrared ray emitting means is absorbed by the far-infrared radiation surface material and raises the temperature of the far-infrared radiation surface material. Far infrared rays are radiated toward the human body from the far infrared ray emitting surface material that has risen to a predetermined temperature after a predetermined time has elapsed. Therefore, after "cold" to "warm" due to the main contribution of near-infrared rays, the contribution of far-infrared rays warms up a person moderately and maintains a soft thermal comfort.

【0029】また、請求項3記載の構成では、上記赤外
線放射手段から放射される赤外線を吸収して、該赤外線
を吸収したと同一の面から遠赤外線を人体側に放射する
第1の遠赤外線放射性面材と、上記赤外線放射手段と人
体との間に置かれ、上記赤外線放射手段から放射される
赤外線を吸収して、人体に向け遠赤外線を放射する第2
の遠赤外線放射性面材とを備えてなるものなので、キッ
チン等、特に暖めたい所望の領域に対して遠赤外線を特
別多量に照射できる。
According to the third aspect of the invention, the first far infrared ray that absorbs the infrared ray emitted from the infrared ray emitting means and emits the far infrared ray to the human body from the same surface as the infrared ray is absorbed. A second facet which is placed between the radioactive face material, the infrared radiation means and the human body, absorbs infrared rays emitted from the infrared radiation means, and emits far infrared rays toward the human body.
Since it is provided with the far-infrared ray radiating surface material, it is possible to irradiate a particularly large amount of far-infrared ray to a desired area to be warmed, such as a kitchen.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例である赤外線面暖房シス
テムの外観構成を示す斜視図である。
FIG. 1 is a perspective view showing an external configuration of an infrared surface heating system that is a first embodiment of the present invention.

【図2】同赤外線面暖房システムの作用を説明するため
の説明図である。
FIG. 2 is an explanatory diagram for explaining an operation of the infrared surface heating system.

【図3】第1実施例の変形例に係る反射鏡の構成を示す
断面図である。
FIG. 3 is a sectional view showing a configuration of a reflecting mirror according to a modification of the first embodiment.

【図4】この発明の第2実施例である赤外線面暖房シス
テムの構成を示す図である。
FIG. 4 is a diagram showing the configuration of an infrared surface heating system that is a second embodiment of the present invention.

【図5】第2実施例の変形例に係る反射鏡の構成を示す
断面図である。
FIG. 5 is a sectional view showing a configuration of a reflecting mirror according to a modification of the second embodiment.

【図6】この発明の第3実施例である赤外線面暖房シス
テムの構成を示す図である。
FIG. 6 is a diagram showing the configuration of an infrared surface heating system that is a third embodiment of the present invention.

【図7】この発明の第4実施例である赤外線面暖房シス
テムの構成を示す図である。
FIG. 7 is a diagram showing the configuration of an infrared surface heating system that is a fourth embodiment of the present invention.

【図8】同赤外線面暖房システムに適用される遠赤外線
放射パネルの層構成を示す断面図である。
FIG. 8 is a cross-sectional view showing a layer structure of a far infrared radiation panel applied to the infrared surface heating system.

【符号の説明】[Explanation of symbols]

1 近赤外線ランプ(赤外線放射手段) 2 天井面材(遠赤外線放射性面材、第1の遠赤外
線放射性面材) 3 凸面鏡(反射板) 6 人体(加温対象) 8 壁面材(遠赤外線放射性面材、第1の遠赤外線
放射性面材) 13 スリット(開口部) 15 遠赤外線放射パネル(第2の遠赤外線放射性
面材)
1 near-infrared lamp (infrared radiation means) 2 ceiling surface material (far-infrared radiation surface material, first far-infrared radiation surface material) 3 convex mirror (reflector) 6 human body (heating target) 8 wall material (far-infrared radiation surface) Material, first far-infrared radiation surface material) 13 Slit (opening) 15 Far-infrared radiation panel (second far-infrared radiation surface material)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電源の投入により近赤外線をピークとし
て赤外線を放射する赤外線放射手段と、該赤外線放射手
段から放射される赤外線を吸収して、該赤外線を吸収し
たと同一の面から遠赤外線を加温対象に向け放射する遠
赤外線放射性面材と、前記赤外線放射手段から所定の領
域に向けて放射される赤外線を前記遠赤外線放射性面材
に入射させて吸収させるための反射板とを備えてなるこ
とを特徴とする赤外線面暖房システム。
1. An infrared radiating means for radiating infrared rays with a peak of near infrared rays when a power source is turned on, and infrared rays radiated from the infrared radiating means are absorbed to emit far infrared rays from the same surface where the infrared rays are absorbed. A far-infrared radiating face material that radiates toward the object to be heated, and a reflection plate that makes the far-infrared radiating face material absorb and absorb infrared rays radiated toward a predetermined region from the infrared radiating means. Infrared surface heating system characterized by becoming.
【請求項2】 前記反射板には、加温対象に向けて近赤
外線を通過させるための複数の開口部が設けられている
ことを特徴とする請求項1記載の赤外線面暖房システ
ム。
2. The infrared surface heating system according to claim 1, wherein the reflection plate is provided with a plurality of openings for passing near infrared rays toward a heating target.
【請求項3】 電源の投入により近赤外線をピークとし
て赤外線を放射する赤外線放射手段と、該赤外線放射手
段から放射される赤外線を吸収して、該赤外線を吸収し
たと同一の面から遠赤外線を加温対象に向け放射する第
1の遠赤外線放射性面材と、前記赤外線放射手段と加温
対象との間に置かれ、前記赤外線放射手段から放射され
る赤外線を吸収して、該赤外線を吸収したと反対側の面
から遠赤外線を前記加温対象に向けて放射する第2の遠
赤外線放射性面材とを備えてなることを特徴とする赤外
線面暖房システム。
3. An infrared radiating means for radiating infrared rays with a peak of near infrared rays when power is turned on, and infrared rays radiated from the infrared radiating means are absorbed to emit far infrared rays from the same surface where the infrared rays are absorbed. The first far-infrared radiation radiating material that radiates toward the object to be heated, is placed between the infrared radiating means and the object to be heated, absorbs infrared rays radiated from the infrared radiating means, and absorbs the infrared rays. An infrared surface heating system comprising: a second far-infrared radiation radiating material that radiates far-infrared radiation toward the object to be heated from the opposite surface.
JP5281123A 1993-11-10 1993-11-10 Infrared surface-heating system Pending JPH07133934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5281123A JPH07133934A (en) 1993-11-10 1993-11-10 Infrared surface-heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5281123A JPH07133934A (en) 1993-11-10 1993-11-10 Infrared surface-heating system

Publications (1)

Publication Number Publication Date
JPH07133934A true JPH07133934A (en) 1995-05-23

Family

ID=17634690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5281123A Pending JPH07133934A (en) 1993-11-10 1993-11-10 Infrared surface-heating system

Country Status (1)

Country Link
JP (1) JPH07133934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673065A (en) * 2013-12-30 2014-03-26 吴江菀坪隆华机电制造有限公司 Heat spreading device for heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118330A (en) * 1988-10-28 1990-05-02 Matsushita Seiko Co Ltd Space heater
JPH0228007B2 (en) * 1985-01-21 1990-06-21 Hitachi Ltd RAININGUSHAFUTO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228007B2 (en) * 1985-01-21 1990-06-21 Hitachi Ltd RAININGUSHAFUTO
JPH02118330A (en) * 1988-10-28 1990-05-02 Matsushita Seiko Co Ltd Space heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673065A (en) * 2013-12-30 2014-03-26 吴江菀坪隆华机电制造有限公司 Heat spreading device for heater

Similar Documents

Publication Publication Date Title
JPH07133934A (en) Infrared surface-heating system
JP2741995B2 (en) Far-infrared radiation electric heater
JPH07133935A (en) Infrared heating system
JP2008075910A (en) Operation method of electric stove
JPH07110131A (en) Infrared heating apparatus
KR0163266B1 (en) Production method for heating panel
KR200452843Y1 (en) A sauna booth for panel emitting infrared ray
JP2529409Y2 (en) Lattice far infrared heater
JP2987354B2 (en) Far infrared heating system
KR200281387Y1 (en) Heating Apparatus Using Infrared Rays
JP3296676B2 (en) Electric hot plate
JPH07133933A (en) Infrared heater
JP3055069U (en) Tourmaline far infrared heater
JPH07280279A (en) Heating and cooking device
GB2389504A (en) Electrical food warming apparatus
JPS61114485A (en) Double-side infrared ray radiation apparatus
JPH06101369B2 (en) Heating device
JPH02152187A (en) Heating cooker
JPH07302677A (en) Heating cooker
JP2519736Y2 (en) Panel heater
JP2000088257A (en) Face heating system using far infrared ray
KR100456641B1 (en) Infrared heater for sauna room
JPH078678Y2 (en) Fever ceiling material
JPH08159484A (en) Heating and cooking device
JPH0221725Y2 (en)