JPH07131906A - Power source switching system for electric vehicle - Google Patents

Power source switching system for electric vehicle

Info

Publication number
JPH07131906A
JPH07131906A JP5294589A JP29458993A JPH07131906A JP H07131906 A JPH07131906 A JP H07131906A JP 5294589 A JP5294589 A JP 5294589A JP 29458993 A JP29458993 A JP 29458993A JP H07131906 A JPH07131906 A JP H07131906A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
mode
units
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5294589A
Other languages
Japanese (ja)
Inventor
Yukichi Kobayashi
佑吉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5294589A priority Critical patent/JPH07131906A/en
Publication of JPH07131906A publication Critical patent/JPH07131906A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To prevent deterioration of a battery due to an overcurrent by switching a plurality of lithium secondary cells connected in series as a drive power source to a parallel connection at the time of coasting or regeneratively traveling by deciding a traveling mode of a motor operated vehicle. CONSTITUTION:A plurality of lithium secondary cell units 51 as a power source are connected in series by a switching circuit 52 during traveling mode of a motor operated vehicle thereby to drive a motor 54. When deciding means 53 decides alteration of the traveling mode to a coasting mode or a regenerative mode according to an output of an accelerator sensor or a brake sensor, the circuit 52 switches the units 51 from a series connection to a parallel connection according to a command 60 of a controller 56 to turn OFF the motor 54, to turn ON a generator 55, thereby charging the units 51. Thus, deteriorations of the units due to overcurrent charging are prevented, and lives of the units are prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電動車両の電源切り換
えシステムに関するものであり、詳しくは、リチウム二
次電池ユニットを並列に接続することによって充電を行
う、電動車両の電源切り換えシステムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power source switching system for an electric vehicle, and more particularly to a power source switching system for an electric vehicle which is charged by connecting lithium secondary battery units in parallel. is there.

【0002】[0002]

【従来の技術】従来より、駆動動力源として電池を搭載
した電動車両が知られている。電動車両において、モー
タの駆動は、直列または並列に二次電池を接続して行わ
れる。一方、二次電池に対する充電は、車速に応じて並
列または直列に二次電池を接続して充電機により行われ
る(特開平3−203501号公報)。
2. Description of the Related Art Conventionally, an electric vehicle equipped with a battery as a driving power source is known. In an electric vehicle, a motor is driven by connecting secondary batteries in series or in parallel. On the other hand, the charging of the secondary battery is performed by a charger by connecting the secondary batteries in parallel or in series according to the vehicle speed (Japanese Patent Laid-Open No. 3-203501).

【0003】[0003]

【発明が解決しようとする課題】従来の充電方式は、車
速に応じて並列または直列の電源方式が決定されるため
充電が良好に行われるが、過充電に弱いリチウム二次電
池においては大きな問題となる。すなわち、従来の充電
方式ではリチウム二次電池の劣化が著しく、実際の使用
には耐え得ない。特に、エネルギーの有効利用を図るた
め、ブレーキ等による制動状態(回生制動状態)に入っ
た時は、その慣性走行のエネルギーを電気として回収す
るために急速充電状態となる。
In the conventional charging method, the parallel or series power supply method is determined according to the vehicle speed, so that the charging is favorably performed, but it is a serious problem in the lithium secondary battery which is vulnerable to overcharging. Becomes In other words, the conventional charging method causes significant deterioration of the lithium secondary battery and cannot withstand actual use. In particular, in order to effectively use energy, when a braking state (regenerative braking state) is entered by a brake or the like, a rapid charging state is set in order to recover the energy of the inertial running as electricity.

【0004】更に、自動車の運転においては、加速、減
速が頻繁に繰り返えされるため、リチウム二次電池のダ
メージは一層大きなものとなる。本発明は、斯かる実情
に鑑みなされたものであり、その目的は、充電時のリチ
ウム二次電池の劣化を防止し、充電を比較的良好に行な
って電池寿命を延ばすことの出来る、電動車両の電源切
り換えシステムを提供することにある。
Further, in the operation of a vehicle, acceleration and deceleration are frequently repeated, so that the lithium secondary battery is further damaged. The present invention has been made in view of the above circumstances, and an object thereof is to prevent deterioration of a lithium secondary battery at the time of charging and to perform charging relatively well to extend battery life. To provide a power supply switching system.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記の目的
を達成すべく鋭意検討を行った結果、慣性走行時または
回生制動時のリチウム二次電池の接続を並列接続に切り
換えることにより、過充電によるリチウム二次電池の劣
化を有効に防止することが出来ることを見出し、本発明
を完成するに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventor has switched the connection of the lithium secondary battery to parallel connection during inertial running or regenerative braking, The inventors have found that the deterioration of the lithium secondary battery due to overcharge can be effectively prevented, and have completed the present invention.

【0006】すなわち、本発明の要旨は、電動車両の電
源としての複数のリチウム二次電池ユニットと、走行モ
ード、慣性走行モード及び回生制動モードをそれぞれ判
別する判別手段と、当該判別手段からの情報により前記
複数のリチウム二次電池ユニットの接続状態を直列接続
から並列接続に又は並列接続から直列接続に切り換える
切換回路と、当該切換回路を介して複数のリチウム二次
電池ユニットと接続されているモータ及び発電機から成
る電動車両の電源切り換えシステムにおいて、慣性走行
モード又は回生制動モード時に、複数のリチウム二次電
池ユニットを並列接続にしてリチウム二次電池の充電を
行うことを特徴とする電動車両の電源切り換えシステム
に存する。
That is, the gist of the present invention is to provide a plurality of lithium secondary battery units as a power source for an electric vehicle, a discriminating means for discriminating a traveling mode, an inertial traveling mode and a regenerative braking mode, and information from the discriminating means. A switching circuit for switching the connection state of the plurality of lithium secondary battery units from series connection to parallel connection or from parallel connection to series connection, and a motor connected to the plurality of lithium secondary battery units via the switching circuit. In a power source switching system for an electric vehicle including a generator, a lithium secondary battery is charged by connecting a plurality of lithium secondary battery units in parallel in an inertial running mode or a regenerative braking mode. It exists in the power supply switching system.

【0007】[0007]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。図1は、本発明に係る電動車両の電源切り換
えシステムの一例を示す説明図、図2は、ブレーキセン
サーの一例を示す説明図、図3は、リチウム二次電池ユ
ニットの並列および直列接続様式の一例を示す説明図、
図4は、リチウム二次電池の一例の説明図、図5は、図
4に示すリチウム二次電池の要部の説明図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an explanatory diagram showing an example of a power supply switching system for an electric vehicle according to the present invention, FIG. 2 is an explanatory diagram showing an example of a brake sensor, and FIG. 3 is a parallel and series connection mode of lithium secondary battery units. Explanatory diagram showing an example,
FIG. 4 is an explanatory diagram of an example of the lithium secondary battery, and FIG. 5 is an explanatory diagram of a main part of the lithium secondary battery shown in FIG.

【0008】先ず、リチウム二次電池について説明す
る。リチウム二次電池は、例えば、正極活物質として、
Liイオンと特定の金属から成る複合金属酸化物を用
い、負極活物質として炭素質材料を用い、正極と負極と
の間に隔膜を介して積層電極となし、電解液としてLi
塩を溶解した非プロトン性有機溶媒を使用して構成され
る。
First, the lithium secondary battery will be described. The lithium secondary battery, for example, as a positive electrode active material,
A composite metal oxide composed of Li ions and a specific metal is used, a carbonaceous material is used as a negative electrode active material, and a laminated electrode is formed with a diaphragm between the positive electrode and the negative electrode.
It is constructed using an aprotic organic solvent in which a salt is dissolved.

【0009】上記の複合金属酸化物としては、LiCo
2 、LiNiO 2、LiMnO 2、LiFeO 2等、
炭素質材料としては、ニードルコークス、ピッチコーク
ス、グラファイト等、Li塩としては、LiBF4 、L
iClO4 等、非プロトン性有機溶媒としては、プロピ
レンカーボネート、ジメチルスルホキシド、3−メチル
−1,3−オキサゾリジン−2−オン、スルホラン、
1,2−ジメトキシエタン、2−メチルテトラヒドロフ
ラン等が適宜使用される。
As the above-mentioned mixed metal oxide, LiCo
O 2, LiNiO 2, LiMnO 2 , LiFeO 2 , etc.,
Carbonaceous materials include needle coke, pitch coke, graphite, etc., and Li salts include LiBF 4 , L.
Examples of the aprotic organic solvent such as iClO 4 include propylene carbonate, dimethyl sulfoxide, 3-methyl-1,3-oxazolidin-2-one, sulfolane,
1,2-dimethoxyethane, 2-methyltetrahydrofuran, etc. are appropriately used.

【0010】各電極は、バインダーと極性溶媒との溶液
に各電極成分(複合金属酸化物および炭素質材料)を高
濃度に配合して電極材料を調製し、これを集電体の表面
に塗布して乾燥焼結することにより製造される。そし
て、バインダーにはポリフッカビニリデン等、極性溶媒
にはN−メチルピロリドン等が使用され、乾燥焼結は通
常300〜400℃の温度で行われる。
For each electrode, an electrode material is prepared by mixing each electrode component (composite metal oxide and carbonaceous material) in a solution of a binder and a polar solvent at a high concentration, and coating this on the surface of a current collector. And dried and sintered. Polyfukka vinylidene or the like is used as the binder, N-methylpyrrolidone or the like is used as the polar solvent, and the dry sintering is usually performed at a temperature of 300 to 400 ° C.

【0011】集電体(電極)の構造は、図4及び図5に
示す串型構造の他、任意の構造を採用することが出来
る。図4に示す集電体(各電極の塗布層の図示を省略)
は、串型部(11)を備えた正極側集電体(1)と串型
部(21)を備えた負極側集電体(2)とを各串部が嵌
合する様に配置した構造を有する。そして、正極側およ
び負極側の各リード板(4)は、各串部の背面部から延
びる各集電体の端部に設けられた端子(12)、(2
2)に制振性座金(3)を介してボルト締めされる。な
お、図5中の符合(10)は正極塗膜、(11)は負極
塗膜、(12)は隔膜を表す。
As the structure of the current collector (electrode), any structure other than the skewed structure shown in FIGS. 4 and 5 can be adopted. Current collector shown in FIG. 4 (illustration of coating layer of each electrode is omitted)
The positive electrode side current collector (1) provided with the skewered portion (11) and the negative electrode side current collector (2) provided with the skewered portion (21) were arranged so that each skewer portion fits. Have a structure. Each of the positive electrode side and negative electrode side lead plates (4) is provided with terminals (12), (2) provided at the end of each current collector extending from the back surface of each skewer.
It is bolted to 2) via a damping washer (3). In FIG. 5, reference numeral (10) represents a positive electrode coating film, (11) represents a negative electrode coating film, and (12) represents a diaphragm.

【0012】本発明に係る電動車両の電源切り換えシス
テムは、図1に示す様に、電動車両の電源としての複数
のリチウム二次電池ユニット(51)と、走行モード、
慣性走行モード及び回生制動モードをそれぞれ判別する
判別手段(53)と、当該判別手段からの情報により前
記複数のリチウム二次電池ユニットの接続状態を直列接
続から並列接続に又は並列接続から直列接続に切り換え
る切換回路(52)と、当該切換回路を介して複数のリ
チウム二次電池ユニットと接続されているモータ(5
4)及び発電機(55)から成る。そして、制御装置
(56)により、慣性走行モード又は回生制動モード時
に、複数のリチウム二次電池ユニット(51)を並列接
続にしてリチウム二次電池の充電を行う。
As shown in FIG. 1, a power source switching system for an electric vehicle according to the present invention includes a plurality of lithium secondary battery units (51) as power sources for the electric vehicle and a driving mode,
A discriminating means (53) for discriminating between the inertial running mode and the regenerative braking mode, and the connection state of the plurality of lithium secondary battery units is changed from series connection to parallel connection or parallel connection to series connection according to the information from the judgment means. A switching circuit (52) for switching, and a motor (5) connected to the plurality of lithium secondary battery units via the switching circuit.
4) and a generator (55). Then, the control device (56) charges the lithium secondary battery by connecting the plurality of lithium secondary battery units (51) in parallel in the inertial running mode or the regenerative braking mode.

【0013】通常の電動車両運転時(走行モード時)、
リチウム二次電池ユニット(51)は、直列に接続され
る。すなわち、判別手段(53)の出力が信号線(5
9)を介して制御装置(56)に取り込まれ、そして、
その出力に基づく制御信号(60)により切換回路(5
2)が直列に接続される。例えば、単電池(電圧=4
V)75個を直列に接続することにより、300V、6
5Aの高電圧大容量でモータ(54)を駆動する。な
お、図中の符合(57)及び(58)は放電電流の流れ
を示す。
During normal operation of the electric vehicle (during traveling mode),
The lithium secondary battery units (51) are connected in series. That is, the output of the discrimination means (53) is the signal line (5
9) via the controller (56), and
The control circuit (60) based on the output of the switching circuit (5
2) are connected in series. For example, a single cell (voltage = 4
V) 300V, 6 by connecting 75 pieces in series
The motor (54) is driven with a high voltage and large capacity of 5A. The reference numerals (57) and (58) in the figure indicate the flow of the discharge current.

【0014】一方、制動時(回生制動モード)及び慣性
走行時(慣性走行モード)、リチウム二次電池ユニット
(51)は並列に接続される。すなわち、判別手段(5
3)の出力が信号線(59)を介して制御装置(56)
に取り込まれ、そして、その出力に基づく制御信号(6
0)により切換回路(52)が並列に接続され、且つ、
制御装置(56)からの信号(63)に基づき発電機
(55)よりリチウム二次電池ユニット(51)の充電
が行われる。なお、図中の符合(61)及び(62)は
充電電流の流れを示す。
On the other hand, during braking (regenerative braking mode) and during inertial traveling (inertial traveling mode), the lithium secondary battery units (51) are connected in parallel. That is, the discrimination means (5
The output of 3) is transmitted via the signal line (59) to the control device (56).
And a control signal (6
0) connects the switching circuit (52) in parallel, and
The lithium secondary battery unit (51) is charged by the generator (55) based on the signal (63) from the control device (56). The symbols (61) and (62) in the figure show the flow of the charging current.

【0015】判別手段(53)による走行モード、慣性
走行モード及び回生制動モードの判別は、アクセルセン
サー及びブレーキセンサーによって行う。判別手段(5
3)がブレーキセンサーである場合の一例について図2
に基づき説明する。制動は、回転ドラム(66)にマス
タシリンダ(67)より油を送るため、ブレーキペダル
(65)を踏み込むことによって行なわれる。ブレーキ
ペダル(65)を踏み込むと、ブレーキペダル(65)
に接触する様に配置されたブレーキセンサー(64)が
作動し、これによって発せられる判別信号が信号線(5
9)を介して図1に示す制御装置(56)に取り込まれ
る。そして、この信号により、図1に示す切換回路(5
2)が並列接続される。
The discriminating means (53) discriminates the traveling mode, the inertial traveling mode and the regenerative braking mode by the accelerator sensor and the brake sensor. Discrimination means (5
FIG. 2 shows an example in which 3) is a brake sensor.
It will be explained based on. Braking is performed by depressing the brake pedal (65) to send oil from the master cylinder (67) to the rotary drum (66). When you depress the brake pedal (65), the brake pedal (65)
The brake sensor (64) arranged so as to come into contact with the sensor operates, and the determination signal generated by this is transmitted to the signal line (5).
9) and taken into the control device (56) shown in FIG. Then, this signal causes the switching circuit (5
2) are connected in parallel.

【0016】判別手段(53)がアクセルセンサーであ
る場合の構成は、図示を省略したが、上記と同様に構成
される。すなわち、アクセルセンサーは、足がアクセル
から離れた否かを感知する様にアクセルペダルに接触す
る様に配置される。そして、アクセルペダルから足が離
れると、アクセルセンサーが作動して判別信号を発し、
信号線を介して制御装置に取り込まれた信号により、切
換回路が並列接続される。
Although not shown in the figure, the structure in which the discriminating means (53) is an accelerator sensor has the same structure as described above. That is, the accelerator sensor is arranged so as to contact the accelerator pedal so as to detect whether or not the foot has left the accelerator. Then, when the foot is released from the accelerator pedal, the accelerator sensor operates and issues a determination signal,
The switching circuit is connected in parallel by the signal taken into the control device through the signal line.

【0017】リチウム二次電池ユニット(51)の並列
および直列接続を図3に基づき説明する。リチウム二次
電池ユニット(51)は、リチウム二次電池(68)を
目的とする電圧を得るための複数個数搭載して構成され
ている。図1に示す制御装置(56)からの直列接続信
号により、各電池の正極(70)、(72)、(78)
等および負極(69)、(71)等が直列接続される場
合は、例えば、矢印(74)の様に、切換スイッチで接
点(75)が負極(71)に接続される。リチウム二次
電池ユニット(51)中の他の電池も同様に接続され、
最終的に各電池が負極と正極との間で直列に接続され、
更に、各ユニットも直列に接続される。
The parallel and series connection of the lithium secondary battery unit (51) will be described with reference to FIG. The lithium secondary battery unit (51) is configured by mounting a plurality of lithium secondary batteries (68) to obtain a target voltage. The positive connection (70), (72), (78) of each battery is generated by the series connection signal from the controller (56) shown in FIG.
Etc. and the negative electrodes (69), (71), etc. are connected in series, the contact (75) is connected to the negative electrode (71) by a changeover switch, for example, as shown by the arrow (74). Other batteries in the lithium secondary battery unit (51) are connected in the same manner,
Finally each battery is connected in series between the negative and positive electrodes,
Furthermore, each unit is also connected in series.

【0018】また、図1に示す制御装置(56)からの
並列接続信号により、各電池の正極(70)、(78)
及び負極(69)、(71)が並列接続される場合は、
例えば、矢印(73)の様に、切換スイッチで接点(7
7)が負極(71)に接続され、且つ、矢印(79)の
様に、切換スイッチで接点(75)が正極(72)に接
続される。リチウム二次電池ユニット(51)内の他電
池も同様に接続され、最終的に各電極が負極と正極との
間で並列に接続され、更に、各ユニットも並列に接続さ
れる。
Further, in accordance with a parallel connection signal from the control device (56) shown in FIG. 1, the positive electrodes (70), (78) of each battery are connected.
And the negative electrodes (69) and (71) are connected in parallel,
For example, as shown by the arrow (73), press the contact (7
7) is connected to the negative electrode (71), and the contact (75) is connected to the positive electrode (72) by a changeover switch as shown by the arrow (79). Other batteries in the lithium secondary battery unit (51) are also connected in the same manner, and finally each electrode is connected in parallel between the negative electrode and the positive electrode, and each unit is also connected in parallel.

【0019】上述の様な接続方式により、走行モード時
は、各リチウム二次電池ユニット(51)内の電池を全
て直列に接続し、更に、全てのリチウム二次電池ユニッ
ト(51)を直列に接続し、高電圧、大容量の電気を図
1に示すモータ(54)に送る。そして、慣性走行モー
ド又は回生制動モード時は、各リチウム二次電池ユニッ
ト(51)内の全ての電池を並列に接続し、更に、全て
のリチウム二次電池ユニット(51)を並列に接続し、
充電時の電池の劣化を防止する。
In the traveling mode, all the batteries in each lithium secondary battery unit (51) are connected in series by the connection system as described above, and all the lithium secondary battery units (51) are connected in series. It is connected and sends high voltage, high capacity electricity to the motor (54) shown in FIG. Then, in the inertial running mode or the regenerative braking mode, all the batteries in each lithium secondary battery unit (51) are connected in parallel, and further, all the lithium secondary battery units (51) are connected in parallel,
Prevents battery deterioration during charging.

【0020】[0020]

【発明の効果】以上説明した本発明によれば、慣性走行
モード及び回生制動モードにおける充電時のリチウム二
次電池の劣化を防止し、充電を比較的良好に行い、電池
寿命を出来るだけ延ばす、すなわち、電動車両の稼働時
間を延ばす効果が得られる。
According to the present invention described above, the deterioration of the lithium secondary battery during charging in the inertial running mode and the regenerative braking mode is prevented, the charging is performed relatively well, and the battery life is extended as much as possible. That is, the effect of extending the operating time of the electric vehicle can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電動車両の電源切り換えシステム
の一例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a power supply switching system for an electric vehicle according to the present invention.

【図2】ブレーキセンサーの一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a brake sensor.

【図3】リチウム二次電池ユニットの並列および直列接
続様式の一例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of parallel and series connection modes of lithium secondary battery units.

【図4】リチウム二次電池の一例の説明図である。FIG. 4 is an explanatory diagram of an example of a lithium secondary battery.

【図5】図4に示すリチウム二次電池の要部の説明図で
ある。
5 is an explanatory diagram of a main part of the lithium secondary battery shown in FIG.

【符号の説明】 51:リチウム二次電池ユニット 52:切換回路 53:判別手段 54:モータ 55:発電機 56:制御装置[Explanation of reference numerals] 51: Lithium secondary battery unit 52: Switching circuit 53: Discriminating means 54: Motor 55: Generator 56: Control device

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02J 7/00 P Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H02J 7/00 P

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電動車両の電源としての複数のリチウム
二次電池ユニットと、走行モード、慣性走行モード及び
回生制動モードをそれぞれ判別する判別手段と、当該判
別手段からの情報により前記複数のリチウム二次電池ユ
ニットの接続状態を直列接続から並列接続に又は並列接
続から直列接続に切り換える切換回路と、当該切換回路
を介して複数のリチウム二次電池ユニットと接続されて
いるモータ及び発電機から成る電動車両の電源切り換え
システムにおいて、慣性走行モード又は回生制動モード
時に、複数のリチウム二次電池ユニットを並列接続にし
てリチウム二次電池の充電を行うことを特徴とする電動
車両の電源切り換えシステム。
1. A plurality of lithium secondary battery units as a power source for an electric vehicle, a determination unit for determining a traveling mode, an inertial traveling mode, and a regenerative braking mode, and a plurality of the lithium secondary batteries based on information from the determination unit. A switching circuit that switches the connection state of the secondary battery unit from serial connection to parallel connection or from parallel connection to series connection, and an electric motor composed of a motor and a generator connected to a plurality of lithium secondary battery units via the switching circuit. In a power supply switching system for a vehicle, a lithium secondary battery is charged by connecting a plurality of lithium secondary battery units in parallel in an inertial running mode or a regenerative braking mode, and a power supply switching system for an electric vehicle.
JP5294589A 1993-10-29 1993-10-29 Power source switching system for electric vehicle Pending JPH07131906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5294589A JPH07131906A (en) 1993-10-29 1993-10-29 Power source switching system for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5294589A JPH07131906A (en) 1993-10-29 1993-10-29 Power source switching system for electric vehicle

Publications (1)

Publication Number Publication Date
JPH07131906A true JPH07131906A (en) 1995-05-19

Family

ID=17809737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5294589A Pending JPH07131906A (en) 1993-10-29 1993-10-29 Power source switching system for electric vehicle

Country Status (1)

Country Link
JP (1) JPH07131906A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303058A (en) * 2007-06-11 2008-12-18 Komatsu Utility Co Ltd Work vehicle
JP2008303059A (en) * 2007-06-11 2008-12-18 Komatsu Utility Co Ltd Work vehicle
JP2014176167A (en) * 2013-03-07 2014-09-22 Honda Motor Co Ltd Power controller and overvoltage prevention method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303058A (en) * 2007-06-11 2008-12-18 Komatsu Utility Co Ltd Work vehicle
JP2008303059A (en) * 2007-06-11 2008-12-18 Komatsu Utility Co Ltd Work vehicle
JP2014176167A (en) * 2013-03-07 2014-09-22 Honda Motor Co Ltd Power controller and overvoltage prevention method

Similar Documents

Publication Publication Date Title
JP5003257B2 (en) Power supply system for hybrid electric vehicle and control device thereof
Arora et al. Mathematical modeling of the lithium deposition overcharge reaction in lithium‐ion batteries using carbon‐based negative electrodes
JP4082147B2 (en) Assembled battery
US9935342B2 (en) Li/metal battery with shape change control
JP2008536272A (en) Lithium-ion rocking chair rechargeable battery
US20190190089A1 (en) Battery system and capacity recovery method for lithium ion secondary battery
JP2015095281A (en) Charging system of solid state battery
KR101724720B1 (en) Lithium ion air battery
JP5679055B2 (en) Battery charging method and battery charging control device
JP2002141032A (en) Battery pack
JP3367382B2 (en) Lithium ion secondary battery
US5706910A (en) Power source switching system for electric motor vehicles
CN218867198U (en) Battery and electric equipment
JPH07131906A (en) Power source switching system for electric vehicle
JP2008199767A (en) Battery pack controller
CN113060019B (en) Power battery pack and control method thereof
KR102072102B1 (en) Dual battery system for vehicle comrrising lead-acid battery and lithium battery
JPH06319204A (en) Electric motor car apparatus
JP5359485B2 (en) Control method of all-solid-state lithium ion secondary battery
WO2021186777A1 (en) Capacity restoration device, manufacturing method of secondary battery, capacity restoration method, and secondary battery system
JP2000030749A (en) Charging method for on-vehicle secondary battery
JP2001035471A (en) Non-aqueous electrolyte secondary battery
JP2012257367A (en) Controller of battery
CN113043861A (en) Hybrid power system and working method thereof
JP2022150874A (en) All-solid-state lithium-ion battery control system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030324