JPH071332B2 - Zoom lenses - Google Patents

Zoom lenses

Info

Publication number
JPH071332B2
JPH071332B2 JP60013178A JP1317885A JPH071332B2 JP H071332 B2 JPH071332 B2 JP H071332B2 JP 60013178 A JP60013178 A JP 60013178A JP 1317885 A JP1317885 A JP 1317885A JP H071332 B2 JPH071332 B2 JP H071332B2
Authority
JP
Japan
Prior art keywords
lens
lens group
refractive index
negative
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60013178A
Other languages
Japanese (ja)
Other versions
JPS61172110A (en
Inventor
望 北岸
博喜 中山
昭永 堀内
純 服部
繁幸 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60013178A priority Critical patent/JPH071332B2/en
Priority to US06/800,553 priority patent/US5054898A/en
Priority to DE3546744A priority patent/DE3546744C2/de
Priority to DE19853541583 priority patent/DE3541583A1/en
Publication of JPS61172110A publication Critical patent/JPS61172110A/en
Publication of JPH071332B2 publication Critical patent/JPH071332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は可変焦点距離レンズに関し、殊に正の第1レン
ズ群と負の第2レンズ群との軸上間隔を変化させると共
に第2レンズ群と降続のレンズ群との軸上間隔を変化さ
せて変倍を行うズームレンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable focal length lens, and more particularly, to changing the axial distance between a positive first lens group and a negative second lens group, and at the same time, changing the axial distance between the second lens group and the second lens group. The present invention relates to a zoom lens that performs zooming by changing an axial distance from a subsequent lens group.

(従来の技術) 一般的にズームレンズに於ては基準状態に於ける収差補
正の外に変倍中の収差変動を極力小さく補正しなければ
ならない。そのため各レンズ群の球面収差、コマ収差、
及び非点収差は各レンズ群で個別に補正されている必要
があり、普通各レンズ群共数枚のレンズで構成されてい
る。
(Prior Art) Generally, in a zoom lens, in addition to the aberration correction in the reference state, it is necessary to correct the aberration fluctuation during zooming as much as possible. Therefore, spherical aberration, coma aberration of each lens group,
And astigmatism must be corrected individually in each lens group, and each lens group is usually composed of several lenses.

近年、可変焦点距離レンズのコンパクト化及び変倍比の
高倍率化の要請が高まってきているが、本発明の様な、
複数のレンズ群より成り物体側より順に第1レンズ群を
正レンズ群、第2レンズ群を負レンズ群で構成し、第1
正レンズ群と第2負レンズ群の間隔及び第2負レンズ群
と第3レンズ群の間隔を変化させて変倍を行なうタイプ
のズームレンズをコンパクトにするためには、近軸的に
言うと各レンズ群のパワーを強めるか各レンズ群の間の
主点間隔を小さくすれば良い。又、ズームレンズの変倍
比を高倍率化するためには近軸的に各レンズ群のパワー
を強めるか変倍レンズ群の移動距離を大きくすれば良
い。
In recent years, there has been an increasing demand for a compact variable focal length lens and a high magnification ratio, but like the present invention,
The first lens group is composed of a plurality of lens groups in order from the object side, and the second lens group is composed of a negative lens group.
In order to make a zoom lens of the type that performs zooming compact by changing the distance between the positive lens group and the second negative lens group and the distance between the second negative lens group and the third lens group, paraxially speaking, The power of each lens group may be strengthened or the principal point interval between each lens group may be reduced. Further, in order to increase the zoom ratio of the zoom lens, it is sufficient to paraxially increase the power of each lens unit or increase the moving distance of the zoom lens unit.

しかし確かに近軸的には上記タイプのズームレンズのコ
ンパクト化及び変倍比の高倍率化には各レンズ群のパワ
ーを強める方向が良いのであるが、実際のレンズ系に於
いてはレンズ群のパワーを強めた状態で収差の発生を小
さく補正するために構成レンズ枚数が多く必要である。
又レンズ1枚当りのパワーが強いと曲率がきつくなり、
必要なコバ厚をとった時の凸レンズの中心レンズ厚ある
いは隣接レンズとのマージナル間隔をとった時の凹面に
接する空気間隔は大きく取る必要がある。が、そうする
とレンズ群の全長が大きくなり主点間隔を大きくとらな
ければならなくなって結果的には全系の光学全長を短か
くすることができなくなる。一方レンズ群の長さが大き
くなると変倍レンズ群の移動スペースが小さくなるので
変倍比の高倍率化が計れなくなる。
However, paraxially, it is better to strengthen the power of each lens group in order to make the zoom lens of the above type compact and to increase the zoom ratio, but in the actual lens system It is necessary to increase the number of constituent lenses in order to correct the occurrence of aberration to be small while increasing the power of.
Also, if the power per lens is strong, the curvature will be tight,
It is necessary to set a large air gap in contact with the central lens thickness of the convex lens when the required edge thickness is obtained or a concave surface when the marginal distance between adjacent lenses is taken. However, in that case, the total length of the lens group becomes large and the distance between the principal points must be made large. As a result, the optical total length of the entire system cannot be shortened. On the other hand, when the length of the lens unit becomes large, the moving space of the variable power lens unit becomes small, so that it becomes impossible to increase the zoom ratio.

更に第1レンズ群、又は第2レンズ群の軸上長が大きく
なると軸外光束に必要な前玉有効径が大きくなりレンズ
の径をコンパクトにすることができない。この様な悪循
環が生じ通常の球面系ではコンパクト化、高倍率化に限
界がある。
Further, if the axial length of the first lens group or the second lens group becomes large, the effective diameter of the front lens required for the off-axis light beam becomes large, and the lens diameter cannot be made compact. Such a vicious circle occurs, and there is a limit to downsizing and high magnification in a normal spherical system.

本発明に関するズームタイプでは通常最も変倍に寄与す
る第2負レンズ群が全レンズ群中最も強いパワーを有し
ているのでコンパクト化を計ろうとして第2負レンズ群
のパワーを強めると第2負レンズ群の必要レンズ枚数が
増加しかえってレンズ群の長さが長くなり勝ちであっ
た。
In the zoom type according to the present invention, the second negative lens group that normally contributes most to zooming has the strongest power among all lens groups, so if the power of the second negative lens group is strengthened in order to achieve compactness, The number of lenses required for the negative lens group increased, and the length of the lens group became longer, which was a win.

又、複数のレンズ群より成り物体側より順に第1レンズ
群を正レンズ群、第2レンズ群を負レンズ群、第3レン
ズ群を強いパワーを有する正レンズ群で構成し、広角端
から望遠端にかけて第1正レンズ群と第2負レンズ群の
間隔が増大し第2負レンズ群と第3レンズ群の間隔が減
少し第2負レンズ群と第3正レンズ群の間隔が増加して
変倍を行なうタイプの可変焦点距離レンズでは第2負レ
ンズ群と第3正レンズ群の主点間隔を小さくする方向は
全系の光学全長を小さくする方向であるが、第2負レン
ズ群のパワーをきつくすると第2負レンズ群の収差補正
に必要なレンズ枚数が増加し該レンズ群の全長が長くな
る。従って主点間隔も大きくしなければならなくなり全
系の光学全長をさほど小さくすることができなかった。
Further, the first lens unit is composed of a plurality of lens units in order from the object side, the first lens unit is composed of a positive lens unit, the second lens unit is composed of a negative lens unit, and the third lens unit is composed of a positive lens unit having strong power. The distance between the first positive lens group and the second negative lens group increases toward the end, the distance between the second negative lens group and the third lens group decreases, and the distance between the second negative lens group and the third positive lens group increases. In a variable focal length lens of the type that performs zooming, the direction in which the principal point distance between the second negative lens unit and the third positive lens unit is reduced is in the direction in which the overall optical length of the entire system is reduced. When the power is tight, the number of lenses required for aberration correction of the second negative lens group increases, and the total length of the lens group becomes long. Therefore, the distance between the principal points must be increased, and the total optical length of the entire system cannot be reduced so much.

この様に従来の球面系では光学全長の短縮に限界があっ
た。
As described above, the conventional spherical system has a limit in reducing the total optical length.

他方ズームレンズの各レンズ群のパワーを強めて全系の
光学全長を短縮しようとするとペツツバール和の補正が
困難となる。
On the other hand, if the power of each lens unit of the zoom lens is strengthened to reduce the total optical length of the entire system, it becomes difficult to correct the Petzval sum.

例えば従来知られている4群ズームを例にとると、物体
側より正の第1レンズ群、負の第2レンズ群、正又は負
の第3レンズ群、正の第4レンズ群より成り、第1レン
ズ群から第3レンズ群でズーム部を構成し第4レンズ群
でリレー部を構成している。
For example, taking a conventionally known four-group zoom as an example, it is composed of a first lens group positive from the object side, a second lens group negative, a third lens group positive or negative, and a fourth lens group positive, The first lens unit to the third lens unit constitute a zoom unit, and the fourth lens unit constitutes a relay unit.

この様なズームレンズで全系のコンパクト化を計ろうと
すると、(1)ズーム部の各レンズ群のパワーを強め
る、(2)リレー部の望遠比を小さくする等の方法があ
る。(1)の方法でズーム部の各群のパワーを強めると
通常最もパワーの強い第2負レンズ群、通称バリエータ
ーにおけるペツツバール和が負の値で大きく発生し像面
湾曲が著しくオーバーになる。(2)の方法もリレー部
の望遠比を小さくする方向はペツツバール和が負の値に
発生する方向であり、この方法でコンパクト化を計ろう
とするとやはり像面湾曲がオーバーとなってしまう。
In order to make the entire system compact with such a zoom lens, there are methods such as (1) increasing the power of each lens unit in the zoom unit and (2) decreasing the telephoto ratio of the relay unit. If the power of each group in the zoom section is strengthened by the method (1), the Petzval sum in the second negative lens group, which is usually the strongest, commonly called the variator, is large at a negative value, and the curvature of field becomes significantly over. In the method (2) as well, the direction of decreasing the telephoto ratio of the relay section is a direction in which the Petzval sum has a negative value, and if this method is attempted to be made compact, the field curvature will be over.

ペツツバール和を補正しよとして凸レンズの屈折率を低
くしたり、或いは強いパワーを有する正レンズと負レン
ズを組合わせたりすると、球面収差が著しく発生したり
高次収差が著しく発生したりして補正できなくなる。こ
の様にズームレンズのコンパクト化とペツツバール和の
補正は球面系の場合相反する関係にある。
If the refractive index of the convex lens is lowered to correct the Petzval sum, or if a positive lens and a negative lens having strong power are combined, spherical aberration or high-order aberration will occur remarkably. become unable. In this way, the compactness of the zoom lens and the correction of the Petzval sum are in a conflicting relationship in the case of a spherical system.

上記ズームタイプに限らず第1正レンズ群が変倍中移動
し広角端から望遠端にかけて全長が伸びる様なズームタ
イプ、或いは第4レンズ群が変倍中光軸方向に移動する
様なズームタイプに於いても、更に全長を短縮しようと
すると事情は同じである。
Not limited to the zoom type, the zoom type is such that the first positive lens unit moves during zooming and the entire length extends from the wide-angle end to the telephoto end, or the fourth lens unit moves in the optical axis direction during zooming. However, the situation is the same when trying to further shorten the total length.

尚、4群タイプのズームレンズをコンパクト化するため
の提案の1つとして特開昭57−122413号に、リレーレン
ズ部に自己集束性棒状レンズアレイ等の複眼光学系を使
用したものがある。しかしこの場合、複眼光学系は正立
等倍結像系であるため、バリエーターの様に変倍中にそ
のレンズ群の結像倍率が変化するレンズ群に使用するの
は不適当であった。
Incidentally, as one of proposals for making a four-group type zoom lens compact, there is one in JP-A-57-122413 which uses a compound eye optical system such as a self-focusing rod lens array in a relay lens portion. However, in this case, since the compound eye optical system is an erecting equal-magnification image forming system, it is unsuitable for use in a lens group such as a variator in which the image forming magnification of the lens group changes during zooming.

(発明の目的) 本発明の目的はコンパクトで、あるいは更に高変倍率の
ズームレンズを実現することにある。そしてこれにより
軽量化が図られ、また光学系の組立調整が容易となる。
(Object of the Invention) An object of the present invention is to realize a zoom lens which is compact or has a higher zoom ratio. As a result, the weight is reduced, and the assembly and adjustment of the optical system is facilitated.

そして上記目的を達成するために、 物体側より順に正屈折力の第1レンズ群、負屈折力の第
2レンズ群、そして後続のレンズ群で構成し、前記第1
レンズ群と前記第2レンズの間隔及び前記第2レンズ群
と前記後続のレンズ群の間隔を変化させて変倍を行うズ
ームレンズに於いて、前記第2レンズ群は他のレンズと
光軸を共有し光軸から外周にかけて屈折率が徐々に高
く、かつ光軸近傍に於ける短波長側の屈折率勾配の値が
長波長側の屈折率勾配の値よりも小さい屈折率分布型レ
ンズを有することにある。
In order to achieve the above object, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the subsequent lens group are arranged in this order from the object side.
In a zoom lens in which zooming is performed by changing the distance between a lens group and the second lens and the distance between the second lens group and the subsequent lens group, the second lens group forms an optical axis with other lenses. It has a refractive index distribution type lens in which the refractive index is gradually increased from the optical axis to the outer circumference and the value of the refractive index gradient on the short wavelength side near the optical axis is smaller than the value of the refractive index gradient on the long wavelength side. Especially.

尚、これを実現した実施例は、後述の数値実施例1,4,5,
7に相当するが、これ以外の数値実施例も収差レベルま
で補正した設計例として示しておく。
In addition, an example that realizes this is the numerical example 1, 4,
Although it corresponds to 7, other numerical examples are also shown as design examples in which the aberration level is corrected.

また第2負レンズ群の屈折率分布型レンズが光軸と直交
する方向に屈折率が変化する形態の場合、レンズの屈折
力を、光軸からの距離をh、屈折率分布をNi(h)=
NO+N1h2+N2h4+……とする時、 ・N1<0 ……(1) の条件を満足することが望ましい。但し、上で言う屈折
力は屈折と転送の成分を含む。
Further, in the case where the refractive index distribution type lens of the second negative lens group has a form in which the refractive index changes in the direction orthogonal to the optical axis, the refractive power of the lens is represented by h (distance from the optical axis) and Ni (h ) =
When NO + N 1 h 2 + N 2 h 4 + ……, ・ It is desirable that the condition of N 1 <0 …… (1) is satisfied. However, the refractive power mentioned above includes components of refraction and transfer.

そして条件(1)を満たすことによりレンズ内部でも屈
折力が分担されるので、このレンズ面の曲率を緩くする
ことができる。従って高次収差の発生を小さく抑えるこ
とができると共に、必要なコバ厚を取った時のレンズ厚
あるいは必要なマージナル間隔を取った時の隣接レンズ
との空気間隔を小さくしてレンズ群の全長を短縮できる
効果がある。
By satisfying the condition (1), the refractive power is shared even inside the lens, so that the curvature of this lens surface can be reduced. Therefore, it is possible to suppress the generation of high-order aberrations to a minimum, and to reduce the lens thickness when the required edge thickness is taken or the air distance between adjacent lenses when the required marginal distance is taken to reduce the total length of the lens group. There is an effect that can be shortened.

(実施例の説明) 第1図は本発明の第1実施例を示すズームレンズで、物
体側より、変倍中固定の第1正レンズ群11、変倍中光軸
方向に移動し変倍に寄与する第2負レンズ群12、変倍中
光軸方向に移動してピント移動を補正する第3正レンズ
群13及び変倍中固定の第4正レンズ群14で構成されるズ
ームレンズの第2負レンズ群12、通称バリエーター部に
半径方向に光軸から外周にかけて屈折率が高くなる様な
屈折率分布を有する、他のレンズと光軸を共有している
(複眼でない)屈折率分布型レンズを使用したものであ
る。
(Explanation of Embodiments) FIG. 1 shows a zoom lens according to a first embodiment of the present invention, in which the first positive lens group 11 fixed during zooming moves from the object side, zooms by moving in the optical axis direction during zooming. Of the second positive lens group 12 that contributes to the zoom lens, the third positive lens group 13 that moves in the optical axis direction during zooming to correct the focus movement, and the fourth positive lens group 14 that is fixed during zooming The second negative lens group 12, commonly known as a variator, has a refractive index distribution in which the refractive index increases in the radial direction from the optical axis to the outer periphery, and the refractive index distribution shares the optical axis with other lenses (not the compound eye). It uses a mold lens.

数値実施例1を参照。See Numerical Example 1.

屈折率分布型レンズは均質媒質の通常のレンズと異なり
レンズ内部でも集光作用、又は発散作用を有しておりパ
ワーを持つ。又屈折率分布を制御することによりレンズ
表面及びレンズ中部で収差補正効果を有する。本実施例
では内部に於けるパワーがバリエーター部のパワーの5/
6を受け持っており、収差補正能力も優れていることか
ら通常3〜5枚で構成されているバリエーター部を1枚
のレンズで、しかも両面の曲率の緩いレンズで構成でき
た。そのため第2負レンズ群の全長が小さくなりコンパ
クト化を計ることができた。
Unlike a normal lens of a homogeneous medium, the gradient index lens has a condensing action or a diverging action inside the lens and has power. Further, by controlling the refractive index distribution, an aberration correction effect is obtained on the lens surface and the lens middle part. In this embodiment, the power inside is 5 / the power of the variator section.
Since it is in charge of 6 and has excellent aberration correction capability, the variator unit, which is usually composed of 3 to 5 lenses, can be composed of a single lens and lenses of which the both surfaces have a gentle curvature. Therefore, the total length of the second negative lens unit becomes small, and it is possible to make it compact.

屈折率分布型レンズは1枚ながら収差の補正能力を有
し、特にペツツバール和及び球面収差の補正能力に優れ
ている。屈折率分布型レンズで発生するペツツバール和
はそのレンズの内部の集光、発散効果によるパワーを、
全系の焦点距離を1に規格化したときと表わし、ベー
スの屈折率をNOと表わすとP=/No2OとNOの2乗に反
比例する形になるので、屈折面のペツツバール和がP=
/NOだけ発生するのに比べその発生が小さい。本実施
例の場合ではペツツバール和の負値での発生が小さいこ
とになる。本実施例と同じパワー配置であれば球面系の
場合バリエーターから発生するペツツバール和は−1.25
〜−1.3程度であるが本実施例ではバリエーターで発生
するペツツバール和が上記理由で−1.025と小さい。
Although the gradient index lens has a single lens, it has the ability to correct aberrations, and is particularly excellent in the ability to correct Petzval sum and spherical aberration. The Petzval sum generated in the gradient index lens is the power due to the condensing and diverging effects inside the lens,
When the focal length of the entire system is expressed as standardized to 1, and the refractive index of the base is expressed as NO, it becomes a form inversely proportional to P = / No 2 O and the square of NO, so the Petzval sum of the refractive surface is P. =
Compared to / NO, the occurrence is small. In the case of the present embodiment, the occurrence of negative Petzval sum is small. In the case of the spherical system, the Petzval sum generated from the variator is -1.25 if the power arrangement is the same as that of this embodiment.
Although it is about -1.3, the Petzval sum generated in the variator is as small as -1.025 in the present embodiment because of the above reason.

このことはズーム部のパワーを強めるかリレー部の望遠
比を小さくして、球面系に比べ全系の光学全長をより小
さくできることを意味している。すなわち通常全長を短
縮しようとしてズーム部のパワーを強めるかリレー部の
望遠比を小さくしようとするペツツバール和が負値で大
きく発生し補正できなくなるのが最大の欠点であったの
がバリエーターでのペツツバール和の負値方向の発生が
小さい本実施例の様な場合には上記方法による全系の光
学全長短縮の可能性が大きくなることになる。
This means that the optical length of the entire system can be made smaller than that of the spherical system by increasing the power of the zoom unit or decreasing the telephoto ratio of the relay unit. In other words, the biggest drawback is that the Petzval sum that tries to increase the power of the zoom section or to reduce the telephoto ratio of the relay section in order to shorten the total length is large and becomes uncorrectable, which is the biggest drawback. In the case of the present embodiment in which the generation of the negative sum value is small, the possibility of shortening the optical total length of the entire system by the above method increases.

本実施例ではリレー部の望遠比を小さくし全系の光学全
長を254.8mm,望遠端の焦点距離に対する光学全長の比、
すなわち望遠比を0.836と非常に小さいものにすること
ができた。さらにペツツバール和に余裕がでた分だけリ
レー部の第1正レンズの屈折率を高くして球面収差を良
好に補正することができた。即ち通常バリエーターは3
〜5枚のレンズで構成され球面収差を接合レンズの接合
面で補正しているが本実施例ではバリエーター部の構成
枚数が1枚のみでありながら球面収差が補正できてい
る。
In this embodiment, the telephoto ratio of the relay section is reduced to make the optical total length of the entire system 254.8 mm, the ratio of the optical total length to the focal length at the telephoto end,
That is, the telephoto ratio could be made as small as 0.836. Furthermore, the spherical aberration could be corrected well by increasing the refractive index of the first positive lens in the relay portion by the amount that the Petzval sum has a margin. That is, usually 3 variators
The spherical aberration is corrected by the cemented surface of the cemented lens, which is composed of 5 to 5 lenses, but in the present embodiment, the spherical aberration can be corrected even though the number of constituent elements of the variator part is only one.

屈折率分布型レンズでは内部の屈折率分布形状を制御す
ることにより、光線がレンズの内部を進行していく間に
球面収差を補正することができる。具体的には分布形状
をNi(h)=NO+N1h2+N2h4+N3h6+……と表した時の
係数N2を制御することにより達成できる。
In the gradient index lens, the spherical aberration can be corrected while the light ray travels inside the lens by controlling the refractive index distribution shape inside. Specifically, it can be achieved by controlling the coefficient N 2 when the distribution shape is expressed as Ni (h) = NO + N 1 h 2 + N 2 h 4 + N 3 h 6 + ...

一方、第2負レンズ群12であるラジアルタイプの負レン
ズは光軸近傍に於ける短波長側の屈折率勾配の値が長波
長側の屈折率勾配の値よりも小さくなっていれば、この
バリエーターで発生する色収差は小さくなり、軸上色収
差、倍率色収差のズーミングによる変動を小さく補正で
きる。
On the other hand, in the radial type negative lens that is the second negative lens group 12, if the value of the refractive index gradient on the short wavelength side near the optical axis is smaller than the value of the refractive index gradient on the long wavelength side, The chromatic aberration generated by the variator is reduced, and fluctuations in axial chromatic aberration and lateral chromatic aberration due to zooming can be corrected to be small.

以上の通り本実施例のズームレンズはこの様に屈折率分
布型レンズを使用することによりコンパクト、高性能を
達成している。
As described above, the zoom lens of this embodiment achieves compactness and high performance by using the gradient index lens in this way.

通常ズームレンズのバリエーターは強いパワーを有する
レンズ3〜5枚で構成されておりレンズの肉厚、空気間
隔及びレンズ相互の偏芯は非常に厳しく押さえなければ
ならないが本実施例の様に1枚のレンズで構成できると
組立調整作業が著しく容易になる。
Normally, the variator of the zoom lens is composed of 3 to 5 lenses having a strong power, and the thickness of the lens, the air gap, and the eccentricity between the lenses must be suppressed very strictly, but one lens like this embodiment. If the lens is used, the assembly and adjustment work will be significantly facilitated.

第2図は、第2負レンズ群の2枚のレンズにラジアル型
の屈折率分布型レンズを使用した実施例である(後述の
数値実施例2に対応)。ここに示したズームレンズは順
に第1正レンズ群21、第2負レンズ群22、第3正レンズ
群23、第4正レンズ群24を備え、ズーミングのために第
1正レンズ群21と第3正レンズ群23が独立に移動し、第
2負レンズ群22と第4レンズ群24が固定である。第2負
レンズ群22は固定であるが変倍作用は最も大きく、又前
側3群を移動させるタイプに比べて鏡筒構造を簡易化さ
せられる利点がある。
FIG. 2 shows an example in which a radial type gradient index lens is used for the two lenses of the second negative lens group (corresponding to numerical example 2 described later). The zoom lens shown here comprises a first positive lens group 21, a second negative lens group 22, a third positive lens group 23, and a fourth positive lens group 24 in order, and a first positive lens group 21 and a second positive lens group 21 for zooming. The third positive lens group 23 moves independently, and the second negative lens group 22 and the fourth lens group 24 are fixed. The second negative lens group 22 is fixed, but has the largest zooming effect, and has an advantage that the lens barrel structure can be simplified as compared with the type in which the front three groups are moved.

このタイプのズームレンズは広角端の画角を大きくする
にもかかわらずズーム比を3倍程度まで上げるため第2
レンズ群の焦点距離を相当短かくしなければならない。
従って第2レンズ群を構成するレンズの凹面形状の曲率
半径が小さくなるので、レンズ枚数を増やしたとしても
大きな収差が残留する傾向にあった。
This type of zoom lens increases the zoom ratio up to about 3 times despite increasing the angle of view at the wide-angle end.
The focal length of the lens group must be made quite short.
Therefore, since the radius of curvature of the concave shape of the lenses forming the second lens group becomes small, a large aberration tends to remain even if the number of lenses is increased.

屈折率分布型レンズを使用したことにより、殊に第2負
レンズ群IIの負のパワーを負荷しているメニスカス負レ
ンズは特に、屈折率の分布に依り負レンズ成分としての
パワーを得ることができるから像側へ凹を向けた面の曲
率半径を緩めることを可能とし、結果として収差の発生
を防止している。
By using the gradient index lens, in particular, the meniscus negative lens which is loaded with the negative power of the second negative lens group II can obtain the power as the negative lens component particularly depending on the distribution of the refractive index. Since it is possible, it is possible to loosen the radius of curvature of the surface having the concave surface toward the image side, and as a result, the occurrence of aberration is prevented.

第5図は第3実施例を示している。数値実施例3に対
応。図中、31は第1正レンズ群、32は第2負レンズ群、
33は第3正レンズ群、34は第4正レンズ群で、実施例2
と同じ動きをするズームレンズの、より高倍率化を計っ
たものである。
FIG. 5 shows a third embodiment. Corresponding to Numerical Example 3. In the figure, 31 is the first positive lens group, 32 is the second negative lens group,
33 is a third positive lens group, and 34 is a fourth positive lens group.
This is a higher magnification zoom lens that moves in the same manner as.

本実施例では第2負レンズ群32を負レンズ2枚とメニス
カス正レンズ1枚の3枚で構成し、メニスカス正レンズ
に光軸と直交する方向に光軸から外周部に行くに従い屈
折率が低くなる様な屈折率分布を持たせたものである。
In this embodiment, the second negative lens group 32 is composed of three negative lenses and one positive meniscus lens, and the positive refractive index of the meniscus positive lens increases from the optical axis to the outer peripheral portion in the direction orthogonal to the optical axis. It has a refractive index distribution that decreases.

本例の様な仕様のズームレンズでは第1正レンズ群31と
第2負レンズ群32の間の主点間隔をできるだけ小さくし
て全長及び前玉径を小さくしたいが、ここでは第2負レ
ンズ群32を物体側より負レンズ2枚と正レンズで構成
し、正レンズに正のパワーが付与される様な屈折率分布
を持たせることにより曲率の緩い正レンズで第2負レン
ズ群32の前側主点を前方に移動させて第1正レンズ群31
と第2負レンズ群32の主点間隔を小さくして全長の短縮
及び前玉径の減少を計っている。
In the zoom lens having the specifications like this example, it is desired to make the principal point interval between the first positive lens group 31 and the second negative lens group 32 as small as possible to reduce the total length and the front lens diameter. The group 32 is composed of two negative lenses and a positive lens from the object side, and the positive lens has a refractive index distribution such that a positive power is given, so that the positive lens having a gentle curvature is used as the second negative lens group 32. Move the front principal point forward to move the first positive lens group 31
By shortening the distance between the principal points of the second negative lens group 32, the overall length and the front lens diameter are reduced.

また屈折率分布の係数N2,N3を負の値とすることで第2
負レンズ群の2枚の負レンズで発生する球面収差を高次
に亘って補正している。
Also, by setting the coefficients N 2 and N 3 of the refractive index distribution to negative values, the second
The spherical aberration generated by the two negative lenses of the negative lens group is corrected over a high order.

結果としては通常5〜6枚のレンズで構成され、レンズ
群の長さも大きかった第2負レンズ群を3枚のレンズで
構成することができコンパクト化が計れた。又偏芯の厳
しい第2負レンズ群の組立調整を容易にした。
As a result, the second negative lens group, which was usually composed of 5 to 6 lenses and the length of the lens group was large, could be composed of 3 lenses, thus achieving compactness. In addition, the assembly and adjustment of the second negative lens group, which is severely eccentric, is facilitated.

第7図は実施例4(数値実施例4と対応)を示してお
り、ズームレンズの各レンズ群にラジアル形式の屈折率
分布型レンズを使用している。第1正レンズ群41、第2
負レンズ群42、第3正レンズ群43、第4正レンズ群44が
順置され、第1正レンズ群41、第2負レンズ群42、第3
正レンズ群43が独立に移動してズーミングを行う。
FIG. 7 shows Example 4 (corresponding to Numerical Example 4), in which a radial type gradient index lens is used for each lens group of the zoom lens. First positive lens group 41, second
The negative lens group 42, the third positive lens group 43, and the fourth positive lens group 44 are arranged in this order, and the first positive lens group 41, the second negative lens group 42, and the third
The positive lens group 43 moves independently to perform zooming.

従来この種のズームレンズは第1乃至第3レンズ群は各
3枚、第4レンズ群は4枚程度のレンズを使って収差を
補正していたが、屈折率分布型レンズを用いることによ
り各レンズ群に固有の収差量を減少させることができ、
構成枚数を減少させることができた。そして各レンズ群
のパワーに付随した収差を打ち消すことにより、ズーミ
ングによる収差変動を制御している。
Conventionally, this type of zoom lens uses three lenses for each of the first to third lens groups and four lenses for the fourth lens group to correct aberrations, but by using a gradient index lens It is possible to reduce the amount of aberration peculiar to the lens group,
The number of components could be reduced. Then, the aberration variation due to zooming is controlled by canceling the aberration associated with the power of each lens group.

第9図に示す実施例5(数値実施例5に対応)は物体側
より順に変倍中固定の第1正レンズ群51、変倍中光軸方
向に移動し変倍に寄与する第2負レンズ群52、変倍中光
軸方向に移動してピント移動を補正する第3負レンズ群
53及び変倍中固定の第4正レンズ群54で構成されるズー
ムレンズの第2負レンズ群52の像側の負レンズに半径方
向に光軸から外周にかけて屈折率が高くなる様な屈折率
分布を有する屈折率分布型レンズを使用したものであ
る。それ以外にも第1正レンズ群51に半径方向に光軸か
ら外周にかけて屈折率が低くなる様な屈折率分布を有す
る屈折率分布型レンズを、変倍中固定の第4正レンズ群
の後方の正レンズに半径方向に光軸から外周にかけて屈
折率が低くなる様な屈折率分布を有する屈折率分布型レ
ンズを使用した。
In Example 5 (corresponding to Numerical Example 5) shown in FIG. 9, a first positive lens group 51, which is fixed during zooming, is moved in order from the object side, and a second negative lens group that moves in the optical axis direction during zooming and contributes to zooming. Lens group 52, third negative lens group that moves in the optical axis direction during zooming to correct focus movement
The image-side negative lens of the second negative lens group 52 of the second negative lens group 52 of the zoom lens composed of 53 and the fourth positive lens group 54 fixed during zooming has a refractive index such that the refractive index increases in the radial direction from the optical axis to the outer periphery. It uses a gradient index lens having a distribution. In addition to the above, a refractive index distribution type lens having a refractive index distribution in which the refractive index decreases in the radial direction from the optical axis to the outer periphery is provided in the first positive lens group 51, behind the fourth positive lens group fixed during zooming. As the positive lens, a gradient index lens having a refractive index distribution in which the refractive index becomes lower in the radial direction from the optical axis to the outer circumference was used.

第2負レンズ群の像側のレンズを負レンズとし、本実施
例の様にレンズの周辺に行くに従い屈折率が高くなる様
な屈折率分布をレンズ内部で負のパワーを負担できるか
ら曲率がその分緩くなり諸収差の発生が小さくなる。ま
たペツツバール和を小さくすることもできる。更に屈折
率分布係数N2を負値にすると屈折率分布型レンズの屈折
面を利用して望遠側の球面収差を有効に補正できる。そ
のため普通3〜4枚のレンズで構成されている第2負レ
ンズ群を1枚の均質媒質の負レンズと1枚の屈折率分布
型レンズで構成することができた。
The lens on the image side of the second negative lens unit is a negative lens, and the refractive power distribution such that the refractive index becomes higher toward the periphery of the lens as in the present embodiment can bear negative power inside the lens, so that the curvature is The amount becomes looser by that amount, and the occurrence of various aberrations becomes smaller. Also, the Petzval sum can be reduced. Further, if the refractive index distribution coefficient N 2 is set to a negative value, the spherical aberration on the telephoto side can be effectively corrected by utilizing the refractive surface of the gradient index lens. Therefore, the second negative lens group, which is normally composed of 3 to 4 lenses, can be composed of one negative lens of homogeneous medium and one gradient index lens.

尚、第2負レンズ群中のラジアルタイプの負レンズの、
共軸近傍における短波長側の屈折率勾配の値を長波長側
の屈折率勾配の値よりも小さくすれば当レンズ群で発生
する色収差が小さくなり、軸上色収差、倍率色収差のズ
ーミングによる変動を小さく補正できる。他方、第1正
レンズ群を正レンズとし本実施例の様にレンズの周辺に
行くに従い屈折率が低くなる様な屈折率分布を設けると
望遠端の球面収差補正に有効であり、その他の諸収差の
補正も良好に行えるため第1正レンズ群を1枚の屈折率
分布型レンズで構成することができる。
In addition, of the radial type negative lens in the second negative lens group,
If the value of the refractive index gradient on the short wavelength side near the coaxial axis is made smaller than the value of the refractive index gradient on the long wavelength side, the chromatic aberration generated in this lens group will be small, and fluctuations due to zooming in axial chromatic aberration and chromatic aberration of magnification will be reduced. Can be corrected small. On the other hand, if the first positive lens unit is a positive lens and a refractive index distribution is provided such that the refractive index becomes lower toward the periphery of the lens as in the present embodiment, it is effective for spherical aberration correction at the telephoto end, and other various Since the aberration can be corrected well, the first positive lens group can be composed of one gradient index lens.

又、変倍中固定の第4正レンズ群の絞りから遠い位置に
あり、軸外光束の主光線通過位置の高い後方の凸レンズ
に半径方向に光軸から外周にかけて屈折率が低くなる様
な屈折率分布を有する屈折率分布を設け、高次の分布係
数を制御することにより非点収差、歪曲収差を全画面に
亘って好に補正することができた。
Further, the rear convex lens located at a position far from the diaphragm of the fourth positive lens unit, which is fixed during zooming, and where the principal ray passing position of the off-axis light beam is high, has a refractive index that decreases from the optical axis to the outer circumference in the radial direction. By providing a refractive index distribution having a refractive index distribution and controlling a higher-order distribution coefficient, astigmatism and distortion can be favorably corrected over the entire screen.

第11図は第6実施例を示している。数値実施例6に対
応。
FIG. 11 shows the sixth embodiment. Corresponding to Numerical Example 6.

本実施例は物体側より順に変倍中光軸方向に移動する第
1正レンズ群61、変倍中光軸方向に移動し変倍に寄与す
る第2負レンズ群62、及び変倍中固定の第3正レンズ群
63で構成されるズームレンズの第2負レンズ群62に半径
方向に光軸から外周にかけて屈折率が高くなる様な屈折
率分布を有する屈折率分布型レンズを使用している。ま
た第1正レンズ群61に半径方向に光軸から外周にかけて
屈折率が低くなる様な屈折率分布を有する屈折率分布型
レンズを、変倍中固定の第3正レンズ群の前方の最も物
体側の正レンズに光軸と直交する方向に光軸から外周に
かけて屈折率がゆるやかに高くなる様な屈折率分布を有
する屈折率分布型レンズを、それに隣接する接合レンズ
の正レンズに光軸方向に物体側から像側に行くに従い屈
折率が低くなる様な屈折率分布を有する屈折率分布型レ
ンズを、後群の2枚の負レンズの内物体側の負レンズに
光軸と直交する方向に光軸から外周にかけて屈折率が高
くなる様な屈折率分布を有する屈折率分布型レンズを使
用したものである。変倍中固定の第3正レンズ群の前群
の接合レンズの負レンズと後群の最も像側の負レンズは
均質楳質の光学硝子で構成されている。
In this embodiment, the first positive lens group 61 moves in the optical axis direction during zooming in order from the object side, the second negative lens group 62 moves in the optical axis direction during zooming and contributes to zooming, and fixed during zooming. Third positive lens group
The second negative lens group 62 of the zoom lens composed of 63 uses a gradient index lens having a refractive index distribution in which the refractive index increases in the radial direction from the optical axis to the outer periphery. Further, a refractive index distribution type lens having a refractive index distribution in which the refractive index is lowered in the radial direction from the optical axis to the outer periphery is provided in the first positive lens group 61, which is the most object in front of the third positive lens group fixed during zooming. Side of the positive lens, the gradient index type lens having a refractive index distribution in which the refractive index gradually increases from the optical axis to the outer periphery in the direction orthogonal to the optical axis, and the positive lens of the cemented lens adjacent to it has the optical axis direction A gradient index lens having a refractive index distribution such that the refractive index decreases from the object side to the image side, in the negative lens on the object side of the two negative lenses in the rear group, in the direction orthogonal to the optical axis. In addition, a gradient index lens having a refractive index distribution in which the refractive index increases from the optical axis to the outer circumference is used. The negative lens of the cemented lens in the front lens group of the third positive lens group, which is fixed during zooming, and the negative lens closest to the image side in the rear lens group are made of homogeneous optical glass.

第2負レンズ群にレンズの周辺に行くに従い屈折率が高
くなる様な屈折率分布を設けると、レンズ内部に負のパ
ワーを分担させることができてレンズの曲率を著しく緩
められるので、やはり望遠端の球面収差補正に有効であ
り又ペツツバール和の発生を小さくすることができる。
If the second negative lens group is provided with a refractive index distribution such that the refractive index increases toward the periphery of the lens, the negative power can be shared inside the lens and the curvature of the lens can be remarkably relaxed. It is effective for correcting spherical aberration at the edge and can reduce the Petzval sum.

例えば同じパワー配置であれば均楳質のみで構成される
第2負レンズ群で発生するペツツバール和は全系の焦点
距離を1.に規格化したとき、−1.45〜−1.6程度である
が、本実施例ではラジアル型の屈折率分布型レンズで構
成することにより、−1.06と極めて小さな値になってい
る。
For example, if the power distribution is the same, the Petzval sum generated in the second negative lens group composed only of homogeneity is about -1.45 to -1.6 when the focal length of the entire system is normalized to 1. In this embodiment, the refractive index distribution type lens of the radial type is used, and the value is -1.06, which is extremely small.

この様に屈折率分布型レンズを用いると第2負レンズ群
に於けるペツツバール和の発生を小さくすることができ
るためリレー部の望遠比を小さくして全系の光学全長を
短縮できる可能性を持つ。
By using the gradient index lens in this way, it is possible to reduce the Petzval sum in the second negative lens group, and thus it is possible that the telephoto ratio of the relay section can be reduced and the total optical length of the entire system can be shortened. To have.

他方、第1正レンズ群を正レンズとし本実施例の様にレ
ンズの周辺に行くに従い屈折率が低くなる様な屈折率分
布を設けると望遠端の球面収差補正に有効であり、その
他の諸収差の補正も良好に行えるため第1正レンズ群を
1枚の屈折率分布型レンズで構成することができる。
On the other hand, if the first positive lens unit is a positive lens and a refractive index distribution is provided such that the refractive index becomes lower toward the periphery of the lens as in the present embodiment, it is effective for spherical aberration correction at the telephoto end, and other various Since the aberration can be corrected well, the first positive lens group can be composed of one gradient index lens.

また本実施例ではリレー部である第3正レンズ群を強い
望遠タイプとしたが第3正レンズ群にも屈折率分布型レ
ンズを上述の様に用いて望遠タイプの傾向をさらに強め
リレー部の望遠比を小さくし、ひいては全系の光学全長
を著しく短縮できた。
Further, in the present embodiment, the third positive lens group, which is the relay section, is of the strong telephoto type, but the gradient index type lens is also used for the third positive lens group as described above to further strengthen the tendency of the telephoto type. The telephoto ratio was reduced, and the total optical length of the entire system was significantly shortened.

本実施例の様にバリエータである第2負レンズ群に負の
ラジアルタイプの屈折率分布型レンズを使い、あるいは
更にリレーである第3正レンズ群の後群に負のラジアル
タイプの屈折率分布型レンズ、第3正レンズ群の前群に
ラジアル又はアクシアルタイプの屈折率分布型レンズを
用いた場合、本実施例と同様の仕様で均質の屈折率のレ
ンズを使用した場合には携帯性を表わす数値すなわち収
納時の全長(広角端の全長)を望遠端の焦点距離で除し
た値が普通0.85〜1であるのに対し、0.577と著しく小
さくできた。これは屈折率分布型レンズを使用すること
により初めて達成できた成果である。
As in the present embodiment, a negative radial type gradient index lens is used for the second negative lens group which is a variator, or a negative radial type gradient index distribution is used for the rear group of the third positive lens group which is a relay. When a radial lens or an axial type gradient index lens is used for the front lens group of the positive lens group and the third positive lens group, the portability is improved when a lens having a uniform refractive index with the same specifications as this embodiment is used. The value shown, that is, the total length at the time of storage (the total length at the wide-angle end) divided by the focal length at the telephoto end is usually 0.85 to 1, but it can be made as small as 0.577. This is the first achievement achieved by using a gradient index lens.

第13図に描く実施例7は物体側より、変倍中固定の第1
正レンズ群、変倍中光軸方向に移動し変倍に寄与する第
2負レンズ群、変倍中光軸方向に移動してピント移動を
補正する第3正レンズ群及び変倍中固定の第4正レンズ
群で構成されるズームレンズの第2負レンズ群、いわゆ
るバリエータの物体側に光軸方向に物体側から像側へ向
けて屈折率が低下する様な屈折率分布を有するアクシア
ルタイプの屈折率分布型レンズを設け、像側に半径方向
に光軸から外周にかけて屈折率が高くなる様な屈折率分
布を有するラジアルタイプの屈折率分布型レンズを使用
している。
The seventh embodiment illustrated in FIG. 13 is the first from the object side, which is fixed during zooming.
A positive lens group, a second negative lens group that moves in the optical axis direction during zooming and contributes to zooming, a third positive lens group that moves in the optical axis direction during zooming to correct focus movement, and a fixed lens during zooming. The second negative lens group of the zoom lens including the fourth positive lens group, an axial type having a refractive index distribution such that the refractive index decreases toward the object side of the so-called variator in the optical axis direction from the object side toward the image side. The gradient index lens is used, and a radial type gradient index lens having a refractive index distribution in which the refractive index increases in the radial direction from the optical axis to the outer periphery on the image side is used.

像側の負レンズはレンズ内部でもパワーを分担している
ため、均質材質のレンズを使う場合に比して屈折面の曲
率は遥かに緩くなっている。
Since the negative lens on the image side also shares the power inside the lens, the curvature of the refracting surface is much gentler than when a lens made of a homogeneous material is used.

また物体側の負レンズが上記の様な屈折率分布を持って
いると像側の強い凹面で外周にいくに従って屈折率が小
さくなるのでオーバー方向の球面収差の発生が小さく球
面収差の補正に有効である。そしてこの特徴と、オーバ
ー方向に発生し勝ちな球面収差を像側の負レンズ(ラジ
アルタイプ)の内部の屈折率分布を制御することにより
光が該レンズを進行中にアンダー方向へ補正する作用を
有することから、通常のバリエータにはかならず設けら
れている接合面が不要となり、枚数の削減やバリエータ
の全長の短縮を図ることができた。
If the negative lens on the object side has the above-mentioned refractive index distribution, the strong concave surface on the image side decreases the refractive index toward the outer circumference, so spherical aberration in the over direction is small and effective for correcting spherical aberration. Is. And this feature and the effect of correcting the spherical aberration that tends to occur in the over direction to the under direction while the lens is traveling by controlling the refractive index distribution inside the negative lens (radial type) on the image side. Since it has such a structure, the joining surface, which is always provided in a normal variator, becomes unnecessary, and the number of sheets and the total length of the variator can be shortened.

以上各実施例の説明の部分に述べた様に第2負レンズ群
に屈折率分布型レンズを使用することで優れた効果を上
げることができるが、それらを統括的に述べれば次の通
りである。
As described above in the description of each example, the use of the gradient index lens in the second negative lens group can achieve excellent effects. However, the overall description is as follows. is there.

1)レンズ群の構成枚数を削減することができるので軽
量化、コンパクト化が計れる。2)構成枚数を削減する
ことができ該レンズ群の長さを小さくできるので第2負
レンズ群と他のレンズ群の間のスペースに余裕が生じ移
動群の移動範囲を大きくすることができるため、高変倍
率が容易に達成できる。3)構成枚数を削減することが
できるので第2負レンズ群と他のレンズ群の間の主点間
隔を小さくすることができ、全長を著しく短縮する様な
パワー配置とすることができる。4)又、第1−第2レ
ンズ群間の主点間隔を小さくできるため、軸外光束に必
要な前玉有効径が小さくなりレンズ外径、フイルター径
を小さくできる。5)各レンズ群で収差をより小さく補
正できるので変倍による収差変動が小さい可変焦点距離
レンズを達成することができる。6)ペツツバール和の
発生が小さいので第2負レンズ群のパワーを強くするこ
とができ、全長を短縮することができる。
1) Since the number of lens groups can be reduced, weight and size can be reduced. 2) Since the number of constituent lenses can be reduced and the length of the lens group can be reduced, a space is provided between the second negative lens group and another lens group, and the moving range of the moving group can be increased. High magnification can be easily achieved. 3) Since the number of constituent lenses can be reduced, the principal point distance between the second negative lens group and the other lens groups can be reduced, and the power arrangement can be shortened to significantly reduce the overall length. 4) Further, since the principal point distance between the first and second lens groups can be made small, the effective diameter of the front lens necessary for the off-axis light beam can be made small, and the lens outer diameter and the filter diameter can be made small. 5) Since the aberration can be corrected to be smaller in each lens group, it is possible to achieve a variable focal length lens in which variation in aberration due to zooming is small. 6) Since the occurrence of Petzval sum is small, the power of the second negative lens unit can be increased and the total length can be shortened.

この様にして本発明では物体側より順に第1レンズ群を
正レンズ群、第2レンズ群を負レンズ群で構成し、第1
正レンズ群と第2負レンズ群の間隔及び第2負レンズ群
と第3レンズ群の間隔を変化させて変倍を行なう可変焦
点距離レンズの少くとも第2負レンズ群中に、不均質媒
質でてきた屈折率分布型レンズを用いることにより高性
能で軽量コンパクト、さらには高倍率の可変焦点距離レ
ンズを達成した。さらに上記タイプの可変焦点距離レン
ズに於いて構造が簡単で組立調整の容易な可変焦点距離
レンズを達成した。
As described above, in the present invention, the first lens group is composed of the positive lens group and the second lens group is composed of the negative lens group in order from the object side.
An inhomogeneous medium is included in at least the second negative lens group of the variable focal length lens that performs zooming by changing the distance between the positive lens group and the second negative lens group and the distance between the second negative lens group and the third lens group. We have achieved a high-performance, lightweight, compact, and high-magnification variable focal length lens by using the graded index lens. Further, in the variable focal length lens of the above type, a variable focal length lens having a simple structure and easy to assemble and adjust has been achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例を示すレンズ断面図。第2
図は収差曲線図。第3図は第2実施例を示すレンズ断面
図。第4図は収差曲線図。第5図は第3実施例を示すレ
ンズ断面図。第6図は収差曲線図。第7図は第4実施例
を示すレンズ断面図。第8図は収差曲線図。第9図は第
5実施例を示すレンズ断面図。第10図は収差曲線図。第
11図は第6実施例を示すレンズ断面図。第12図は収差曲
線図。第13図は第7実施例を示すレンズ断面図。第14図
は収差曲線図。 図中 11,12,31,41,51,61,71;第1レンズ群 12,22,32,42,52,62,72;第2レンズ群 13,23,33,43,53,63,73;第3レンズ群 14,24,41,44,54,74;第4レンズ群 Z1,Z2,Z3;ズーミング中の移動を展開して表わした軌
跡 M;メリデイオナル焦線 S;サジタル焦線
FIG. 1 is a lens sectional view showing a first embodiment of the present invention. Second
The figure is an aberration curve diagram. FIG. 3 is a lens cross-sectional view showing a second embodiment. FIG. 4 is an aberration curve diagram. FIG. 5 is a lens sectional view showing a third embodiment. FIG. 6 is an aberration curve diagram. FIG. 7 is a lens sectional view showing a fourth embodiment. FIG. 8 is an aberration curve diagram. FIG. 9 is a lens sectional view showing a fifth embodiment. Fig. 10 is an aberration curve diagram. First
FIG. 11 is a lens cross section showing a sixth embodiment. Figure 12 is an aberration curve diagram. FIG. 13 is a lens sectional view showing a seventh embodiment. Figure 14 is an aberration curve diagram. In the figure 11,12,31,41,51,61,71; first lens group 12,22,32,42,52,62,72; second lens group 13,23,33,43,53,63, 73; third lens group 14,24,41,44,54,74; fourth lens group Z 1 , Z 2 , Z 3 ; locus of expansion during movement M; meridional focal line S; sagittal Focal line

フロントページの続き (72)発明者 服部 純 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 須田 繁幸 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (56)参考文献 特開 昭58−202420(JP,A) 特開 昭58−220115(JP,A)Front page continuation (72) Inventor Jun Hattori 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Shigeyuki Suda 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-58-202420 (JP, A) JP-A-58-220115 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に正屈折力の第1レンズ群、
負屈折力の第2レンズ群、そして後続のレンズ群で構成
し、前記第1レンズ群と前記第2レンズの間隔及び前記
第2レンズ群と前記後続のレンズ群の間隔を変化させて
変倍を行うズームレンズに於いて、前記第2レンズ群は
他のレンズと光軸を共有し光軸から外周にかけて屈折率
が徐々に高く、かつ光軸近傍に於ける短波長側の屈折率
勾配の値が長波長側の屈折率勾配の値よりも小さい屈折
率分布型レンズを有することを特徴とするズームレン
ズ。
1. A first lens group having a positive refractive power in order from the object side,
The second lens group having negative refracting power and the subsequent lens group, and varying the distance between the first lens group and the second lens and the distance between the second lens group and the subsequent lens group In the zoom lens for performing the above, the second lens group shares the optical axis with other lenses, the refractive index is gradually increased from the optical axis to the outer periphery, and the refractive index gradient on the short wavelength side near the optical axis is A zoom lens having a gradient index lens having a value smaller than the value of the refractive index gradient on the long wavelength side.
JP60013178A 1984-11-26 1985-01-25 Zoom lenses Expired - Lifetime JPH071332B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60013178A JPH071332B2 (en) 1985-01-25 1985-01-25 Zoom lenses
US06/800,553 US5054898A (en) 1984-11-26 1985-11-21 Compact high-range varifocal objectives
DE3546744A DE3546744C2 (en) 1984-11-26 1985-11-25
DE19853541583 DE3541583A1 (en) 1984-11-26 1985-11-25 Compact varifocal lens having a wide range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013178A JPH071332B2 (en) 1985-01-25 1985-01-25 Zoom lenses

Publications (2)

Publication Number Publication Date
JPS61172110A JPS61172110A (en) 1986-08-02
JPH071332B2 true JPH071332B2 (en) 1995-01-11

Family

ID=11825928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013178A Expired - Lifetime JPH071332B2 (en) 1984-11-26 1985-01-25 Zoom lenses

Country Status (1)

Country Link
JP (1) JPH071332B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906079A (en) * 1987-05-20 1990-03-06 Olympus Optical Co., Ltd. Zoom lens system
JP2947475B2 (en) * 1988-09-22 1999-09-13 オリンパス光学工業株式会社 Zoom lens
JPH02285312A (en) * 1989-04-27 1990-11-22 Olympus Optical Co Ltd Optical system
US5321552A (en) * 1990-02-08 1994-06-14 Canon Kabushiki Kaisha Rear-focus-type zoom lens equipped with index-distribution-type lens
JP5247212B2 (en) * 2008-04-02 2013-07-24 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP6269861B2 (en) 2014-12-26 2018-01-31 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712967B2 (en) * 1973-12-07 1982-03-13
AT334655B (en) * 1975-08-11 1976-01-25 Eumig PANRATIC LENS
JPS5229238A (en) * 1975-08-30 1977-03-04 Olympus Optical Co Ltd Inside-view mirror objective optical system
US4394072A (en) * 1980-12-05 1983-07-19 Vivitar Corporation Zoom lens
JPS58100810A (en) * 1981-12-11 1983-06-15 Asahi Optical Co Ltd Compact zoom lens
JPS58202420A (en) * 1982-05-20 1983-11-25 Kino Seimitsu Kogyo Kk Telephoto zoom lens
JPS58220115A (en) * 1982-06-17 1983-12-21 Canon Inc Wide angle lens system
JPS59149312A (en) * 1983-02-16 1984-08-27 Asahi Optical Co Ltd Photographic lens of high aperture ratio

Also Published As

Publication number Publication date
JPS61172110A (en) 1986-08-02

Similar Documents

Publication Publication Date Title
JP2538526B2 (en) Zoom lens
US4516839A (en) Zoom lens system
JPH0668573B2 (en) Variable focal length lens
JPH09325274A (en) Zoom lens
JPH071333B2 (en) Variable focal length lens
JP3397440B2 (en) Zoom lens
JPH045168B2 (en)
JPH0642018B2 (en) Zoom lenses
JP2569302B2 (en) Compact zoom lens
JP3412908B2 (en) Zoom lens
JPH0444724B2 (en)
JPH0414763B2 (en)
JPS61126515A (en) Lens with variable focal length
JPH071332B2 (en) Zoom lenses
JPH06308383A (en) Intermediate telephoto lens for underwater camera
JPH0721581B2 (en) Zoom lenses
JPS6144288B2 (en)
JPH0640170B2 (en) High-magnification wide-angle zoom lens
JP4361304B2 (en) Macro lens
JPS6143687B2 (en)
JPH07261084A (en) Zoom lens
JP2002323657A (en) Zoom lens
US4063801A (en) Telephoto type objective
JPH03136014A (en) Telephoto zoom lens
JPH07140390A (en) Variable power lens

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term