JPH0713346A - Manufacture of electrophotographic photoreceptor - Google Patents

Manufacture of electrophotographic photoreceptor

Info

Publication number
JPH0713346A
JPH0713346A JP17621393A JP17621393A JPH0713346A JP H0713346 A JPH0713346 A JP H0713346A JP 17621393 A JP17621393 A JP 17621393A JP 17621393 A JP17621393 A JP 17621393A JP H0713346 A JPH0713346 A JP H0713346A
Authority
JP
Japan
Prior art keywords
coating
support
layer
drying
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17621393A
Other languages
Japanese (ja)
Other versions
JP3154263B2 (en
Inventor
Takao Soma
孝夫 相馬
Youichi Kawamorita
陽一 川守田
Hisao Maruyama
久夫 丸山
Junichi Kishi
淳一 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17621393A priority Critical patent/JP3154263B2/en
Publication of JPH0713346A publication Critical patent/JPH0713346A/en
Application granted granted Critical
Publication of JP3154263B2 publication Critical patent/JP3154263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To provide a method for manufacturing an electrophotographic photosensitive body which is free from the coating fault and provides the high image quality free from the image fault, continuously and efficiently. CONSTITUTION:In the manufacturing method for the electronicphotograpic photosensitive body having a photosensitive layer on an electric conductive supporting body, the electrophotographic photosensitive body is manufacured by cooling a supporting body 6 through the contact of a cooled device 1 with the supporting body 6, and in other method, the electrophotogrphic photosensitive body is manufactured by heating drying the supporting body through the contact of a heated device with the supporting body. Accordingly, the electrophotographic photosensitive body which is free from the coating fault and provides the high inage quality free from the image fault can be manufactured continuously and efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子写真感光体の製造方
法に関し、詳しくは画像欠陥のない電子写真感光体を連
続して製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrophotographic photosensitive member, and more particularly to a method for continuously manufacturing an electrophotographic photosensitive member having no image defect.

【0002】[0002]

【従来の技術】電子写真感光体は支持体上に感光層、必
要に応じて、導電層、中間層などを形成することにより
製造される。これら各層の形成方法としては、セレン感
光体及びアモルファスシリコン感光体の例のように真空
蒸着、スパッタリング、CVDなどの方法により支持体
表面に物質を直接付着させる方法もあるが、顔料物質、
バインダ樹脂などを溶媒に分散または溶解した塗布液を
作成し、これを塗布手段により支持体表面に付着させる
方法が量産性及び生産コストに優れ、近年電子写真感光
体、特にOPC(有機感光体)の製造に広く用いられて
いる。
2. Description of the Related Art An electrophotographic photosensitive member is manufactured by forming a photosensitive layer on a support and, if necessary, a conductive layer and an intermediate layer. As a method of forming each of these layers, there is a method of directly depositing a substance on the surface of a support by a method such as vacuum deposition, sputtering, and CVD as in the examples of a selenium photoconductor and an amorphous silicon photoconductor.
A method of preparing a coating solution in which a binder resin or the like is dispersed or dissolved in a solvent and adhering it to the surface of a support by a coating means is excellent in mass productivity and production cost. In recent years, electrophotographic photoreceptors, particularly OPC (organic photoreceptor) Widely used in the manufacture of.

【0003】塗布液を塗布した後の乾燥工程に用いられ
る乾燥方法としては、自然乾燥、風乾というような加熱
しない方法もあるが、工業的には、熱風、赤外線などで
加熱乾燥する方法が一般的に用いられている。加熱乾燥
が完了した後は冷却されて次工程に移るが、冷却方法と
しては、放置するだけの自然冷却、送風冷却などがあ
る。
As a drying method used in the drying step after applying the coating liquid, there are methods such as natural drying and air drying which do not heat, but industrially, a method of heating and drying with hot air or infrared rays is generally used. It is used for. After the heating and drying is completed, it is cooled and the process proceeds to the next step. As a cooling method, there are natural cooling such as leaving it to stand and ventilation cooling.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来よ
り用いられた冷却方法には次のような問題点がある。 1)自然冷却は支持体の冷却に時間がかかるため塗布乾
燥面に粉塵などが付着し、次の塗布工程において塗布欠
陥の原因となる。 2)送風冷却は送風を行うため粉塵の舞い上がりが多
く、塗布・乾燥面に粉塵などが付着し次の塗布工程にお
いて塗布欠陥の原因となる。 3)従来のいずれの冷却方法でも支持体の肉厚が厚く熱
容量が大きい場合は支持体の冷却速度が遅く、冷却工程
にかかる時間が長くなるため生産効率が上がらないとい
う問題があった。
However, the conventional cooling method has the following problems. 1) In natural cooling, it takes a long time to cool the support, so that dust or the like adheres to the coated and dried surface, causing a coating defect in the next coating step. 2) Since air is blown during blast cooling, dust rises a lot, and dust adheres to the coating / drying surface, causing coating defects in the next coating process. 3) In any of the conventional cooling methods, when the thickness of the support is large and the heat capacity is large, the cooling rate of the support is slow and the time required for the cooling process is long, so that there is a problem that the production efficiency cannot be improved.

【0005】さらに、電子写真感光体に高い感度や高画
質が要求される場合は感光体が機能分離された多層構成
となる例が多く、4層構成の例としては 導電層:支持体の上に塗布し、電荷の注入性のコントロ
ール、光の乱反射の防止及び支持体の欠陥の補完を目的
とする層。 中間層:感光層と支持体、または感光層と導電層の中間
に位置し、電荷の注入に対するバリヤー層として機能す
る層。 電荷発生層:露光により電荷を発生する層。 電荷輸送層:電荷発生層で発生した電荷が輸送される
層。
Further, when the electrophotographic photosensitive member is required to have high sensitivity and high image quality, it is often the case that the photosensitive member has a multi-layered structure in which the functions are separated. A layer which is applied to the substrate for the purpose of controlling charge injection property, preventing diffuse reflection of light and complementing defects of the support. Intermediate layer: a layer which is located between the photosensitive layer and the support or between the photosensitive layer and the conductive layer and which functions as a barrier layer for injecting charges. Charge generation layer: A layer that generates charges upon exposure. Charge transport layer: A layer in which charges generated in the charge generation layer are transported.

【0006】このように多層構成とした場合は各層それ
ぞれに低い塗布欠陥率が要求される。そのため、従来の
冷却方法では、良好な良品率を確保する上で冷却中に付
着する粉塵が問題となっているというのが現状であっ
た。さらに、各層を連続して塗布する場合は、生産ライ
ンを効率よく運用するためにはできるかぎり短時間で冷
却する必要があり問題になっていた。
In the case of such a multilayer structure, a low coating defect rate is required for each layer. Therefore, in the conventional cooling method, in order to secure a good non-defective rate, dust attached during cooling is a problem at present. Furthermore, when each layer is continuously applied, it is necessary to cool the production line as quickly as possible in order to operate the production line efficiently, which is a problem.

【0007】また、従来より用いられた加熱乾燥方法に
は次のような問題点がある。 1)熱風乾燥は送風を行うため粉塵の舞い上がりが多
く、さらに支持体の昇温に時間がかかるため指触乾燥す
るまでの時間(表面が湿潤で粉塵等が付着すると固着し
てしまうような未乾燥状態の時間)が長くなり連続塗布
中に塗布乾燥面に粉塵などが付着し塗布欠陥の原因とな
る。 2)赤外線等で加熱し乾燥する方法は被乾燥物の表面温
度の管理が難しく、温度分布を均一にするためには支持
体を何らかの手段で回転する必要がある。しかし、回転
する装置を乾燥炉内に設けた場合発塵の原因となり、連
続塗布中に塗布・乾燥面に粉塵などが付着し塗布欠陥の
原因となる。 3)従来の乾燥方法では支持体の肉厚が厚く熱容量が大
きい場合は支持体の昇温速度が遅く乾燥工程に時間がか
かるため、乾燥が終了する前に液ダレを生じ塗膜上部の
塗布厚が薄くなり電子写真感光体ドラムの感度が上部と
下部で不均一になるという問題があった。さらに、電子
写真感光体を多層構成とした場合は各層それぞれに低い
塗布欠陥率が要求される。
Further, the conventional heating and drying method has the following problems. 1) In hot air drying, dust blows up much because it blows air, and since it takes time to raise the temperature of the support, it takes time to dry to the touch (when the surface is wet and dust adheres The time in the dry state) becomes longer, and dust or the like adheres to the dried surface of the coating during continuous coating, which causes coating defects. 2) It is difficult to control the surface temperature of the material to be dried by a method of heating with infrared rays or the like, and it is necessary to rotate the support by some means in order to make the temperature distribution uniform. However, when a rotating device is provided in the drying furnace, it causes dust generation, and dust and the like adhere to the coating / drying surface during continuous coating, which causes coating defects. 3) In the conventional drying method, when the thickness of the support is large and the heat capacity is large, the temperature rising rate of the support is slow and the drying process takes a long time. There is a problem that the thickness becomes thin and the sensitivity of the electrophotographic photosensitive drum becomes non-uniform in the upper and lower parts. Furthermore, when the electrophotographic photosensitive member has a multi-layer structure, a low coating defect rate is required for each layer.

【0008】さらに、従来の乾燥方法では、高画質をね
らった電子写真感光体の場合感度、暗減衰などの特性が
乾燥温度の影響を受け易く、乾燥炉内の温度分布を極力
小さくする必要があり、熱風乾燥炉内の風量を小さくし
たり、支持体の回転手段をなくした場合乾燥温度むらに
よる画像欠陥を生じてしまう。そのため、良好な良品率
を常に確保する上で問題となっているというのが現状で
あった。
Further, in the conventional drying method, in the case of an electrophotographic photosensitive member aiming at high image quality, the characteristics such as sensitivity and dark decay are easily influenced by the drying temperature, and it is necessary to minimize the temperature distribution in the drying oven. However, if the amount of air in the hot air drying oven is reduced or the rotating means of the support is eliminated, image defects due to uneven drying temperature will occur. Therefore, the current situation is that it always poses a problem in ensuring a good yield rate.

【0009】本発明は上記のような問題点を解決し塗布
欠陥、画像欠陥のない、高画質の電子写真感光体を長期
にわたり安定して製造するための方法を提供することに
ある。
It is an object of the present invention to provide a method for solving the above-mentioned problems and stably producing a high quality electrophotographic photosensitive member free from coating defects and image defects for a long period of time.

【0010】[0010]

【課題を解決するための手段】すなわち、第1の本発明
は、導電性支持体上に感光層を有する電子写真感光体の
製造方法において、該支持体に冷却した装置を接触させ
て該支持体を冷却することを特徴とする電子写真感光体
の製造方法である。
That is, the first aspect of the present invention is to provide a method for producing an electrophotographic photosensitive member having a photosensitive layer on a conductive support by bringing a cooled device into contact with the support. A method for manufacturing an electrophotographic photosensitive member, which comprises cooling the body.

【0011】また、第2の本発明は、導電性支持体上に
感光層を有する電子写真感光体の製造方法において、該
支持体に加熱した装置を接触させて該支持体を加熱乾燥
することを特徴とする電子写真感光体の製造方法であ
る。
The second aspect of the present invention is a method for producing an electrophotographic photosensitive member having a photosensitive layer on a conductive support, wherein a heated device is brought into contact with the support to heat and dry the support. And a method for producing an electrophotographic photosensitive member.

【0012】まず、第1の本発明について説明する。First, the first aspect of the present invention will be described.

【0013】本発明に用いる冷却手段としては、支持体
の画像形成に用いない面に冷却した装置を接触させて支
持体を冷却するが、接触させる装置の材質の例としては
熱導伝性の良好な材料が挙げられ、たとえば鉄、アルミ
ニウム、銅などの金属またはこれらの合金、フェノール
樹脂、シリコン樹脂などの耐熱性樹脂、カーボン、石
綿、ガラス、セラミックなどの無機物が挙げられる。ま
たこれらの複合材料を用いることもできる。さらに、支
持体との接触性を良好にする目的で熱導伝性の材料の表
面をシリコンゴム、フッ素ゴム、石綿、グラスウールな
どの弾力性のある材料で覆ってもよい。
As the cooling means used in the present invention, a cooled device is brought into contact with the surface of the support which is not used for image formation, and the support is cooled. An example of the material of the device to be brought into contact is a heat conductive material. Examples of good materials include metals such as iron, aluminum and copper or alloys thereof, heat resistant resins such as phenol resin and silicon resin, and inorganic materials such as carbon, asbestos, glass and ceramics. Moreover, these composite materials can also be used. Further, the surface of the heat-conducting material may be covered with an elastic material such as silicon rubber, fluororubber, asbestos or glass wool for the purpose of improving the contact property with the support.

【0014】支持体に接触させる装置の冷却方法の例と
しては、装置の内部にヒートポンプの冷却部を組み込む
方法などが挙げられる。冷却装置の温度安定性を充分制
御する必要がある場合は冷却媒体を内部に循環し、熱交
換器により冷却するようにすることもできる。支持体に
接触させる装置の表面温度については支持体の表面温度
が目的とする温度になるように、また連続生産において
も支持体の表面温度が変動しないように制御することが
好ましい。温度分布についても同様に支持体の表面温度
がどの部分でも目的とする温度範囲におさまるように制
御することが好ましく、そのために接触させる装置の表
面温度についていくつかの部分に分割し制御してもよ
い。
As an example of the cooling method of the device brought into contact with the support, there is a method of incorporating a cooling part of a heat pump inside the device. When it is necessary to sufficiently control the temperature stability of the cooling device, a cooling medium may be circulated inside and cooled by a heat exchanger. It is preferable to control the surface temperature of the apparatus that is brought into contact with the support so that the surface temperature of the support becomes a target temperature and that the surface temperature of the support does not fluctuate even in continuous production. Similarly for the temperature distribution, it is preferable to control the surface temperature of the support so that it falls within the target temperature range at any part, and therefore the surface temperature of the device to be contacted may be divided into several parts and controlled. Good.

【0015】接触させる装置の形状については支持体の
形状により選定されるが、例えばシリンダ状の形状で外
側の面に画像形成する場合は密着性を向上するため冷却
する物体をシリンダ内部に挿入した後、装置の外形が拡
大、膨張するようなメカニズムを付加することにも可能
である。
The shape of the device to be brought into contact is selected depending on the shape of the support. For example, when an image is formed on the outer surface in a cylindrical shape, an object to be cooled is inserted inside the cylinder in order to improve adhesion. After that, it is possible to add a mechanism for expanding and expanding the outer shape of the device.

【0016】本発明の感光体の支持体に冷却した装置を
接触させて支持体を冷却する電子写真感光体の製造方法
は他の冷却方法(例えば、送風冷却、自然冷却)と併用
することも可能である。
The method for producing an electrophotographic photosensitive member according to the present invention, in which a cooled device is brought into contact with the support of the photosensitive member to cool the support, may be used in combination with another cooling method (for example, blow cooling, natural cooling). It is possible.

【0017】次に、第2の本発明について説明する。Next, the second invention will be described.

【0018】本発明に用いる加熱手段としては、支持体
の画像形成に用いない面に加熱した装置を接触させて支
持体を加熱するが、接触させる装置の材質の例としては
熱導伝性の良好な材料が挙げられ、たとえば鉄、アルミ
ニウム、銅などの金属またはこれらの合金、フェノール
樹脂、シリコン樹脂などの耐熱性樹脂、カーボン、石
綿、ガラス、セラミックなどの無機物が挙げられる。ま
たこれらの複合材料を用いることもできる。さらに、支
持体との接触性を良好にする目的で熱導伝性の材料の表
面をシリコンゴム、フッ素ゴム、石綿、グラスウールな
どの弾力性のある材料で覆うことも良い。
The heating means used in the present invention heats the support by bringing a heated device into contact with the surface of the support which is not used for image formation. An example of the material of the contacting device is a heat conductive material. Examples of good materials include metals such as iron, aluminum and copper or alloys thereof, heat resistant resins such as phenol resin and silicon resin, and inorganic materials such as carbon, asbestos, glass and ceramics. Moreover, these composite materials can also be used. Further, the surface of the heat-conducting material may be covered with an elastic material such as silicon rubber, fluororubber, asbestos or glass wool for the purpose of improving the contact property with the support.

【0019】支持体に接触させる装置の加熱方法の例と
しては、装置そのものに通電する方法、電熱ヒーターな
どを内部に組み込む方法などが挙げられる。しかし、塗
布液の溶媒が引火性の場合は、電気スパーク、過熱など
に充分注意する必要があり、熱媒体、蒸気などを内部に
循環し、熱交換器により加熱するようにすることもでき
る。
Examples of the heating method of the device brought into contact with the support include a method of energizing the device itself and a method of incorporating an electric heater or the like inside. However, when the solvent of the coating liquid is flammable, it is necessary to pay sufficient attention to electric sparks, overheating, etc., and it is also possible to circulate a heat medium, steam, etc. inside and heat by a heat exchanger.

【0020】支持体に接触させる装置の表面温度につい
ては支持体の表面温度が目的とする温度になるように、
また連続の生産においても支持体の表面温度が変動しな
いように制御することが好ましい。温度分布についても
同様に支持体の表面温度がどの部分でも目的とする温度
範囲におさまるように制御することが好ましく、そのた
めに接触させる装置の表面温度についていくつかの部分
に分割し制御してもよい。
With respect to the surface temperature of the device which is brought into contact with the support, the surface temperature of the support is set to a target temperature,
Further, it is preferable to control so that the surface temperature of the support does not change even in continuous production. Similarly for the temperature distribution, it is preferable to control the surface temperature of the support so that it falls within the target temperature range at any part, and therefore the surface temperature of the device to be contacted may be divided into several parts and controlled. Good.

【0021】接触させる装置の形状については支持体の
形状により選定されるが、例えばシリンダ状の形状で外
側の面に画像形成する場合は密着性を向上するため加熱
する物体をシリンダ内部に挿入した後、装置の外形が拡
大、膨張するようなメカニズムを付加することにも可能
である。
The shape of the device to be contacted is selected depending on the shape of the support. For example, when an image is formed on the outer surface in a cylindrical shape, an object to be heated is inserted inside the cylinder in order to improve adhesion. After that, it is possible to add a mechanism for expanding and expanding the outer shape of the device.

【0022】本発明の支持体に加熱した装置を接触させ
て支持体を加熱し乾燥する電子写真感光体の製造方法は
他の乾燥方法(たとえば、熱風、赤外線などで加熱し乾
燥する方法)と併用することも可能である。
The method for producing an electrophotographic photosensitive member according to the present invention, in which a heated device is brought into contact with a support to heat and dry the support, is different from other drying methods (for example, a method of heating and drying with hot air or infrared rays). It is also possible to use together.

【0023】次に、第1の本発明と第2の本発明に共通
する事項について説明する。
Next, items common to the first and second aspects of the present invention will be described.

【0024】本発明で用いられる支持体の材質としては
熱伝導性の良好なものが適しており以下のような例が挙
げられる。アルミニウム、銅、ニッケル、銀などの金属
またはこれらの合金;酸化アンチモン、酸化インジウ
ム、酸化スズなどの導電性金属酸化物、カーボンファイ
バ、カーボンブラック、グラファイト粉末と樹脂を混合
成形したものなどが挙げられる。
As the material of the support used in the present invention, one having a good thermal conductivity is suitable, and the following examples can be given. Metals such as aluminum, copper, nickel and silver or alloys thereof; conductive metal oxides such as antimony oxide, indium oxide and tin oxide, carbon fiber, carbon black, and graphite powder mixed with resin. .

【0025】本発明で用いられる塗布液としては以下の
ようなものがある。
The coating liquid used in the present invention is as follows.

【0026】導電層塗布に用いる塗布液としては、例え
ばアルミニウム、銅、ニッケル、銀などの金属粉体;酸
化アンチモン、酸化インジウム、酸化スズなどの導電性
金属酸化物;ポリピロール、ポリアニリン、高分子電解
質などの高分子導電材;カーボンファイバ、カーボンブ
ラック、グラファイト粉末;またはこれら導電性物質で
表面を被覆した導電性粉体などの導電性物質、およびア
クリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリ
酢酸ビニル樹脂、ポリカーボネート樹脂、ポリビニルブ
チラール樹脂等の熱可塑性樹脂;ポリウレタン樹脂、フ
ェノール樹脂、エポキシ樹脂などの熱硬化樹脂;光硬化
樹脂などのバインダ樹脂をメタノール、エタノール、ブ
タノール、イソプロピルアルコールなどのアルコール
類;メチルエチルケトン、アセトン、メチルイソブチル
ケトン、シクロヘキサノンなどのケトン類;ジエチルエ
ーテル、テトラヒドロフランなどのエーテル類;酢酸エ
チル、酢酸プロピルなどのエステル類;ノルマルヘキサ
ン、トルエンなどの炭化水素類、またその他適当な溶媒
に分散したもの、さらに必要に応じた添加剤を加えたも
のが挙げられる。
The coating liquid used for coating the conductive layer is, for example, metal powder of aluminum, copper, nickel, silver or the like; conductive metal oxide such as antimony oxide, indium oxide or tin oxide; polypyrrole, polyaniline, polymer electrolyte. Polymer conductive material such as; carbon fiber, carbon black, graphite powder; or conductive material such as conductive powder whose surface is coated with these conductive materials, and acrylic resin, polyester resin, polyamide resin, polyvinyl acetate resin Thermoplastic resin such as polycarbonate resin and polyvinyl butyral resin; thermosetting resin such as polyurethane resin, phenol resin and epoxy resin; binder resin such as photocuring resin; alcohols such as methanol, ethanol, butanol and isopropyl alcohol; methyl ethyl ketone Ketones such as amine, acetone, methyl isobutyl ketone, and cyclohexanone; ethers such as diethyl ether and tetrahydrofuran; esters such as ethyl acetate and propyl acetate; hydrocarbons such as normal hexane and toluene; and other suitable solvents Examples thereof include those obtained by adding additives as required.

【0027】中間層用塗布液としては、例えばゼラチ
ン、エチレン・アクリル酸コポリマー、ニトロセルロー
ス樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、
ポリビニルアルコール樹脂等の樹脂をメタノール、エタ
ノール、ブタノール、イソプロピルアルコールなどのア
ルコール類;メチルエチルケトン、アセトン、メチルイ
ソブチルケトンなどのケトン類;その他適当な溶媒に溶
解したもの、さらに必要に応じた添加剤を加えたものが
挙げられる。
The coating liquid for the intermediate layer is, for example, gelatin, ethylene / acrylic acid copolymer, nitrocellulose resin, polyamide resin, polyvinyl alcohol resin,
Polyvinyl alcohol resin and other resins such as methanol, ethanol, butanol, isopropyl alcohol, and other alcohols; methyl ethyl ketone, acetone, methyl isobutyl ketone, and other ketones; others dissolved in a suitable solvent, with addition of additives as necessary There are some.

【0028】感光層は単一層構造でも、電荷発生層と電
荷輸送層に機能分離した積層構造でもよい。
The photosensitive layer may have a single layer structure or a laminated structure in which the charge generating layer and the charge transporting layer are functionally separated.

【0029】積層構造感光体の電荷発生層用塗布液とし
ては例えば、スダーンレッド、クロルダイアンブルーな
どのアゾ顔料;銅フタロシアニン、チタニルフタロシア
ニンなどのフタロシアニン顔料;アントアンスロンなど
のキノン顔料;ベリレン顔料;インジゴ顔料などの電荷
発生物質およびアクリル樹脂、ポリエステル樹脂、ポリ
アミド樹脂、ポリ酢酸ビニル樹脂、ポリカーボネート樹
脂、ポリビニルブチラール樹脂、ポリビニルベンザール
樹脂などの熱可塑性樹脂;ポリウレタン樹脂、フェノー
ル樹脂、エポキシ樹脂などの熱硬化樹脂などのバインダ
樹脂を、メタノール、エタノール、ブタノール、イソプ
ロピルアルコールなどのアルコール類;メチルエチルケ
トン、アセトン、メチルイソブチルケトン、シクロヘキ
サノンなどのケトン類;ジエチルエーテル、テトラヒド
ロフランなどのエーテル類;酢酸エチル、酢酸プロピル
などのエステル類;ノルマルヘキサン、トルエンなどの
炭化水素類、またその他適当な溶媒に分散したもの、さ
らに必要に応じた添加剤を加えたものなどが挙げられ
る。
Examples of the coating liquid for the charge generating layer of the laminated structure photoreceptor include azo pigments such as sudan red and chlordian blue; phthalocyanine pigments such as copper phthalocyanine and titanyl phthalocyanine; quinone pigments such as anthanthrone; berylylene pigment; indigo. Charge generating substances such as pigments and thermoplastic resins such as acrylic resin, polyester resin, polyamide resin, polyvinyl acetate resin, polycarbonate resin, polyvinyl butyral resin, polyvinyl benzal resin; thermosetting of polyurethane resin, phenol resin, epoxy resin, etc. Binder resin such as resin, alcohol such as methanol, ethanol, butanol, isopropyl alcohol; keto such as methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone Ethers such as diethyl ether and tetrahydrofuran; Esters such as ethyl acetate and propyl acetate; Hydrocarbons such as normal hexane and toluene; those dispersed in other suitable solvents; and additives if necessary There are things like

【0030】電荷輸送層用塗布液としては、例えばヒド
ラゾン系化合物、スチベン系化合物、ピラゾリン系化合
物、オキサゾール系化合物、チアゾール系化合物、トリ
アリールメタン系化合物などの電荷輸送物質およびアク
リル樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポ
リ塩化ビニル樹脂、ポリカーボネート樹脂、ポリビニル
ブチラール樹脂、ポリメタアクリレート樹脂などの熱可
塑性樹脂;ポリウレタン樹脂、フェノール樹脂、エポキ
シ樹脂などの熱硬化樹脂などのバインダ樹脂を、メタノ
ール、エタノール、ブタノール、イソプロピルアルコー
ルなどのアルコール類;メチルエチルケトン、アセト
ン、メチルイソブチルケトン、シクロヘキサノンなどの
ケトン類;ジエチルエーテル、テトラヒドロフランなど
のエーテル類;酢酸エチル、酢酸プロピルなどのエステ
ル類;ノルマルヘキサン、石油エーテル、トルエンなど
の炭化水素類;モノクロルベンゼン、ジクロロメタンな
どのハロゲン化炭化水素、またその他適当な溶媒に分散
したもの、さらに必要に応じた添加剤を加えたものが挙
げられる。また、導電性ポリマーを溶媒に溶解したよう
な塗布液の例も挙げられる。さらにテフロン粉末などの
摩耗を減少させる物質を分散させてもよい。
Examples of the coating liquid for the charge transport layer include charge transport substances such as hydrazone compounds, stibene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, and triarylmethane compounds, and acrylic resins, polyester resins, Thermoplastic resin such as polyarylate resin, polyvinyl chloride resin, polycarbonate resin, polyvinyl butyral resin, polymethacrylate resin; binder resin such as polyurethane resin, phenol resin, thermosetting resin such as epoxy resin, methanol, ethanol, butanol , Alcohols such as isopropyl alcohol; ketones such as methyl ethyl ketone, acetone, methyl isobutyl ketone and cyclohexanone; ethers such as diethyl ether and tetrahydrofuran; acetic acid Esters such as chill and propyl acetate; hydrocarbons such as normal hexane, petroleum ether and toluene; halogenated hydrocarbons such as monochlorobenzene and dichloromethane, and those dispersed in other suitable solvents, and additives as necessary The thing which added. Further, an example of a coating liquid in which a conductive polymer is dissolved in a solvent is also given. Further, a substance that reduces wear such as Teflon powder may be dispersed.

【0031】さらに、本発明の製造方法に用いる塗布方
法は電子写真感光体の導電層、中間層、電荷発生層、電
荷輸送層のみならずその他層、例えばオーバーコート層
などの塗布にも応用できる。
Furthermore, the coating method used in the manufacturing method of the present invention can be applied not only to the conductive layer, intermediate layer, charge generation layer and charge transport layer of the electrophotographic photoreceptor but also to other layers such as an overcoat layer. .

【0032】本発明に用いる溶媒としては塗布液中のバ
インダ樹脂に対する溶解性、顔料に対する分散性及び塗
布性に対して良好なものを選定する。
As the solvent used in the present invention, a solvent having good solubility with respect to the binder resin in the coating liquid, dispersibility with respect to the pigment and coating property is selected.

【0033】本発明に用いる電子写真感光体用塗布液の
作成にあたっては単なる攪拌混合でも良いが必要に応じ
て、ボールミル、ロールミル、サンドミルなどの分散手
段を用いる。
In the preparation of the coating solution for the electrophotographic photoreceptor used in the present invention, simple stirring and mixing may be performed, but if necessary, a dispersing means such as a ball mill, a roll mill or a sand mill is used.

【0034】本発明で用いる塗布方法としては、浸漬塗
布法、スプレイ塗布法、ロールコータ塗布法、グラビア
コータ塗布法などが挙げられる。
Examples of the coating method used in the present invention include a dip coating method, a spray coating method, a roll coater coating method and a gravure coater coating method.

【0035】本発明の電子写真感光体の製造方法は複写
機、レーザープリンタ、LEDプリンタ、液晶シャッタ
ープリンタなどの電子写真装置一般に用いる感光ドラム
の製造に適用できる。
The method for producing an electrophotographic photosensitive member of the present invention can be applied to the production of a photosensitive drum generally used in electrophotographic apparatuses such as a copying machine, a laser printer, an LED printer and a liquid crystal shutter printer.

【0036】[0036]

【実施例】以下、具体的実施例を挙げて、本発明をさら
に詳しく説明する。 実施例1 本発明で用いる冷却装置の一例を図1に示す。接触冷却
装置1には冷却水槽2より、ポンプ3で冷却水11が供
給される。冷却水槽2は冷却機4により水温が一定にな
るように制御されている。接触冷却装置1はシリコンゴ
ムでできており、調圧バルブ5により内部圧力が調整で
きる構造となっており全体を膨張させたり、収縮させた
りできる。支持体(アルミニウムシリンダ)6は塗布完
了後、シリンダ内面に付着した塗布液を剥離して取り除
く。乾燥後支持体6はシリンダチャキング治具7、上下
伸縮アーム8、搬送ユニット9及び搬送レール10より
なる搬送手段により接触冷却装置1上に運ばれ、接触冷
却装置に挿入される。調圧バルブにより接触冷却装置内
の圧力を調整し、接触冷却装置を膨張させる。加熱冷却
が終了した後再び接触冷却装置内の圧力を調整し収縮さ
せた後、搬送手段により次の工程に搬送される。
EXAMPLES The present invention will be described in more detail with reference to specific examples. Example 1 An example of a cooling device used in the present invention is shown in FIG. Cooling water 11 is supplied to the contact cooling device 1 from a cooling water tank 2 by a pump 3. The cooling water tank 2 is controlled by the cooler 4 so that the water temperature becomes constant. The contact cooling device 1 is made of silicone rubber, and has a structure in which the internal pressure can be adjusted by the pressure regulating valve 5, so that the whole can be expanded or contracted. After the application of the support (aluminum cylinder) 6 is completed, the application liquid adhering to the inner surface of the cylinder is peeled off and removed. After drying, the support body 6 is carried onto the contact cooling device 1 by a carrying means including a cylinder chucking jig 7, a vertically extending / contracting arm 8, a carrying unit 9 and a carrying rail 10 and inserted into the contact cooling device. The pressure in the contact cooling device is adjusted by the pressure regulating valve to expand the contact cooling device. After the heating and cooling are completed, the pressure in the contact cooling device is adjusted again to shrink the contact cooling device, and then it is transferred to the next step by the transfer means.

【0037】次に、電子写真感光体を製造する。10%
の酸化アンチモンを含有する酸化錫で被覆した導電性酸
化チタン2000部、フェノール樹脂2500部、メチ
ルセルソルブ2000部、メタノール500部をφ1m
mガラスビーズを用いたサンドミル装置で2時間分散し
て導電層用塗布液を調整した。
Next, an electrophotographic photosensitive member is manufactured. 10%
1 part of 2000 parts of conductive titanium oxide coated with tin oxide containing antimony oxide, 2500 parts of phenol resin, 2000 parts of methyl cellosolve, 500 parts of methanol.
It was dispersed for 2 hours by a sand mill using m glass beads to prepare a conductive layer coating solution.

【0038】アルミニウムシリンダ(φ120mm×3
60mm,肉厚5mm)上に上記導電層用塗料を浸漬塗
布し、乾燥装置により160℃で20分乾燥した。乾燥
完了後、図1に示した冷却装置により10分間冷却し
た。冷却水の温度は15℃、冷却装置の表面温度は18
℃であり、冷却完了後の支持体の表面温度は23℃であ
った。導電層の膜厚は20μmであった。
Aluminum cylinder (φ120 mm × 3
The coating material for conductive layer was applied by dipping onto 60 mm, thickness 5 mm) and dried by a drying device at 160 ° C. for 20 minutes. After the completion of drying, it was cooled for 10 minutes by the cooling device shown in FIG. The temperature of the cooling water is 15 ° C, the surface temperature of the cooling device is 18
C., and the surface temperature of the support after completion of cooling was 23.degree. The thickness of the conductive layer was 20 μm.

【0039】次に、再沈精製したNメトキシメチル化ナ
イロン6、1000部、6,12,66,610共重合
ナイロン250部をメタノール5000部、ブタノール
5000部に溶解し、この液を開口径0.5μmのフィ
ルターで濾過し残留非溶解物、ごみ等を取り除いて中間
層用塗布液を調整した。この中間層用塗布液を導電層を
塗布したアルミニウムシリンダ上に浸漬塗布し、乾燥装
置により95℃で7分乾燥した。乾燥完了後、図1に示
した冷却装置により7分間冷却した。冷却水の温度は1
5℃、冷却装置の表面温度は18℃であり、冷却完了後
支持体の表面温度は23℃であった。中間層の膜厚は
0.50μmであった。上記の工程を繰り返し導電層及
び中間層塗布アルミニウムシリンダを連続して1000
本作成した。この1000本の塗布済アルミニウムシリ
ンダを目視検査し塗布欠陥のある不良品を分離した結
果、不良の塗布アルミニウムシリンダは31本であっ
た。
Next, re-precipitation-purified N-methoxymethylated nylon 6, 1000 parts, 250 parts of 6,12,66,610 copolymer nylon were dissolved in 5000 parts of methanol and 5000 parts of butanol, and the solution was opened to an opening diameter of 0. It was filtered with a 0.5 μm filter to remove residual non-dissolved matter, dust and the like to prepare a coating solution for the intermediate layer. This intermediate layer coating solution was dip-coated on an aluminum cylinder coated with a conductive layer and dried at 95 ° C. for 7 minutes by a drying device. After the completion of drying, it was cooled for 7 minutes by the cooling device shown in FIG. Cooling water temperature is 1
The surface temperature of the cooling device was 5 ° C, and the surface temperature of the support was 23 ° C after the completion of cooling. The thickness of the intermediate layer was 0.50 μm. The above steps are repeated to continuously apply the conductive layer and the intermediate layer-coated aluminum cylinder to 1000
I made a book. As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products having coating defects, the number of defective coated aluminum cylinders was 31.

【0040】実施例2 下記構造式ジスアゾ顔料400部、Example 2 400 parts of the following structural formula disazo pigment,

【0041】[0041]

【化1】 [Chemical 1]

【0042】ポリビニルブチラール樹脂(ブチラール化
率68%,平均分子量24000)200部、シクロヘ
キサノン5000部をφ1mmガラスビーズを用いたサ
ンドミル装置で14時間分散し、テトラヒドロフラン5
000部を加え、さらにこの液を遠心分離機(7000
rpm,30分)でビーズかす、ごみ等を取り除いた
後、さらに開口径5.0μmフィルターで濾過し残留非
溶解物、ごみ等を取り除いて上記電荷発生層用塗布液を
調整した。実施例1で中間層を塗布した良品のアルミニ
ウムシリンダ(φ120mm×360mm,肉厚5m
m)上に上記電荷発生層用塗布液を浸漬塗布し、乾燥装
置により85℃で7分乾燥した。乾燥完了後、図1に示
した冷却装置により7分間冷却した。冷却水の温度は1
5℃、冷却装置の表面温度は18℃であり、冷却完了後
支持体の表面温度は23℃であった。電荷発生層の膜厚
は0.15μmであった。上記の工程を繰り返し電荷発
生層塗布アルミニウムシリンダを連続して1000本作
成した。この1000本の塗布済アルミニウムシリンダ
を目視検査し、塗布欠陥による不良品を分離した結果、
不良の塗布アルミニウムシリンダは20本であった。
200 parts of polyvinyl butyral resin (butyralization ratio 68%, average molecular weight 24000) and 5000 parts of cyclohexanone were dispersed for 14 hours in a sand mill using φ1 mm glass beads, and tetrahydrofuran 5
000 parts were added, and this solution was further centrifuged (7000
After removing the bead residue, dust and the like at (rpm, 30 minutes), the coating liquid for the charge generation layer was prepared by further filtering with a filter having an opening diameter of 5.0 μm to remove residual non-dissolved substances and dust. Non-defective aluminum cylinder coated with the intermediate layer in Example 1 (φ120 mm × 360 mm, wall thickness 5 m
m) was coated with the above charge generation layer coating solution by dip coating, and dried at 85 ° C. for 7 minutes by a drying device. After the completion of drying, it was cooled for 7 minutes by the cooling device shown in FIG. Cooling water temperature is 1
The surface temperature of the cooling device was 5 ° C, and the surface temperature of the support was 23 ° C after the completion of cooling. The film thickness of the charge generation layer was 0.15 μm. The above steps were repeated to continuously produce 1000 charge generation layer-coated aluminum cylinders. As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products due to coating defects,
There were 20 defective coated aluminum cylinders.

【0043】実施例3 下記構造式のスチリル化合物1000部、Example 3 1000 parts of a styryl compound having the following structural formula,

【0044】[0044]

【化2】 [Chemical 2]

【0045】ポリカーボネート樹脂1000部をモノク
ロロベンゼン5000部、ジクロロメタン3000部に
溶解し、この液を開口径5.0μmのフィルターで濾過
し、残留非溶解物、ごみなどを取り除いて電荷輸送層用
塗布液を調整した。
1000 parts of a polycarbonate resin is dissolved in 5000 parts of monochlorobenzene and 3000 parts of dichloromethane, and the solution is filtered through a filter having an opening diameter of 5.0 μm to remove residual insoluble matter, dust and the like, and a charge transport layer coating solution. Was adjusted.

【0046】実施例2で電荷発生層を塗布した良品のア
ルミニウムシリンダ(φ120mm×360mm,肉厚
5mm)上にさらに上記電荷輸送層用塗布液を浸漬塗布
し、乾燥装置により130℃で40分乾燥した。
The above charge transport layer coating liquid was further applied by dip coating onto a non-defective aluminum cylinder (φ120 mm × 360 mm, wall thickness 5 mm) coated with the charge generation layer in Example 2, and dried at 130 ° C. for 40 minutes by a drying device. did.

【0047】乾燥完了後、図1に示した冷却装置により
10分間冷却した。冷却水の温度は15℃、冷却装置の
表面温度は18℃であり、冷却完了後支持体の表面温度
は23℃であった。
After the completion of drying, it was cooled for 10 minutes by the cooling device shown in FIG. The temperature of the cooling water was 15 ° C, the surface temperature of the cooling device was 18 ° C, and the surface temperature of the support was 23 ° C after the completion of cooling.

【0048】電荷輸送層の膜厚は25μmであった。上
記の工程を繰り返し電荷輸送層塗布アルミニウムシリン
ダを連続して1000本作成した。この1000本の塗
布済アルミニウムシリンダを目視検査し、塗布欠陥によ
る不良品を分離した結果、不良の塗布済アルミニウムシ
リンダは26本であった。
The film thickness of the charge transport layer was 25 μm. The above process was repeated to continuously produce 1000 charge transport layer-coated aluminum cylinders. The 1000 coated aluminum cylinders were visually inspected, and as a result of separating defective products due to coating defects, the number of defective coated aluminum cylinders was 26.

【0049】実施例4 実施例4で用いる接触冷却装置の例を図2に示す。接触
冷却装置1はシリコンゴム製で内部の冷却パイプ4によ
り表面温度が一定になるように制御されている。接触冷
却装置の外径は支持体(アルミニウムシリンダ)6の内
径と同一の寸法でできている、さらに材質がシリコンゴ
ムであり弾力性があるため支持体と良好に密着する。支
持体は塗布完了後、シリンダ内面に付着した塗布液を剥
離して取り除き、乾燥後シリンダチャキング治具7、上
下伸縮アーム8、搬送ユニット9及び搬送レール10よ
りなる搬送手段により接触冷却装置1上に運ばれ、接触
冷却装置に挿入される。冷却が終了した後、搬送手段に
より次の工程に搬送される。
Example 4 An example of the contact cooling device used in Example 4 is shown in FIG. The contact cooling device 1 is made of silicon rubber and is controlled by an internal cooling pipe 4 so that the surface temperature becomes constant. The outer diameter of the contact cooling device is the same as the inner diameter of the support (aluminum cylinder) 6, and the material is silicon rubber, which is elastic and therefore adheres well to the support. After the application of the support is completed, the coating liquid adhering to the inner surface of the cylinder is peeled off and removed, and after drying, the contact cooling device 1 is provided by a transfer means including a cylinder chucking jig 7, a vertical expansion / contraction arm 8, a transfer unit 9 and a transfer rail 10. It is carried on and inserted into the contact cooling device. After the cooling is completed, it is carried to the next step by the carrying means.

【0050】実施例3とまったく同様の電荷輸送層用塗
布液を調整した。実施例3とまったく同様の電荷発生層
塗布済アルミニウムシリンダ上に上記塗料を浸漬塗布
し、乾燥装置により130℃で40分乾燥した。
A coating liquid for charge transport layer exactly the same as in Example 3 was prepared. The above coating material was applied by dip coating onto an aluminum cylinder on which a charge generation layer had been applied, exactly as in Example 3, and dried at 130 ° C. for 40 minutes using a drying device.

【0051】乾燥完了後、図2に示した冷却装置により
10分間冷却した。冷却水の温度は12℃、冷却装置の
表面温度は18℃であり、冷却完了後支持体の表面温度
は23℃であった。
After the completion of drying, it was cooled for 10 minutes by the cooling device shown in FIG. The temperature of the cooling water was 12 ° C, the surface temperature of the cooling device was 18 ° C, and the surface temperature of the support was 23 ° C after the completion of cooling.

【0052】電荷輸送層の膜厚は25μmであった。上
記の工程を繰り返し電荷輸送層塗布アルミニウムシリン
ダを連続して1000本作成した。この1000本の塗
布済アルミニウムシリンダを目視検査し、塗布欠陥によ
る不良品を分離した結果、不良の塗布アルミニウムシリ
ンダは30本であった。
The film thickness of the charge transport layer was 25 μm. The above process was repeated to continuously produce 1000 charge transport layer-coated aluminum cylinders. The 1000 coated aluminum cylinders were visually inspected and defective products due to coating defects were separated. As a result, the number of defective coated aluminum cylinders was 30.

【0053】比較例1 本比較例で用いる冷却装置を図3に示す。乾燥後の支持
体6はシリンダチャキング治具7、上下伸縮アーム8、
搬送ユニット9及び搬送レール10よりなる搬送手段に
より送風冷却装置(送風器12)の正面に運ばれ、冷却
された後、搬送手段により次の工程に搬送される。
Comparative Example 1 A cooling device used in this comparative example is shown in FIG. The support 6 after drying includes a cylinder chucking jig 7, an up-and-down telescopic arm 8,
The transport unit 9 and the transport rail 10 transport the transport unit 9 to the front of the blower cooling device (blower 12), and after cooling, the transport unit transports it to the next step.

【0054】実施例1とまったく同様の導電層用塗布
液、中間層用塗布液を調整した。実施例1とまったく同
様のアルミニウムシリンダ上に導電層用塗料を浸漬塗布
し、乾燥装置により160℃で20分乾燥した。乾燥完
了後、図3に示した送風冷却装置により支持体の表面温
度が23℃になるまで冷却した。冷却には15分間を要
した。また、導電層の膜厚は20μmであった。
The same conductive layer coating solution and intermediate layer coating solution as in Example 1 were prepared. The paint for the conductive layer was applied by dip coating on an aluminum cylinder exactly the same as in Example 1, and dried at 160 ° C. for 20 minutes by a dryer. After the completion of the drying, the support was cooled by the blower cooling device shown in FIG. 3 until the surface temperature of the support became 23 ° C. It took 15 minutes to cool. The film thickness of the conductive layer was 20 μm.

【0055】この導電層塗布済アルミニウムシリンダ上
に中間層用塗料を浸漬塗布し、乾燥装置により95℃で
7分乾燥した。乾燥完了後、図3に示した送風冷却装置
により基体の表面温度が23℃になるまで冷却した。冷
却には10分間を要した。また、中間層の膜厚は0.5
μmであった。
The paint for the intermediate layer was dip-coated on the aluminum cylinder coated with the conductive layer, and dried at 95 ° C. for 7 minutes by a dryer. After the completion of drying, the substrate was cooled by the air blow cooling device shown in FIG. 3 until the surface temperature of the substrate reached 23 ° C. It took 10 minutes to cool. The thickness of the intermediate layer is 0.5
was μm.

【0056】上記の工程を繰り返し導電層、中間層塗布
アルミニウムシリンダを連続して1000本作成した。
この1000本の塗布済アルミニウムシリンダを目視検
査し、塗布欠陥による不良品を分離した結果、不良の塗
布アルミニウムシリンダは93本であった。
The above steps were repeated to continuously produce 1000 conductive layer and intermediate layer coated aluminum cylinders.
The 1000 coated aluminum cylinders were visually inspected, and as a result of separating defective products due to coating defects, the number of defective coated aluminum cylinders was 93.

【0057】不良の導電層塗布アルミニウムシリンダを
観察した結果、導電層用塗布液の硬化した粉塵が中間層
内部に見られた。不良品は連続塗布の後半以降に多発し
ており、連続塗布により乾燥工程で生じた導電層用塗布
液が硬化した粉塵が冷却中に塗布面に付着したものであ
るといえる。
As a result of observing a defective aluminum cylinder coated with a conductive layer, hardened dust of the coating liquid for a conductive layer was found inside the intermediate layer. Defective products frequently occurred after the latter half of continuous coating, and it can be said that the dust produced by the continuous coating in the drying step, which hardens the conductive layer coating liquid, adheres to the coating surface during cooling.

【0058】比較例2 実施例2とまったく同様の電荷発生層用塗布液を調整し
た。比較例1で作成された良品の中間層塗布済アルミニ
ウムシリンダ上にさらに上記電荷発生層用塗料を浸漬塗
布し、乾燥装置により85℃で7分乾燥した。
Comparative Example 2 The same charge generation layer coating solution as in Example 2 was prepared. The above charge generation layer coating material was further applied by dip coating onto the non-defective aluminum cylinder coated with the intermediate layer prepared in Comparative Example 1 and dried at 85 ° C. for 7 minutes by a drying device.

【0059】乾燥完了後、図3に示した送風冷却装置に
より支持体の表面温度が23℃になるまで冷却した。1
0分間を要した。電荷発生層の膜厚は0.15μmであ
った。上記の工程を繰り返し電荷発生層塗布アルミニウ
ムシリンダを連続して1000本作成した。この100
0本の塗布済アルミニウムシリンダを目視検査し塗布欠
陥による不良品を分離した結果、不良の塗布アルミニウ
ムシリンダは43本であった。不良の電荷発生層塗布ア
ルミニウムシリンダを観察した結果、電荷発生層内部に
粉塵が見られた。
After the completion of the drying, the air was cooled by the air blow cooling device shown in FIG. 3 until the surface temperature of the support became 23 ° C. 1
It took 0 minutes. The film thickness of the charge generation layer was 0.15 μm. The above steps were repeated to continuously produce 1000 charge generation layer-coated aluminum cylinders. This 100
As a result of visually inspecting 0 coated aluminum cylinders and separating defective products due to coating defects, the number of defective coated aluminum cylinders was 43. As a result of observing the defective charge generation layer-coated aluminum cylinder, dust was found inside the charge generation layer.

【0060】比較例3 実施例3とまったく同様の電荷輸送層用塗布液を調整し
た。比較例2で作成された良品の電荷発生層塗布済アル
ミニウムシリンダ上にさらに上記電荷輸送層用塗料を浸
漬塗布し、乾燥装置により130℃で40分乾燥した。
Comparative Example 3 A coating liquid for charge transport layer exactly the same as in Example 3 was prepared. The above charge transport layer coating material was further applied by dip coating onto the good quality charge generation layer coated aluminum cylinder prepared in Comparative Example 2 and dried at 130 ° C. for 40 minutes by a drying device.

【0061】乾燥完了後、図3に示した送風冷却装置に
より支持体の表面温度が23℃になるまで冷却した。1
2分間を要した。電荷輸送層の膜厚は25μmであっ
た。上記の工程を繰り返し電荷輸送層塗布アルミニウム
シリンダを連続して1000本作成した。この1000
本の塗布済アルミニウムシリンダを目視検査し電荷輸送
層内部に粉塵が見られる不良品を分離した結果、不良の
塗布アルミニウムシリンダは50本であった。
After the completion of the drying, the air was cooled by the air blow cooling device shown in FIG. 3 until the surface temperature of the support became 23 ° C. 1
It took 2 minutes. The film thickness of the charge transport layer was 25 μm. The above process was repeated to continuously produce 1000 charge transport layer-coated aluminum cylinders. This 1000
As a result of visually inspecting the coated aluminum cylinders of this book and separating defective products in which dust was seen inside the charge transport layer, 50 defective coated aluminum cylinders were found.

【0062】比較例4 実施例3とまったく同様の電荷輸送層用塗布液を調整し
た。比較例2で作成された良品の電荷発生層塗布済アル
ミニウムシリンダ上にさらに上記電荷輸送層用塗料を浸
漬塗布し、乾燥装置により130℃で40分乾燥した。
Comparative Example 4 A coating liquid for charge transport layer exactly the same as in Example 3 was prepared. The above charge transport layer coating material was further applied by dip coating onto the good quality charge generation layer coated aluminum cylinder prepared in Comparative Example 2 and dried at 130 ° C. for 40 minutes by a drying device.

【0063】乾燥完了後、自然冷却により支持体の表面
温度が23℃になるまで冷却した。冷却には22分間を
要した。また、電荷輸送層の膜厚は25μmであった。
上記の工程を繰り返し電荷輸送層塗布アルミニウムシリ
ンダを連続して1000本作成した。この1000本の
塗布済アルミニウムシリンダを目視検査し電荷輸送層内
部に粉塵が見られる不良品を分離した結果、不良の塗布
アルミニウムシリンダは40本であった。
After the completion of drying, the substrate was cooled by natural cooling until the surface temperature of the support reached 23 ° C. It took 22 minutes to cool. The thickness of the charge transport layer was 25 μm.
The above process was repeated to continuously produce 1000 charge transport layer-coated aluminum cylinders. As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products in which dust was found inside the charge transport layer, 40 defective coated aluminum cylinders were found.

【0064】〔実機評価〕実施例3及び4、比較例3及
び4で作成された電子写真感光体を帯電、露光、現像、
転写及びクリーニングのプロセスを0.8秒サイクルで
繰り返す複写機に取りつけた。結果、実施例3及び4は
画像欠陥のない均一な高品位の画像が得られた。比較例
3及び4では感光層中の粉塵による画像欠陥が見られ
た。
[Evaluation of Actual Machine] The electrophotographic photoreceptors prepared in Examples 3 and 4 and Comparative Examples 3 and 4 were charged, exposed, and developed.
The transfer and cleaning process was mounted on a copier, which repeats every 0.8 seconds. As a result, in Examples 3 and 4, uniform high-quality images without image defects were obtained. In Comparative Examples 3 and 4, image defects due to dust in the photosensitive layer were found.

【0065】実施例1〜4、比較例1〜4の結果を表1
にまとめた。実施例1と比較例1、実施例2と比較例
2、実施例3及び4と比較例3及び4を比較すると接触
冷却の場合は不良率が低いが、送風冷却及び自然冷却の
場合は不良率が高い。また、画像評価の結果からも接触
冷却は画像欠陥が少なく良好な画像が得られた。
The results of Examples 1 to 4 and Comparative Examples 1 to 4 are shown in Table 1.
Summarized in. Comparing Example 1 with Comparative Example 1, Example 2 with Comparative Example 2, and Examples 3 and 4 with Comparative Examples 3 and 4, the defective rate is low in the case of contact cooling, but defective in the case of blast cooling and natural cooling. The rate is high. Also, from the result of image evaluation, contact cooling produces a good image with few image defects.

【0066】 [0066]

【0067】実施例5 本発明で用いる乾燥装置の一例を図4に示す。接触加熱
装置21にはオイル加熱槽22よりポンプ23で加熱さ
れた循環オイル31が供給される。オイル加熱槽22は
電熱ヒータ24によりオイルの温度が一定になるように
制御されている。接触加熱装置21はシリコンゴムでで
きており、調圧バルブ25により内部圧力が調整できる
構造となっており全体を膨張させたり、収縮させたりで
きる。支持体(アルミニウムシリンダ)26は塗布完了
後、シリンダ内面に付着した塗布液を剥離して取り除
く。支持体26はシリンダチャキング治具27、上下伸
縮アーム28、搬送ユニット29及び搬送レール30よ
りなる搬送手段により接触加熱装置21上に運ばれ、接
触加熱装置に挿入される。調圧バルブにより接触加熱装
置内の圧力を調整し、接触加熱装置を膨張させる。加熱
乾燥が終了した後再び接触加熱装置内の圧力を調整し収
縮させた後、搬送手段により次の工程に搬送される。な
お、装置全体はクラス1000のクリーンルーム内に設
置した。
Example 5 FIG. 4 shows an example of a drying apparatus used in the present invention. Circulating oil 31 heated by a pump 23 is supplied from an oil heating tank 22 to the contact heating device 21. The oil heating tank 22 is controlled by an electric heater 24 so that the oil temperature is constant. The contact heating device 21 is made of silicone rubber and has a structure in which the internal pressure can be adjusted by the pressure regulating valve 25, and the whole can be expanded or contracted. After the application of the support (aluminum cylinder) 26 is completed, the application liquid adhering to the inner surface of the cylinder is peeled off and removed. The supporting body 26 is carried onto the contact heating device 21 by a carrying means including a cylinder chucking jig 27, an up-and-down telescopic arm 28, a carrying unit 29, and a carrying rail 30, and is inserted into the contact heating device. The pressure inside the contact heating device is adjusted by the pressure regulating valve to expand the contact heating device. After the heating and drying is completed, the pressure in the contact heating device is adjusted again to contract the pressure, and then it is conveyed to the next step by the conveying means. The entire apparatus was installed in a class 1000 clean room.

【0068】次に、電子写真感光体を製造する。10%
の酸化アンチモンを含有する酸化錫で被覆した導電性酸
化チタン2000部、フェノール樹脂2500部、メチ
ルセルソルブ2000部、メタノール500部をφ1m
mガラスビーズを用いたサンドミル装置で2時間分散し
て導電層用塗布液を調整した。
Next, an electrophotographic photosensitive member is manufactured. 10%
1 part of 2000 parts of conductive titanium oxide coated with tin oxide containing antimony oxide, 2500 parts of phenol resin, 2000 parts of methyl cellosolve, 500 parts of methanol.
It was dispersed for 2 hours by a sand mill using m glass beads to prepare a conductive layer coating solution.

【0069】アルミニウムシリンダ(φ120mm×3
60mm,肉厚5mm)上に上記塗料を浸漬塗布し、さ
らにシリンダ内面に付着した塗布液を剥離し取り除いた
後、図4に示した乾燥装置により160℃で15分乾燥
した。導電層の膜厚は20μmであった。
Aluminum cylinder (φ120 mm × 3
(60 mm, thickness 5 mm), the above coating composition was applied by dipping, and the coating liquid adhering to the inner surface of the cylinder was peeled off and removed, and then dried at 160 ° C. for 15 minutes by the drying device shown in FIG. The thickness of the conductive layer was 20 μm.

【0070】上記の工程を繰り返し導電層塗布アルミニ
ウムシリンダを連続して1000本作成した。
The above steps were repeated to continuously produce 1000 conductive layer-coated aluminum cylinders.

【0071】この1000本の塗布済アルミニウムシリ
ンダを目視検査し導電層表面に粉塵が付着した不良品を
分離した結果、不良の塗布アルミニウムシリンダは32
本であった。
As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products having dust adhering to the surface of the conductive layer, 32 defective coated aluminum cylinders were found.
It was a book.

【0072】実施例6 再沈精製したNメトキシメチル化ナイロン6、1000
部、6,12,66,610共重合ナイロン250部を
メタノール5000部、ブタノール5000部に溶解
し、中間層用塗布液を調整した。さらにこの液を開口径
0.5μmのフィルターで残留非溶解物、ごみ等を取り
除いた。実施例5で導電層を塗布した良品のアルミニウ
ムシリンダ(φ120mm×360mm,肉厚5mm)
上にさらに上記塗料を浸漬塗布し、シリンダ内面に付着
した塗布液を剥離し取り除いた後、図4に示した乾燥装
置により95℃で7分乾燥した。中間層の膜厚は0.5
0μmであった。上記の工程を繰り返し中間層塗布アル
ミニウムシリンダを連続して1000本作成した。この
1000本の塗布済アルミニウムシリンダを目視検査し
中間層表面に粉塵が付着した不良品を分離した結果、不
良のアルミニウムシリンダは3本であった。
Example 6 N-methoxymethylated nylon 6,1000 reprecipitated and purified
Parts, 250 parts of 6,12,66,610 copolymer nylon were dissolved in 5000 parts of methanol and 5000 parts of butanol to prepare a coating solution for the intermediate layer. Further, this solution was filtered through a filter having an opening diameter of 0.5 μm to remove residual non-dissolved material, dust and the like. Non-defective aluminum cylinder coated with a conductive layer in Example 5 (φ120 mm × 360 mm, wall thickness 5 mm)
The above coating material was further applied by dipping on the coating liquid, and the coating liquid adhering to the inner surface of the cylinder was peeled off and removed, and then dried at 95 ° C. for 7 minutes by the drying device shown in FIG. The thickness of the intermediate layer is 0.5
It was 0 μm. The above process was repeated to continuously produce 1000 intermediate layer coated aluminum cylinders. As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products in which dust adhered to the surface of the intermediate layer, there were 3 defective aluminum cylinders.

【0073】実施例7 下記構造式ジスアゾ顔料400部、Example 7 400 parts of the following structural formula disazo pigment,

【0074】[0074]

【化3】 [Chemical 3]

【0075】ポリビニルブチラール樹脂(ブチラール化
率68%,平均分子量24000)200部、シクロヘ
キサノン5000部をφ1mmガラスビーズを用いたサ
ンドミル装置で24時間分散しさらにテトラヒドロフラ
ン5000部を加え電荷発生層用塗布液を調整した。さ
らにこの液を遠心分離機(7000rpm,30分)で
ビーズかす、ごみ等を取り除いた。
200 parts of polyvinyl butyral resin (butyralization rate 68%, average molecular weight 24000) and 5000 parts of cyclohexanone were dispersed in a sand mill using φ1 mm glass beads for 24 hours, and further 5000 parts of tetrahydrofuran were added to obtain a coating liquid for charge generation layer. It was adjusted. Further, the liquid was subjected to centrifugal separation (7,000 rpm, 30 minutes) to remove beads, dust and the like.

【0076】実施例6で中間層を塗布した良品のアルミ
ニウムシリンダ(φ120mm×360mm,肉厚5m
m)上に上記塗料を浸漬塗布し、シリンダ内面に付着し
た塗布液を剥離し取り除いた後、図4に示した乾燥装置
により85℃で7分乾燥した。電荷発生層の膜厚は0.
15μmであった。上記の工程を繰り返し電荷発生層塗
布アルミニウムシリンダを連続して1000本作成し
た。この1000本の塗布済アルミニウムシリンダを目
視検査し電荷発生層表面に粉塵が付着した不良品を分離
した結果、不良の塗布アルミニウムシリンダは2本であ
った。
A non-defective aluminum cylinder coated with the intermediate layer in Example 6 (φ120 mm × 360 mm, wall thickness 5 m)
m) was coated with the above coating by dipping, the coating liquid adhering to the inner surface of the cylinder was peeled off and removed, and then dried at 85 ° C. for 7 minutes by the drying device shown in FIG. The thickness of the charge generation layer is 0.
It was 15 μm. The above steps were repeated to continuously produce 1000 charge generation layer-coated aluminum cylinders. As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products in which dust adhered to the surface of the charge generation layer, the number of defective coated aluminum cylinders was 2.

【0077】実施例8 下記構造式のスチリル化合物1000部、Example 8 1000 parts of a styryl compound having the following structural formula,

【0078】[0078]

【化4】 [Chemical 4]

【0079】ポリカーボネート樹脂1000部をモノク
ロロベンゼン5000部、ジクロロメタン3000部に
溶解し、電荷輸送層用塗布液を調整した。さらにこの液
を開口径1.0μmのフィルターで濾過し、残留非溶解
物、ごみなどを取り除いた。
1000 parts of a polycarbonate resin was dissolved in 5000 parts of monochlorobenzene and 3000 parts of dichloromethane to prepare a charge transport layer coating solution. Further, this liquid was filtered with a filter having an opening diameter of 1.0 μm to remove residual non-dissolved matter, dust and the like.

【0080】実施例7で電荷発生層を塗布した良品のア
ルミニウムシリンダ(φ120mm×360mm,肉厚
5mm)上にさらに上記塗料を浸漬塗布し、シリンダ内
面に付着した塗布液を剥離し取り除いた後、図4に示し
た乾燥装置により130℃で40分乾燥した。電荷輸送
層の膜厚は25μmであった。上記の工程を繰り返し電
荷輸送層塗布アルミニウムシリンダを連続して1000
本作成した。この1000本の塗布済アルミニウムシリ
ンダを目視検査し表面に粉塵が付着した不良品を分離し
た結果、不良の塗布済アルミニウムシリンダは16本で
あった。
The above coating material was further applied by dip coating on a good quality aluminum cylinder (φ120 mm × 360 mm, wall thickness 5 mm) coated with the charge generation layer in Example 7, and the coating liquid adhering to the inner surface of the cylinder was peeled off and removed. It dried at 130 degreeC for 40 minutes by the drying device shown in FIG. The film thickness of the charge transport layer was 25 μm. The above steps are repeated to continuously charge the aluminum cylinder coated with the charge transport layer to 1000 times.
I made a book. As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products with dust adhering to the surface, there were 16 defective coated aluminum cylinders.

【0081】実施例9 実施例9で用いる接触加熱乾燥装置の例を図5に示す。
接触加熱装置21はシリコンゴム製で内部の電熱ヒータ
24により表面温度が一定になるように制御されてい
る。接触加熱装置の外径は支持体(アルミニウムシリン
ダ)26の内径と同一の寸法でできている、さらに材質
がシリコンゴムであり弾力性があるため支持体と良好に
密着する。支持体は塗布完了後、シリンダ内面に付着し
た塗布液を剥離して取り除き、支持体はシリンダチャキ
ング治具27、上下伸縮アーム28、搬送ユニット29
及び搬送レール30よりなる搬送手段によりなる接触加
熱装置上に運ばれ、接触加熱装置に挿入される。加熱乾
燥が終了した後、搬送手段により次の工程に搬送され
る。
Example 9 An example of the contact heating and drying apparatus used in Example 9 is shown in FIG.
The contact heating device 21 is made of silicon rubber and is controlled by an internal electric heater 24 so that the surface temperature becomes constant. The outer diameter of the contact heating device has the same size as the inner diameter of the support (aluminum cylinder) 26. Further, since the material is silicon rubber and it has elasticity, it is in good contact with the support. After the coating is completed, the support peels off the coating liquid adhering to the inner surface of the cylinder, and the support is a cylinder chucking jig 27, an up-and-down telescopic arm 28, and a transport unit 29.
Then, it is carried on a contact heating device composed of a carrier means composed of a carrier rail 30 and inserted into the contact heating device. After the heating and drying is completed, it is carried to the next step by the carrying means.

【0082】実施例8とまったく同様の電荷輸送層用塗
布液を調整した。実施例8とまったく同様の電荷発生層
塗布済アルミニウムシリンダ上に上記塗料を浸漬塗布
し、さらにシリンダ内面に付着した塗布液を剥離し取り
除いた。図5に示した接触乾燥装置により130℃で1
5分乾燥した。電荷輸送層の膜厚は25μmであった。
上記の工程を繰り返し電荷輸送層塗布アルミニウムシリ
ンダを連続して1000本作成した。この1000本の
塗布済アルミニウムシリンダを目視検査し電荷輸送層表
面に粉塵が付着した不良品を分離した結果、不良の塗布
アルミニウムシリンダは15本であった。
A coating liquid for charge transport layer exactly the same as in Example 8 was prepared. The above paint was applied by dip coating onto an aluminum cylinder on which a charge generation layer had been coated, exactly as in Example 8, and the coating liquid adhering to the inner surface of the cylinder was peeled off and removed. 1 at 130 ° C. by the contact dryer shown in FIG.
It was dried for 5 minutes. The film thickness of the charge transport layer was 25 μm.
The above process was repeated to continuously produce 1000 charge transport layer-coated aluminum cylinders. As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products in which dust adhered to the surface of the charge transport layer, there were 15 defective coated aluminum cylinders.

【0083】比較例5 実施例5とまったく同様の導電層用塗布液を調整した。
実施例5とまったく同様のアルミニウムシリンダ上に上
記用塗料を浸漬塗布し、さらにシリンダ内面に付着した
塗布液を剥離し取り除いた後、熱風乾燥機により160
℃で20分乾燥した。導電層の膜厚は20μmであっ
た。上記の工程を繰り返し導電層塗布アルミニウムシリ
ンダを連続して1000本作成した。この1000本の
塗布済アルミニウムシリンダを目視検査し導電層表面に
粉塵が付着した不良品を分離した結果、不良の塗布アル
ミニウムシリンダは84本であった。
Comparative Example 5 A coating solution for the conductive layer was prepared in exactly the same manner as in Example 5.
The above coating material was applied by dip coating on an aluminum cylinder exactly the same as in Example 5, and the coating liquid adhering to the inner surface of the cylinder was peeled off and removed.
It dried at 20 degreeC for 20 minutes. The thickness of the conductive layer was 20 μm. The above process was repeated to continuously produce 1000 conductive layer-coated aluminum cylinders. As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products in which dust adhered to the conductive layer surface, there were 84 defective coated aluminum cylinders.

【0084】不良の導電層塗布アルミニウムシリンダの
表面を観察した結果、導電層用塗布液の硬化した粉塵が
付着していた。不良品は連続塗布の後半以降に多発して
おり、連続塗布により乾燥工程で生じた導電層用塗布液
が硬化した粉塵が蓄積し、未乾燥の塗布面に付着したも
のであるといえる。なお実施例5と比較例5では乾燥時
間に差があるが接触加熱の方が昇温速度が速いため乾燥
硬化状態としては同等であった。
As a result of observing the surface of the defective aluminum cylinder coated with the conductive layer, hardened dust of the coating liquid for the conductive layer adhered. Defective products frequently occurred after the latter half of continuous coating, and it can be said that dust that hardens the conductive layer coating liquid generated in the drying step due to continuous coating accumulates and adheres to the undried coating surface. Although there was a difference in the drying time between Example 5 and Comparative Example 5, the heating rate was higher in the contact heating, so that the dry curing state was the same.

【0085】比較例6 実施例6とまったく同様の中間層用塗布液を調整した。
実施例6とまったく同様の導電層塗布済アルミニウムシ
リンダ上に上記中間層用塗料を浸漬塗布し、さらにシリ
ンダ内面に付着した塗布液を剥離し取り除いた後、熱風
乾燥機により95℃で9分乾燥した。中間層の膜厚は
0.5μmであった。上記の工程を繰り返し中間層塗布
アルミニウムシリンダを連続して1000本作成した。
この1000本の塗布済アルミニウムシリンダを目視検
査し中間層表面に粉塵が付着した不良品を分離した結
果、不良の塗布アルミニウムシリンダは35本であっ
た。
Comparative Example 6 A coating solution for the intermediate layer was prepared in exactly the same manner as in Example 6.
The above coating for the intermediate layer was applied by dip coating on an aluminum cylinder on which a conductive layer had been coated in exactly the same manner as in Example 6, and the coating liquid adhering to the inner surface of the cylinder was peeled off and removed, and then dried at 95 ° C. for 9 minutes with a hot air dryer. did. The thickness of the intermediate layer was 0.5 μm. The above process was repeated to continuously produce 1000 intermediate layer coated aluminum cylinders.
As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products with dust adhering to the surface of the intermediate layer, there were 35 defective coated aluminum cylinders.

【0086】不良の中間層塗布アルミニウムシリンダの
表面を観察した結果、中間用塗布液の乾燥した粉塵が付
着していた。なお実施例6と比較例6では乾燥時間に差
があるが接触加熱の方が昇温速度が速いため乾燥状態と
しては同等であった。
As a result of observing the surface of the defective intermediate layer-coated aluminum cylinder, the dry dust of the intermediate coating solution was found to have adhered. Although there was a difference in the drying time between Example 6 and Comparative Example 6, the heating state was higher in the contact heating, so that the drying state was the same.

【0087】比較例7 実施例7とまったく同様の電荷発生層用塗布液を調整し
た。実施例6とまったく同様の中間層塗布済アルミニウ
ムシリンダ上にさらに上記電荷発生層用塗料を浸漬塗布
し、シリンダ内面に付着した塗布液を剥離し取り除いた
後、熱風乾燥機により85℃で9分乾燥した。電荷発生
層の膜厚は0.15μmであった。上記の工程を繰り返
し電荷発生層塗布アルミニウムシリンダを連続して10
00本作成した。この1000本の塗布済アルミニウム
シリンダを目視検査し電荷発生層表面に粉塵が付着した
不良品を分離した結果、不良の塗布アルミニウムシリン
ダは26本であった。不良の電荷発生層塗布アルミニウ
ムシリンダの表面を観察した結果、電荷発生用塗布液の
乾燥した粉塵が付着していた。なお実施例7と比較例7
では乾燥時間に差があるが接触加熱の方が昇温速度が速
いため乾燥状態としては同等であった。
Comparative Example 7 The same charge generation layer coating solution as in Example 7 was prepared. The above charge generation layer coating material was further applied by dip coating onto an aluminum cylinder to which the intermediate layer had been applied exactly as in Example 6, and the coating liquid adhering to the inner surface of the cylinder was peeled off and removed, and then the hot air drier was used for 9 minutes at 85 ° C. Dried. The film thickness of the charge generation layer was 0.15 μm. The above process is repeated to continuously charge the aluminum cylinder coated with the charge generation layer 10 times.
I made 00 books. As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products in which dust adhered to the surface of the charge generation layer, the number of defective coated aluminum cylinders was 26. As a result of observing the surface of the defective charge generation layer-coated aluminum cylinder, dry dust of the charge generation coating liquid was attached. In addition, Example 7 and Comparative Example 7
Although there was a difference in the drying time, contact heating was the same in the dry state because the temperature rising rate was faster.

【0088】比較例8 実施例8とまったく同様の電荷輸送層用塗布液を調整し
た。実施例8とまったく同様の電荷発生層塗布済アルミ
ニウムシリンダ上にさらに上記電荷輸送層用塗料を浸漬
塗布し、シリンダ内面に付着した塗布液を剥離し取り除
いた後、熱風乾燥機により130℃で45分乾燥した。
電荷輸送層の膜厚は25μmであった。上記の工程を繰
り返し電荷輸送層塗布アルミニウムシリンダを連続して
1000本作成した。この1000本の塗布済アルミニ
ウムシリンダを目視検査し電荷輸送層表面に粉塵が付着
した不良品を分離した結果、不良の塗布アルミニウムシ
リンダは50本であった。不良の電荷輸送層塗布アルミ
ニウムシリンダの表面を観察した結果、電荷輸送用塗布
液の乾燥した粉塵が付着していた。なお実施例8と比較
例8では乾燥時間に差があるが接触加熱の方が昇温速度
が速いため乾燥状態としては同等であった。
Comparative Example 8 A coating liquid for charge transport layer exactly the same as in Example 8 was prepared. The above charge transporting layer coating material was applied by dip coating on an aluminum cylinder on which a charge generating layer had been coated in exactly the same manner as in Example 8, and the coating liquid adhering to the inner surface of the cylinder was peeled off and removed. Min dried.
The film thickness of the charge transport layer was 25 μm. The above process was repeated to continuously produce 1000 charge transport layer-coated aluminum cylinders. As a result of visually inspecting these 1000 coated aluminum cylinders and separating defective products in which dust adhered to the surface of the charge transport layer, 50 defective coated aluminum cylinders were found. As a result of observing the surface of the defective charge transport layer-coated aluminum cylinder, dry dust of the charge transport coating solution was attached. In addition, although there is a difference in the drying time between Example 8 and Comparative Example 8, the heating rate was higher in the contact heating, so that the drying state was the same.

【0089】比較例9 実施例8とまったく同様の電荷輸送層用塗布液を調整し
た。実施例8とまったく同様の電荷発生層塗布済アルミ
ニウムシリンダ上に上記塗料を浸漬塗布し、さらにシリ
ンダ内面に付着した塗布液を剥離し取り除いた後、赤外
線乾燥機により160℃で15分乾燥した。なお、アル
ミニウムシリンダは乾燥機内において5rpm回転させ
て表面温度が均一となるようにした。
Comparative Example 9 A coating liquid for charge transport layer exactly the same as in Example 8 was prepared. The above coating material was applied by dip coating on an aluminum cylinder on which a charge generation layer had been coated, exactly as in Example 8, and the coating liquid adhering to the inner surface of the cylinder was peeled off and removed, and then dried at 160 ° C. for 15 minutes by an infrared dryer. The aluminum cylinder was rotated at 5 rpm in the dryer so that the surface temperature became uniform.

【0090】電荷輸送層の膜厚は25μmであった。上
記の工程を繰り返し電荷輸送層塗布アルミニウムシリン
ダを連続して1000本作成した。この1000本の塗
布済アルミニウムシリンダを目視検査し電荷輸送層表面
に粉塵が付着した不良品を分離した結果、不良の塗布済
アルミニウムシリンダは98本であった。塗布不良のア
ルミニウムシリンダの表面を観察した結果、電荷輸送層
用塗布液の硬化した粉塵が付着していた。
The thickness of the charge transport layer was 25 μm. The above process was repeated to continuously produce 1000 charge transport layer-coated aluminum cylinders. As a result of visual inspection of these 1000 coated aluminum cylinders and separating defective products in which dust adhered to the surface of the charge transport layer, the number of defective coated aluminum cylinders was 98. As a result of observing the surface of the aluminum cylinder in which the coating was poor, hardened dust of the coating liquid for the charge transport layer adhered.

【0091】〔実機評価〕実施例8及び9、比較例8及
び9で作成された電子写真感光体を帯電、露光、現像、
転写及びクリーニングのプロセスを0.8秒サイクルで
繰り返す複写機に取りつけた。結果、実施例8及び9は
画像欠陥のない均一な高品位の画像が得られた。電荷輸
送層の膜厚を測定した結果は画像域の上部、下部とも2
5μmであった。比較例8及び9ではハーフトーン画像
の上部と下部に濃度差があり、電荷輸送層の膜厚を測定
した結果は画像域の下部は25μmであったが上部は比
較例8では22μm、比較例9では20μmであった。
[Evaluation of Actual Machine] The electrophotographic photosensitive members prepared in Examples 8 and 9 and Comparative Examples 8 and 9 were charged, exposed, and developed.
The transfer and cleaning process was mounted on a copier, which repeats every 0.8 seconds. As a result, in Examples 8 and 9, uniform high-quality images without image defects were obtained. The result of measuring the thickness of the charge transport layer is 2 for both the upper and lower parts of the image area.
It was 5 μm. In Comparative Examples 8 and 9, there was a difference in density between the upper part and the lower part of the halftone image, and the result of measuring the film thickness of the charge transport layer was 25 μm in the lower part of the image area, but the upper part was 22 μm in Comparative Example 8, and the comparative example. In No. 9, it was 20 μm.

【0092】実施例5〜9、比較例5〜9の結果を表2
にまとめた。実施例5と比較例5、実施例6と比較例
6、実施例7と比較例7、実施例8及び9と比較例8及
び9を比較すると接触加熱乾燥の場合は不良率が低い
が、熱風加熱乾燥及び赤外線加熱乾燥の場合は不良率が
高い。また、画像評価の結果からも接触加熱乾燥はハー
フトーン画像の上部と下部に濃度差が少なく良好な画像
が得られた。
The results of Examples 5-9 and Comparative Examples 5-9 are shown in Table 2.
Summarized in. Comparing Example 5 with Comparative Example 5, Example 6 with Comparative Example 6, Example 7 with Comparative Example 7, and Examples 8 and 9 with Comparative Examples 8 and 9, the contact heating drying has a low defect rate, In the case of hot air drying and infrared heating drying, the defect rate is high. Also, from the result of image evaluation, contact heating drying gave a good image with little difference in density between the upper part and the lower part of the halftone image.

【0093】 [0093]

【0094】[0094]

【発明の効果】以上から明らかなように、支持体に冷却
した装置を接触させて支持体を冷却することにより、冷
却時の粉塵の付着が少なく、画像欠陥のない、高画質が
得られる電子写真感光体を良好な収率で製造することが
できる。また、冷却時間も短縮され生産の効率も改善さ
れる。
As is clear from the above, by cooling the support by bringing the cooled device into contact with the support, it is possible to obtain a high quality image with less dust deposition and less image defects during cooling. The photographic photoreceptor can be produced in good yield. Also, the cooling time is shortened and the production efficiency is improved.

【0095】また、支持体に加熱した装置を接触させて
支持体を加熱乾燥することにより、乾燥時の粉塵の付着
が少なく、塗布膜の厚みが均一で、塗布欠陥、画像欠陥
のない、高画質が得られる電子写真感光体を良好な収率
で製造することができる。更に、乾燥時間も短縮され生
産の効率も改善される。
By heating and drying the support by bringing the heated device into contact with the support, adhesion of dust during drying is small, the thickness of the coating film is uniform, and there are no coating defects or image defects and a high level. It is possible to manufacture an electrophotographic photosensitive member that can obtain an image quality with a good yield. Further, the drying time is shortened and the production efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法で用いる接触冷却装置の一例
の概略構成図である。
FIG. 1 is a schematic configuration diagram of an example of a contact cooling device used in a manufacturing method of the present invention.

【図2】本発明の製造方法で用いる接触冷却装置の一例
の概略構成図である。
FIG. 2 is a schematic configuration diagram of an example of a contact cooling device used in the manufacturing method of the present invention.

【図3】従来の送風冷却装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a conventional blast cooling device.

【図4】本発明の製造方法で用いる接触加熱装置の一例
の概略構成図である。
FIG. 4 is a schematic configuration diagram of an example of a contact heating device used in the manufacturing method of the present invention.

【図5】本発明の製造方法で用いる接触加熱装置の一例
の概略構成図である。
FIG. 5 is a schematic configuration diagram of an example of a contact heating device used in the manufacturing method of the present invention.

【符号の説明】 1 接触冷却装置 2 冷却水槽 3 ポンプ 4 冷却機(冷却パイプ) 5 調圧バルブ 6 支持体(アルミニウムシリンダ) 7 シリンダチャキング治具 8 上下伸縮アーム 9 搬送ユニット 10 搬送レール 11 冷却水 12 送風機 21 接触加熱装置 22 オイル加熱槽 23 ポンプ 24 電熱ヒータ 25 調圧バルブ 26 支持体(アルミニウムシリンダ) 27 シリンダチャキング治具 28 上下伸縮アーム 29 搬送ユニット 30 搬送レール 31 循環オイル[Explanation of reference symbols] 1 contact cooling device 2 cooling water tank 3 pump 4 cooler (cooling pipe) 5 pressure regulating valve 6 support (aluminum cylinder) 7 cylinder chucking jig 8 up-and-down telescopic arm 9 transfer unit 10 transfer rail 11 cooling Water 12 Blower 21 Contact heating device 22 Oil heating tank 23 Pump 24 Electric heater 25 Pressure regulating valve 26 Support (aluminum cylinder) 27 Cylinder chucking jig 28 Vertical expansion / contraction arm 29 Transfer unit 30 Transfer rail 31 Circulating oil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸 淳一 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Junichi Kishi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体上に感光層を有する電子写
真感光体の製造方法において、該支持体に冷却した装置
を接触させて該支持体を冷却することを特徴とする電子
写真感光体の製造方法。
1. A method for manufacturing an electrophotographic photoreceptor having a photosensitive layer on a conductive support, wherein the support is cooled by bringing a cooled device into contact with the support. Manufacturing method.
【請求項2】 前記支持体と装置の接触が、弾力性のあ
る材料で作られた装置の内部に液体を加圧して送り込ん
で、該装置を膨張させることにより行なわれる請求項1
記載の電子写真感光体の製造方法。
2. The contact between the support and the device is achieved by pressurizing and delivering a liquid into the device made of a resilient material to expand the device.
A method for producing the electrophotographic photosensitive member described.
【請求項3】 導電性支持体上に感光層を有する電子写
真感光体の製造方法において、該支持体に加熱した装置
を接触させて該支持体を加熱乾燥することを特徴とする
電子写真感光体の製造方法。
3. A method for producing an electrophotographic photosensitive member having a photosensitive layer on a conductive support, wherein a heated device is brought into contact with the support to heat and dry the support. Body manufacturing method.
【請求項4】 前記支持体と装置の接触が、弾力性のあ
る材料で作られた装置の内部に液体を加圧して送り込ん
で、該装置を膨張させることにより行なわれる請求項3
記載の電子写真感光体の製造方法。
4. The contact between the support and the device is performed by pressurizing and feeding a liquid into the device made of a resilient material to expand the device.
A method for producing the electrophotographic photosensitive member described.
JP17621393A 1993-06-23 1993-06-23 Manufacturing method of electrophotographic photoreceptor Expired - Fee Related JP3154263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17621393A JP3154263B2 (en) 1993-06-23 1993-06-23 Manufacturing method of electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17621393A JP3154263B2 (en) 1993-06-23 1993-06-23 Manufacturing method of electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH0713346A true JPH0713346A (en) 1995-01-17
JP3154263B2 JP3154263B2 (en) 2001-04-09

Family

ID=16009604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17621393A Expired - Fee Related JP3154263B2 (en) 1993-06-23 1993-06-23 Manufacturing method of electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3154263B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072667A1 (en) * 2007-12-06 2009-06-11 Ricoh Company, Ltd. Temperature control unit for electrophotographic photoconductor substrate
JP2009222990A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Temperature controlling device for manufacturing electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor using the same, and the electrophotographic photoreceptor
JP2010008700A (en) * 2008-06-26 2010-01-14 Ricoh Co Ltd Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, and image forming method using the photoreceptor, image forming apparatus and process cartridge
US8888756B2 (en) 2009-03-30 2014-11-18 Gto Ltd. Plug for container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072667A1 (en) * 2007-12-06 2009-06-11 Ricoh Company, Ltd. Temperature control unit for electrophotographic photoconductor substrate
US8126360B2 (en) 2007-12-06 2012-02-28 Ricoh Company, Ltd. Temperature control unit for electrophotographic photoconductor substrate
JP2009222990A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Temperature controlling device for manufacturing electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor using the same, and the electrophotographic photoreceptor
JP2010008700A (en) * 2008-06-26 2010-01-14 Ricoh Co Ltd Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, and image forming method using the photoreceptor, image forming apparatus and process cartridge
US8888756B2 (en) 2009-03-30 2014-11-18 Gto Ltd. Plug for container

Also Published As

Publication number Publication date
JP3154263B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
CN100378579C (en) Electronic photographic photoreceptor and mfg. method, processing card cassette and electronic photographic device
JPS5993453A (en) Electrophotographic receptor
JP3010374B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH0345961A (en) Electrophotographic sensitive body
JPH0713346A (en) Manufacture of electrophotographic photoreceptor
JP6662111B2 (en) Single-layer type electrophotographic photosensitive member for positive charging, electrophotographic photosensitive member cartridge, and image forming apparatus
JPS5917557A (en) Electrophotographic receptor
JPS58207050A (en) Cylindrical electrophotographic receptor
JPS59184359A (en) Electrophotographic sensitive body
JPH07295271A (en) Electrophotographic photoreceptor and electrophotographic device
JP3633643B2 (en) Multilayer electrophotographic photoreceptor, method for producing the same, and image forming method
JP3286707B2 (en) Electrophotographic photoreceptor manufacturing apparatus and method
JP3376020B2 (en) Manufacturing method of electrophotographic photoreceptor
JP2004279918A (en) Coating method and coating apparatus for electrophotographic photoreceptor
JP3335704B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS5936259A (en) Electrophotographic receptor
JPH01107874A (en) Production of electrophotographic sensitive body
JPS5997152A (en) Electrophotographic receptor
JP2024102683A (en) Electrophotographic receptor, and image formation device including the same
JPH05701B2 (en)
JP4400457B2 (en) Method for producing charge generating material, electrophotographic photosensitive member using charge generating material by the manufacturing method, and image forming apparatus using the electrophotographic photosensitive member
JPH1010756A (en) Electrophotographic photoreceptor
JPH0490553A (en) Production of electrophotographic sensitive body
JPS617843A (en) Electrophotographic sensitive body
JP2003270804A (en) Method for manufacturing electrophotographic photoreceptor

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees