JPH07133200A - Production of metallic chalcogenide compound super lattice - Google Patents

Production of metallic chalcogenide compound super lattice

Info

Publication number
JPH07133200A
JPH07133200A JP27557293A JP27557293A JPH07133200A JP H07133200 A JPH07133200 A JP H07133200A JP 27557293 A JP27557293 A JP 27557293A JP 27557293 A JP27557293 A JP 27557293A JP H07133200 A JPH07133200 A JP H07133200A
Authority
JP
Japan
Prior art keywords
thin film
substrate
chalcogenide
ion
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27557293A
Other languages
Japanese (ja)
Inventor
Masahiro Matsui
正宏 松井
Takashi Namikata
尚 南方
Takayuki Watanabe
隆行 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP27557293A priority Critical patent/JPH07133200A/en
Publication of JPH07133200A publication Critical patent/JPH07133200A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Abstract

PURPOSE:To obtain a super lattice structure without using expensive equipment such as thin film is grown under ultra-high vacuum by using plural growing baths different from each other in composition of a chalcogenide ion and a metallic ion and forming a thin film in a specific condition. CONSTITUTION:A metallic chalcogenide compound laminated body is produced by forming successively two or more kinds of the metallic chalcogenide compound thin film having 3Angstrom to 500Angstrom film thickness on the surface of a substrate from two or more kinds of solutions different from each other in composition of the chalcogenide ion and the metallic ion. As the thin film growing method, for example, a method for growing the thin film by preparing individually a metallic ion solution and a chalcogenide containing solution, mixing and reacting both solutions just before thin film growing and bringing the resulting product into contact with the substrate, and a method for growing the thin film on the surface of the substrate by dipping the substrate after mixing both solutions and accelerating the reaction by heating or adding a pH regular are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種複合材料だけでな
く、光センサー、太陽電池などの高効率光電変換材料、
発光素子などの半導体素子に利用することのできる金属
カルコゲナイド化合物超格子の製造方法に関する。
FIELD OF THE INVENTION The present invention is applicable to not only various composite materials, but also high-efficiency photoelectric conversion materials such as photosensors and solar cells.
The present invention relates to a method for producing a metal chalcogenide compound superlattice that can be used for a semiconductor device such as a light emitting device.

【0002】[0002]

【従来の技術】従来、超格子を基本構造として、その量
子化効果に基づいた半導体素子は、高速演算素子、発光
材料、光電変換材料など幅広い半導体素子に応用され商
品化されている。この超格子構造はこれまで、MBE法
などの超高真空下での薄膜成長法によってのみ達成され
てきた。ところがこれらの方法では、装置が高価であ
り、装置に導入できる基板面積が限定されるなど製造上
の問題があった。
2. Description of the Related Art Conventionally, a semiconductor device based on a quantization effect using a superlattice as a basic structure has been commercialized by being applied to a wide range of semiconductor devices such as a high-speed arithmetic device, a light emitting material and a photoelectric conversion material. This superlattice structure has hitherto been achieved only by a thin film growth method under ultrahigh vacuum such as the MBE method. However, these methods have problems in manufacturing because the apparatus is expensive and the substrate area that can be introduced into the apparatus is limited.

【0003】[0003]

【発明が解決しようとする課題】本発明は、超高真空下
での薄膜成長を行うような高価な装置を使用せずに、超
格子構造を作製する方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a superlattice structure without using an expensive device for performing thin film growth under ultrahigh vacuum.

【0004】[0004]

【課題を解決するための手段】かかる状況下において、
本発明者らは、カルコゲナイドイオンと金属イオンを含
有する組成の異なる複数の成長浴を用い、基板表面に組
成の異なる金属カルコゲナイド化合物薄膜を、ケミカル
バスデポジション法によって順次形成することで半導体
超格子を作製できることを見いだし、本発明をなすに至
った。
[Means for Solving the Problems] Under such circumstances,
The present inventors used a plurality of growth baths having different compositions containing chalcogenide ions and metal ions to sequentially form metal chalcogenide compound thin films having different compositions on the substrate surface by a chemical bath deposition method to form a semiconductor superlattice. The inventors have found that they can be manufactured and have completed the present invention.

【0005】すなわち、本発明は、カルコゲナイドイオ
ンと金属イオンを含有する組成の異なる2種以上の溶液
から、基板表面に2種以上の膜厚3Å以上500Å以下
の金属カルコゲナイド化合物薄膜の形成を順次行って、
金属カルコゲナイド化合物積層体を作製することを特徴
とする金属カルコゲナイド化合物超格子の製造方法であ
る。
That is, according to the present invention, two or more kinds of metal chalcogenide compound thin films having a film thickness of 3Å or more and 500Å or less are sequentially formed on a substrate surface from two or more kinds of solutions containing chalcogenide ions and metal ions having different compositions. hand,
A method for producing a metal chalcogenide compound superlattice, which comprises producing a metal chalcogenide compound laminate.

【0006】本発明における金属カルコゲナイド化合物
薄膜の製造は、形成する化合物の構成金属とカルコゲナ
イド元素を、それぞれイオンで基板上に供給して薄膜を
形成するケミカルバスデポジション法によるものであ
る。従って、薄膜成長は液相で行われる。成長条件を制
御することにより500Å以下の薄膜を形成することも
可能である。この方法で得られる薄膜は、低温(たとえ
ば100℃以下)においても結晶性を有する。本発明
は、前記したように、複数の組成の異なる成長浴を用
い、組成の異なる膜厚3Å以上500Å以下の金属カル
コゲナイド化合物薄膜を順次形成すると、得られた積層
体である薄膜が半導体超格子構造を採るという発見に基
づくものである。本発明の製造方法によれば、金属カル
コゲナイド化合物薄膜を液相から成長させるプロセス
(単位操作)の組み合わせによって、任意の構造の金属
カルコゲナイド化合物超格子構造を作製できる。通常、
金属カルコゲナイド化合物は半導体であることから任意
の構造の半導体超格子を形成することができる。半導体
超格子は、その量子化効果によってキャリア散乱抑制、
ミニバンドの形成を図ることができるため、この金属カ
ルコゲナイド化合物超格子を用いた素子も作製可能であ
る。
The metal chalcogenide compound thin film according to the present invention is manufactured by the chemical bath deposition method in which the constituent metal of the compound to be formed and the chalcogenide element are supplied as ions to the substrate to form a thin film. Therefore, thin film growth occurs in the liquid phase. It is also possible to form a thin film of 500 Å or less by controlling the growth conditions. The thin film obtained by this method has crystallinity even at a low temperature (for example, 100 ° C. or lower). As described above, according to the present invention, when a plurality of growth baths having different compositions are used to sequentially form metal chalcogenide compound thin films having different composition and having a film thickness of 3 Å or more and 500 Å or less, the obtained thin film is a semiconductor superlattice. It is based on the discovery of adopting a structure. According to the manufacturing method of the present invention, a metal chalcogenide compound superlattice structure having an arbitrary structure can be produced by a combination of processes (unit operations) for growing a metal chalcogenide compound thin film from a liquid phase. Normal,
Since the metal chalcogenide compound is a semiconductor, it can form a semiconductor superlattice having an arbitrary structure. The semiconductor superlattice suppresses carrier scattering due to its quantization effect,
Since a miniband can be formed, an element using this metal chalcogenide compound superlattice can be manufactured.

【0007】次に、この単位操作行程について説明す
る。溶液中に含有する金属イオンとカルコゲナイドイオ
ンが、基板表面または溶液中で反応することによって基
板表面に金属カルコゲナイド化合物薄膜が成長または析
出する。この金属カルコゲナイド化合物として、たとえ
ば、CdS、CdSe、CdTe、ZnS、ZnSe、
ZnTeなどのII属−VI属化合物およびこれらの混晶、
硫化ビスマス、セレン化ビスマス、硫化アンチモン、セ
レン化アンチモンなどのV属−VI属化合物およびこれら
の混晶、硫化スズ、セレン化スズ、硫化鉛、セレン化鉛
などのIV属−VI属化合物およびこれらの混晶、銅インジ
ウム硫黄、銅インジウムセレン、銀インジウムセレン、
銀インジウム硫黄、銅ガリウム硫黄、銅ガリウムセレ
ン、銅アルミ硫黄、銅アルミセレン、銀ガリウム硫黄、
銀ガリウムセレンなどのI属−III 属−VI属化合物およ
びこれらの混晶などを挙げることができる。
Next, the unit operation process will be described. The metal ion contained in the solution and the chalcogenide ion react with each other on the surface of the substrate or in the solution to grow or deposit a metal chalcogenide compound thin film on the surface of the substrate. Examples of the metal chalcogenide compound include CdS, CdSe, CdTe, ZnS, ZnSe,
Group II-VI compounds such as ZnTe and mixed crystals thereof,
Group V-VI compounds such as bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide, and mixed crystals thereof, Group IV-VI compounds such as tin sulfide, tin selenide, lead sulfide, and lead selenide, and these Mixed crystal of, copper indium sulfur, copper indium selenium, silver indium selenium,
Silver indium sulfur, copper gallium sulfur, copper gallium selenium, copper aluminum sulfur, copper aluminum selenium, silver gallium sulfur,
Examples thereof include Group I-Group III-VI compounds such as silver gallium selenium, and mixed crystals thereof.

【0008】これらの化合物薄膜を成長させるために、
溶液は少なくとも金属イオン、カルコゲナイドイオンを
含む。この金属イオンは、形成する半導体組成によって
異なるため限定されないが、供給源としては、金属の塩
化物、臭化物、ヨウ化物、硝酸塩、亜硝酸塩、硫酸塩、
酢酸塩、トリフルオロ酢酸塩、クエン酸塩、酒石酸塩、
アルコラートなどいずれも使用可能である。カルコゲナ
イドイオンとしては、例えば、サルファイドイオン(S
2-)供給源として、硫化水素、SCl2 、SBr2 、S
2 、チオ酢酸、2−チオアデニン、チオアニソール、
チオバルビツール酸、チオベンズアミド、チオ安息香
酸、チオベンゾイルチオグリコール酸、チオベンジルア
ルコール、チオ尿素、チオカルバミル、チオカルバニリ
ド、チオカルボジヒドラド、チオクレゾール、チオクト
酸、チオ2酢酸、チオジアラニン、チオジエタノール、
チオフェノール、チオアセトアミド、チオシナミンなど
があるが、中でも硫化水素、SCl2 、SBr2 、SI
2 、チオ酢酸、チオ尿素、チオアセトアミド、チオシナ
ミンなどが好ましい。また、セレナイドイオン(S
2-)供給源として、例えば、セレン化水素、塩化セレ
ン、臭化セレン、ヨウ化セレン、セレノフェノール、セ
レノウレア、亜セレン酸など、テルライドイオン(Te
2-)供給源としては、テルル化水素、塩化テルル、臭化
テルル、ヨウ化テルルなどを挙げることができる。
In order to grow these compound thin films,
The solution should contain at least metal ions and chalcogenide ions.
Including. This metal ion depends on the semiconductor composition to be formed.
Sources include, but are not limited to, different metal salts.
Chloride, bromide, iodide, nitrate, nitrite, sulfate,
Acetate, trifluoroacetate, citrate, tartrate,
Any of alcoholate and the like can be used. Chalcogena
Examples of the id ions include sulfide ions (S
2-) Hydrogen sulfide, SCl as a supply source2, SBr2, S
I2, Thioacetic acid, 2-thioadenine, thioanisole,
Thiobarbituric acid, thiobenzamide, thiobenzoic acid
Acid, thiobenzoyl thioglycolic acid, thiobenzyl acetate
Rucor, thiourea, thiocarbamyl, thiocarbanil
De, thiocarbodihydrado, thiocresol, thiocto
Acid, thiodiacetic acid, thiodialanine, thiodiethanol,
Thiophenol, thioacetamide, thiocinamine, etc.
There are, among others, hydrogen sulfide, SCl2, SBr2, SI
2, Thioacetic acid, thiourea, thioacetamide, thiosina
Min and the like are preferable. In addition, selenide ion (S
e 2-) As a supply source, for example, hydrogen selenide, selenium chloride
Selenium, selenium bromide, selenium iodide, selenophenol, selenium
Telluride ion (Te
2-) Sources include hydrogen telluride, tellurium chloride, bromide
Tellurium, tellurium iodide and the like can be mentioned.

【0009】これら金属イオンやカルコゲナイドイオン
の供給源を溶解する溶媒として、水、メタノール、エタ
ノール、プロパノール、エチレングリコール、グリセリ
ン、ホルマリン、ジメチルホルムアミド、ジメチルスル
フォキシド、プロピレンカーボネート、エチレンカーボ
ネート、ブチルラクトン、酢酸、ベンゼン、トルエン、
キシレン、ジクロロメタン、クロロホルム、四塩化炭
素、二硫化炭素などの溶媒またはこれらの混合溶媒を用
いることができる。これらの中から使用する金属イオン
やカルコゲナイドイオンの供給源の種類に応じて溶解し
やすい溶媒を選択すればよいが、例えば、水、メタノー
ル、エタノール等は、上記供給源の多種類が可溶であり
好ましい溶媒である。必要があれば、上記金属イオンお
よびカルコゲナイドイオンの供給源以外に、溶液の安定
化のため錯化剤や塩を添加することができる。
As a solvent for dissolving these metal ion and chalcogenide ion sources, water, methanol, ethanol, propanol, ethylene glycol, glycerin, formalin, dimethylformamide, dimethylsulfoxide, propylene carbonate, ethylene carbonate, butyl lactone, Acetic acid, benzene, toluene,
A solvent such as xylene, dichloromethane, chloroform, carbon tetrachloride, carbon disulfide, or a mixed solvent thereof can be used. From these, a solvent that is easily soluble may be selected according to the type of metal ion or chalcogenide ion source used, but for example, water, methanol, ethanol, etc. are soluble in many types of the above source. It is a preferable solvent. If necessary, a complexing agent or a salt can be added to stabilize the solution, in addition to the sources of the above metal ions and chalcogenide ions.

【0010】金属カルコゲナイド薄膜の成長速度、飽和
膜厚等は金属イオン、カルコゲナイドイオンの溶液中濃
度、反応液温度および溶液のpH(プロトン性溶媒の場
合)によって制御できることから、条件毎に成長時間を
調整することにより膜厚を制御することができる。本発
明において金属イオンやカルコゲナイドイオンの溶液中
濃度に特に制限はないが、好ましい範囲としては0.0
1mM以上、10M以下が挙げられる。また、好ましい
反応液温度は溶液の種類によって異なるが、低すぎると
成長速度が極端に小さくなり、高すぎると溶媒の蒸発が
激しくなることから、通常、20℃以上90℃以下で行
われる。また、溶液のpHについては5以上14以下が
好ましく、適当な成長速度で欠陥のより少ない薄膜が得
られることから6.5以上12.5以下がより好まし
い。
Since the growth rate of the metal chalcogenide thin film, the saturated film thickness and the like can be controlled by the concentration of the metal ion and the chalcogenide ion in the solution, the temperature of the reaction solution and the pH of the solution (in the case of a protic solvent), the growth time depends on each condition. The film thickness can be controlled by adjusting. In the present invention, the concentration of the metal ion or chalcogenide ion in the solution is not particularly limited, but the preferable range is 0.0
It is 1 mM or more and 10 M or less. The preferred reaction liquid temperature varies depending on the type of the solution, but if it is too low, the growth rate will be extremely low, and if it is too high, the evaporation of the solvent will be violent, so it is usually carried out at 20 ° C or higher and 90 ° C or lower. The pH of the solution is preferably 5 or more and 14 or less, and more preferably 6.5 or more and 12.5 or less because a thin film with fewer defects can be obtained at an appropriate growth rate.

【0011】本発明の薄膜成長の方法として、例えば、
金属イオン溶液とカルコゲナイドイオン含有溶液をそれ
ぞれ独立に調整し、薄膜成長直前に両液を混合反応させ
て基板に接触させ薄膜成長する方法、上記の両液を混合
後、基板を浸漬しておき、加熱やpH調整剤の添加によ
り反応を促進し、基板表面に薄膜を成長させる方法など
を用いることができる。加熱によって薄膜成長を促進す
る場合、加熱した溶液に基板を浸漬する方法、加熱した
基板を溶液に浸漬する方法のいずれも可能である。この
薄膜成長工程を繰り返し行うことによって、組成の異な
る金属カルコゲナイド化合物薄膜の積層を行い、超格子
構造を構築することができる。その場合、組成の異なる
金属カルコゲナイド化合物薄膜の一層ずつの膜厚は3Å
以上500Å以下、好ましくは3Å以上200Å以下に
なるようにする。
As the thin film growth method of the present invention, for example,
Independently adjusting the metal ion solution and the chalcogenide ion-containing solution, a method of mixing and reacting both solutions immediately before thin film growth to bring them into contact with the substrate to grow a thin film, after mixing the above two solutions, dipping the substrate in advance, A method of accelerating the reaction by heating or adding a pH adjuster to grow a thin film on the surface of the substrate can be used. When the thin film growth is promoted by heating, both a method of immersing the substrate in the heated solution and a method of immersing the heated substrate in the solution are possible. By repeating this thin film growth step, metal chalcogenide compound thin films having different compositions can be stacked to construct a superlattice structure. In that case, the thickness of each metal chalcogenide compound thin film having a different composition is 3Å
It should be 500 Å or more, preferably 3 Å or more and 200 Å or less.

【0012】なお、本発明において、薄膜成長時に、溶
液に超音波または音波を印加すると、溶液反応による析
出物が基板表面に付着するのを防ぎ、面内欠陥の少な
い、良質の金属カルコゲナイド化合物超格子を作製でき
るので好ましい。本発明の製造方法による半導体超格子
の構成例として、たとえば、CdS/ZnS積層膜、Z
nS/ZnSe積層膜、CdS/CdSe積層膜を挙げ
ることができる。これらの積層膜は、超格子構造の特徴
を利用して、光学材料、光電変換材料、発光材料、レー
ザー、トランジスタなどの素子に用いることができる。
In the present invention, when an ultrasonic wave or a sound wave is applied to the solution during the growth of the thin film, deposits due to the solution reaction are prevented from adhering to the surface of the substrate, and a high quality metal chalcogenide compound with few in-plane defects is produced. It is preferable because a lattice can be produced. Examples of the configuration of the semiconductor superlattice according to the manufacturing method of the present invention include, for example, a CdS / ZnS laminated film, Z
An nS / ZnSe laminated film and a CdS / CdSe laminated film can be mentioned. These laminated films can be used for devices such as optical materials, photoelectric conversion materials, light emitting materials, lasers, and transistors by utilizing the characteristics of the superlattice structure.

【0013】[0013]

【実施例】以下に、この本発明の実施例を具体的に説明
する。なお、膜厚は膜厚測定装置(Sloan社製 D
ektak IIA)を用いて測定した。光透過率は吸光
光度計((株)島津製作所製 UV−3101PC)を
用いて測定した。
EXAMPLES Examples of the present invention will be specifically described below. The film thickness is measured by a film thickness measuring device (D manufactured by Sloan Co.).
ektak IIA). The light transmittance was measured using an absorptiometer (UV-3101PC manufactured by Shimadzu Corporation).

【0014】[0014]

【実施例1】硫酸カドミウム水溶液(1mM)と硫酸ア
ンモニウム(5mM)を含有するチオ尿素水溶液(3m
M)を別々に調製、混合後アンモニア水を添加してpH
10に調整した。この溶液を分取して石英ガラス基板を
浸漬、70℃に加熱して石英基板上にCdS薄膜を20
分間成長させた。ついで硫酸亜鉛水溶液(1mM)と、
硫酸アンモニウム(3mM)、トリエタノールアミン
(3mM)、チオ尿素(10mM)を含有する水溶液を
別々に調製、両液を混合後、混合溶液を分取しアンモニ
ア水を添加してpH10に調整した後、CdSを形成し
た基板を浸漬、90℃に加熱して表面にZnS薄膜を2
0分間成長させた。次に、同様にしてCdS薄膜成長、
ZnS薄膜成長を10回繰り返し、(CdS/ZnS)
10積層膜を作製した。この積層膜の膜厚測定の結果、1
500Åであった。この積層膜の光透過率スペクトルを
測定した結果、500nmより短波長側で透過率の低下
が始まるが、500nmから350nmの間の波長領域
には複数のこぶ状ピークがみられ、さらに短波長ではほ
とんど光を透過しないという透過率変化のパターンが得
られた。このことから、本積層膜が超格子構造を有し、
それによって、CdS層の部分にミニバンドが形成され
たことがわかる。
Example 1 A thiourea aqueous solution (3 m) containing an aqueous cadmium sulfate solution (1 mM) and ammonium sulfate (5 mM).
M) was prepared separately, and after mixing, ammonia water was added to adjust the pH.
Adjusted to 10. This solution is sampled, the quartz glass substrate is immersed, and heated to 70 ° C. to form a CdS thin film on the quartz substrate 20 times.
Grow for minutes. Then, zinc sulfate aqueous solution (1 mM),
Aqueous solutions containing ammonium sulfate (3 mM), triethanolamine (3 mM) and thiourea (10 mM) were separately prepared, and after mixing both solutions, the mixed solution was fractionated and ammonia water was added to adjust the pH to 10, The substrate on which CdS is formed is immersed and heated to 90 ° C. to form a ZnS thin film on the surface.
Grow for 0 minutes. Next, in the same manner, CdS thin film growth,
ZnS thin film growth was repeated 10 times to obtain (CdS / ZnS)
Ten laminated films were produced. As a result of measuring the film thickness of this laminated film, 1
It was 500Å. As a result of measuring the light transmittance spectrum of this laminated film, the transmittance starts to decrease on the shorter wavelength side than 500 nm, but a plurality of bumpy peaks are observed in the wavelength range between 500 nm and 350 nm, A pattern of transmittance change was obtained in which almost no light was transmitted. From this, this laminated film has a superlattice structure,
As a result, it can be seen that a miniband was formed in the CdS layer.

【0015】[0015]

【実施例2】塩化亜鉛水溶液(1mM)、硫酸アンモニ
ウム(5mM)を含有するチオ尿素(3mM)水溶液、
硫酸アンモニウム(5mM)を含有するセレノウレア
(3mM)水溶液をそれぞれ調製した。塩化亜鉛溶液、
チオ尿素溶液を分取した後混合、アンモニア水を添加し
てpH10に調整した。この溶液に石英基板を浸漬した
後、60℃に加熱して基板表面にZnS薄膜を20分間
成長させた。ついで、塩化亜鉛水溶液とセレノウレア水
溶液を分取混合後、アンモニア水添加によってpH10
に調整した。この溶液にZnSを成長させた基板を浸積
した後、溶液を70℃に加熱してZnSe薄膜を20分
間成長させた。前記工程を10回繰り返し、(ZnS/
ZnSe)10積層膜を作製した。この積層膜の膜厚測定
の結果、1300Åであった。この積層膜の光透過率ス
ペクトルを測定した結果、460nmより短波長側で透
過率の低下が始まるが、460nmから350nmの間
の波長領域には複数のこぶ状ピークがみられ、さらに短
波長ではほとんど光を透過しないという透過率変化のパ
ターンが得られた。このことから、本積層膜が超格子構
造を有し、それによって、ZnSe層部分にミニバンド
が形成されたことがわかる。
Example 2 Zinc chloride aqueous solution (1 mM), thiourea (3 mM) aqueous solution containing ammonium sulfate (5 mM),
An aqueous selenourea (3 mM) solution containing ammonium sulfate (5 mM) was prepared. Zinc chloride solution,
The thiourea solution was separated and mixed, and aqueous ammonia was added to adjust the pH to 10. A quartz substrate was immersed in this solution and then heated to 60 ° C. to grow a ZnS thin film on the substrate surface for 20 minutes. Then, the zinc chloride aqueous solution and the selenourea aqueous solution are preparatively mixed, and the pH is adjusted to 10 by adding aqueous ammonia.
Adjusted to. After immersing the substrate on which ZnS was grown in this solution, the solution was heated to 70 ° C. to grow a ZnSe thin film for 20 minutes. The above process is repeated 10 times to obtain (ZnS /
A ZnSe) 10 laminated film was prepared. As a result of measuring the film thickness of this laminated film, it was 1300Å. As a result of measuring the light transmittance spectrum of this laminated film, the transmittance starts to decrease on the shorter wavelength side than 460 nm, but a plurality of bumpy peaks are observed in the wavelength region between 460 nm and 350 nm, and at shorter wavelengths. A pattern of transmittance change was obtained in which almost no light was transmitted. From this, it can be seen that the present laminated film has a superlattice structure, and as a result, a miniband was formed in the ZnSe layer portion.

【0016】[0016]

【発明の効果】本発明の製造方法は、簡便な方法で、真
空装置を用いることなく超格子構造の薄膜の形成が可能
であり、反応装置によっては大面積の積層膜形成が容易
に行えることから、半導体素子工業上大いに有用であ
る。さらに本発明は、比較的低温で薄膜積層が行えるた
め、種々の基板に成膜できる利点も有する。
The manufacturing method of the present invention is a simple method and can form a thin film having a superlattice structure without using a vacuum device, and can easily form a large-area laminated film depending on the reaction device. Therefore, it is very useful in the semiconductor device industry. Further, the present invention has an advantage that thin films can be laminated at a relatively low temperature, and thus can be formed on various substrates.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01L 33/00 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // H01L 33/00 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カルコゲナイドイオンと金属イオンを含
有する組成の異なる2種以上の溶液から、基板表面に2
種以上の膜厚3Å以上500Å以下の金属カルコゲナイ
ド化合物薄膜の形成を順次行って、金属カルコゲナイド
化合物積層体を作製することを特徴とする金属カルコゲ
ナイド化合物超格子の製造方法。
1. A substrate surface is formed from two or more kinds of solutions containing chalcogenide ions and metal ions having different compositions.
A method for producing a metal chalcogenide compound superlattice, which comprises sequentially forming metal chalcogenide compound thin films having a film thickness of 3 Å or more and 500 Å or less to form a metal chalcogenide compound laminate.
JP27557293A 1993-11-04 1993-11-04 Production of metallic chalcogenide compound super lattice Withdrawn JPH07133200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27557293A JPH07133200A (en) 1993-11-04 1993-11-04 Production of metallic chalcogenide compound super lattice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27557293A JPH07133200A (en) 1993-11-04 1993-11-04 Production of metallic chalcogenide compound super lattice

Publications (1)

Publication Number Publication Date
JPH07133200A true JPH07133200A (en) 1995-05-23

Family

ID=17557327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27557293A Withdrawn JPH07133200A (en) 1993-11-04 1993-11-04 Production of metallic chalcogenide compound super lattice

Country Status (1)

Country Link
JP (1) JPH07133200A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158621A (en) * 1999-11-29 2001-06-12 Stanley Electric Co Ltd Method for forming film in liquid phase
JP2005304887A (en) * 2004-04-23 2005-11-04 Hochiki Corp Closed type sprinkler head
JP2008504676A (en) * 2004-06-28 2008-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Field effect transistor fabricated by wet chemical deposition
JP2011176204A (en) * 2010-02-25 2011-09-08 Kyocera Corp Method of manufacturing semiconductor layer, and method of manufacturing photoelectric conversion device
JP5071854B2 (en) * 2005-09-12 2012-11-14 独立行政法人科学技術振興機構 Fine particle-protein complex, method for producing the same, semiconductor device, and fluorescent labeling method
WO2013168567A1 (en) * 2012-05-07 2013-11-14 積水化学工業株式会社 Coating liquid for forming sulfide semiconductor, sulfide semiconductor thin film, and thin film solar cell
JP2015019088A (en) * 2009-05-26 2015-01-29 ユニバーシティ オブ ソウル インダストリー コーポレーション ファウンデーション Photodetector
WO2015068683A1 (en) * 2013-11-07 2015-05-14 積水化学工業株式会社 Coating material for forming semiconductors, semiconductor thin film, thin film solar cell and method for manufacturing thin film solar cell
US9397249B2 (en) 2009-07-06 2016-07-19 University Of Seoul Industry Cooperation Foundation Photodetector capable of detecting long wavelength radiation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158621A (en) * 1999-11-29 2001-06-12 Stanley Electric Co Ltd Method for forming film in liquid phase
JP4688115B2 (en) * 1999-11-29 2011-05-25 スタンレー電気株式会社 Method for forming film in liquid phase
JP2005304887A (en) * 2004-04-23 2005-11-04 Hochiki Corp Closed type sprinkler head
JP4511235B2 (en) * 2004-04-23 2010-07-28 ホーチキ株式会社 Closed sprinkler head
JP2008504676A (en) * 2004-06-28 2008-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Field effect transistor fabricated by wet chemical deposition
JP5071854B2 (en) * 2005-09-12 2012-11-14 独立行政法人科学技術振興機構 Fine particle-protein complex, method for producing the same, semiconductor device, and fluorescent labeling method
JP2015019088A (en) * 2009-05-26 2015-01-29 ユニバーシティ オブ ソウル インダストリー コーポレーション ファウンデーション Photodetector
US9397249B2 (en) 2009-07-06 2016-07-19 University Of Seoul Industry Cooperation Foundation Photodetector capable of detecting long wavelength radiation
JP2011176204A (en) * 2010-02-25 2011-09-08 Kyocera Corp Method of manufacturing semiconductor layer, and method of manufacturing photoelectric conversion device
WO2013168567A1 (en) * 2012-05-07 2013-11-14 積水化学工業株式会社 Coating liquid for forming sulfide semiconductor, sulfide semiconductor thin film, and thin film solar cell
WO2015068683A1 (en) * 2013-11-07 2015-05-14 積水化学工業株式会社 Coating material for forming semiconductors, semiconductor thin film, thin film solar cell and method for manufacturing thin film solar cell
JP5938486B2 (en) * 2013-11-07 2016-06-22 積水化学工業株式会社 Semiconductor forming coating liquid, semiconductor thin film, thin film solar cell, and method for manufacturing thin film solar cell
JPWO2015068683A1 (en) * 2013-11-07 2017-03-09 積水化学工業株式会社 Semiconductor forming coating liquid, semiconductor thin film, thin film solar cell, and method for manufacturing thin film solar cell

Similar Documents

Publication Publication Date Title
Froment et al. Phase formation processes in solution at the atomic level: Metal chalcogenide semiconductors
Dhanasekaran et al. Structural and optical properties of electrosynthesized ZnSe thin films
US6566162B2 (en) Method of producing Cu (In, Ga) (Se, S) 2 semiconductor film
Ates et al. Annealing and light effect on optical and electrical properties of ZnS thin films grown with the SILAR method
Loranca-Ramos et al. Structural, optical and electrical properties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition
Chander et al. Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells
JPH07133200A (en) Production of metallic chalcogenide compound super lattice
Gorska et al. CuInS2 films prepared by spray pyrolysis
Rami et al. Effect of the cadmium ion source on the structural and optical properties of chemical bath deposited CdS thin films
US5100832A (en) Process for preparing epitaxial compound semiconductor
De las Heras et al. Pyrite thin films: Improvements in their optical and electrical properties by annealing at different temperatures in a sulfur atmosphere
Thahab et al. The optical properties of CdxZn1− xS thin films on glass substrate prepared by spray pyrolysis method
Lindroos et al. Growth of zinc sulfide thin films by the successive ionic layer adsorption and reaction (SILAR) method on polyester substrates
JPH07133102A (en) Production of metallic chalcogenide film
Valkonen et al. CdxZn1− xS solid solution thin films, CdS thin films and CdS/ZnS multilayer thin films grown by SILAR technique
Khatri et al. A Comprehensive review on chemical bath deposited ZnS thin film
Hemathangam et al. Tuning of Band gap and photoluminescence properties of Zn doped Cu 2 S thin films by CBD method
Kassim et al. Effect of solution concentration on MnS2 thin films deposited in a chemical bath
Kassim et al. Effect of bath temperature on the chemical bath deposition of PbSe thin films
Kumar et al. Effect of Zn concentration on the structural, morphological and optical properties of ternary ZnCdS nanocrystalline thin films
Gunasekaran et al. Deposition of Cd1-xZnxS (0≤ x≤ 1) alloys by photochemical deposition
Ando et al. Metalorganic molecular‐beam epitaxy of ZnSe and ZnS
Markov et al. Thin Films of Wide Band Gap II-VI Semiconductor Compounds: Features of Preparation
Agarwal et al. Growth and properties of CuInS 2 thin films
Mohammad et al. Effect of cadmium sources on structural and optical properties of nanocrystalline CdS thin films prepared by CBD technique

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130