JPH07131440A - Analog optical fiber transmission system - Google Patents

Analog optical fiber transmission system

Info

Publication number
JPH07131440A
JPH07131440A JP5270763A JP27076393A JPH07131440A JP H07131440 A JPH07131440 A JP H07131440A JP 5270763 A JP5270763 A JP 5270763A JP 27076393 A JP27076393 A JP 27076393A JP H07131440 A JPH07131440 A JP H07131440A
Authority
JP
Japan
Prior art keywords
optical
wavelength
signal
control circuit
noise level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5270763A
Other languages
Japanese (ja)
Other versions
JP3016462B2 (en
Inventor
Toshiyuki Futakata
敏之 二方
Yoshiaki Tarusawa
芳明 垂澤
Toshio Nojima
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17490658&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07131440(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5270763A priority Critical patent/JP3016462B2/en
Publication of JPH07131440A publication Critical patent/JPH07131440A/en
Application granted granted Critical
Publication of JP3016462B2 publication Critical patent/JP3016462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To automatically reduce the increase of noise caused by the deviation of the emission wavelength due to the ambient temperature variance and the secular change. CONSTITUTION:The wavelength multiplexed optical signal of an optical fiber 14 is branched and inputted to a wavelength control circuit 21 by an optical coupler 23, and the input optical signal is converted into an electric signal by the circuit 21, and the noise level on the outside of the transmission RF signal band of this electric signal is measured, and a wavelength control signal is so made that the noise level is reduced, and a current control circuit 22 of one of terminals 111 to 11n is controlled to control the emission wavelength of an electrooptic transducer 12, and thus, emission wavelengths of terminals 111 to 11n are controlled so that the noise is not reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えば移動通信におけ
る基地局のアンテナとそのアンテナが取付けられた局舎
内との間の通信に適用され、複数のターミナルの高周波
電気信号を電気−光変換器にてそれぞれ互いに異なる波
長の光信号に変換し、これら光信号を光スターカプラに
より1本の光ファイバに結合伝送させるアナログ光ファ
イバ伝送システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to communication between an antenna of a base station and the inside of a station building in which the antenna is mounted in mobile communication, for example, and converts high frequency electric signals of a plurality of terminals into an electro-optical converter. The present invention relates to an analog optical fiber transmission system for converting optical signals having wavelengths different from each other and coupling and transmitting the optical signals to one optical fiber by an optical star coupler.

【0002】[0002]

【従来の技術】従来のアナログ光ファイバ伝送システム
を図5に示す。複数のターミナル11 1 〜11n におい
て、それらの高周波(RF)信号はそれぞれ電気−光変
換器12にて互いに異なる波長の光強度変調波の光信号
に変換され、これら光信号は光スターカプラ13により
1本の光ファイバ14の一端に結合入射され、光ファイ
バ14により波長多重信号として伝送される。受信側で
光ファイバ14により伝送された光信号はフォトダイオ
ードのような光−電気変換器15で一括してRF電気信
号に変換され、各ターミナル111 〜11n のRFに信
号が復調される。
2. Description of the Related Art Conventional analog optical fiber transmission system
Is shown in FIG. Multiple terminals 11 1~ 11nsmell
These radio frequency (RF) signals are each electro-optically converted.
In the converter 12, optical signals of light intensity modulated waves having different wavelengths from each other
Are converted into optical signals by the optical star coupler 13.
An optical fiber 14 is coupled and incident on one end of one optical fiber 14.
It is transmitted as a wavelength division multiplexed signal by the bus 14. On the receiving side
The optical signal transmitted by the optical fiber 14 is photodiode.
The optical-electrical converter 15 like
No. 11 and each terminal1~ 11nBelieve in RF
No. is demodulated.

【0003】例えば移動通信における基地局のアンテナ
は少くとも三方向に設けられ、ダイバーシチ受信の場合
は、更に各1つずつのアンテナが設けられ、つまり、計
6個のアンテナが局舎の屋上に設置されているが、これ
ら6個のアンテナでの受信RF信号をターミナル111
〜11n でそれぞれ光信号に変換して光ファイバ14に
より局舎内に伝送することが提案されている。この場合
1本の光ファイバで複数のRF信号を伝送できるので同
軸ケーブルの場合に比べて大容量であり、経済的な伝送
が可能である。
For example, the base station antenna in mobile communication is provided in at least three directions, and in the case of diversity reception, one antenna is provided for each, that is, a total of six antennas are provided on the roof of the station building. Although installed, the RF signals received by these 6 antennas are sent to the terminal 11 1
It has been proposed that each of the optical signals be converted into an optical signal in 11 to 11 n and transmitted to the inside of the station through the optical fiber 14. In this case, since a plurality of RF signals can be transmitted by one optical fiber, the capacity is large as compared with the case of the coaxial cable, and economical transmission is possible.

【0004】このようなアナログ光ファイバ伝送方式に
おいて、各ターミナル111 〜11 n の電気−光変換器
12の発光波長は、互いに異なるようにオフセットす
る。このオフセットする波長量は、波長差に起因するビ
ート性雑音が、RF信号の伝送帯域外になるように設定
する。例えば、1〜2GHz程度のRF信号を伝送する
場合、発光波長のオフセット量を1nm程度に設定する
と、ビート周波数が100GHz程度となり、RF信号
の伝送帯域外に設定できる。このような、波長のオフセ
ットにより、受信側で光フィルタ等を使用することな
く、一本の光ファイバで上りRF信号を伝送できる。
In such an analog optical fiber transmission system
In each terminal 111~ 11 nElectrical-to-optical converter
The 12 emission wavelengths are offset so that they are different from each other.
It The amount of offset wavelength is due to the wavelength difference.
Noise is set outside the RF signal transmission band
To do. For example, it transmits an RF signal of about 1 to 2 GHz.
In this case, set the emission wavelength offset amount to about 1 nm.
And the beat frequency becomes about 100 GHz, and the RF signal
It can be set outside the transmission band of. Such wavelength offset
Do not use an optical filter, etc.
In addition, the upstream RF signal can be transmitted by one optical fiber.

【0005】[0005]

【発明が解決しようとする課題】このように従来のアナ
ログ光ファイバ伝送方式は、各電気−光変換器の発光波
長を互いにオフセットして、伝送帯域内のビート性雑音
を軽減していた。しかし、電気−光変換器12の発光波
長は、経時変化や、周囲温度の変化により、初期の設定
値から変化する。このため、運用中にビート性雑音が増
大し、信号電力対雑音電力比(S/N)が著しく低下す
る可能性がある。
As described above, in the conventional analog optical fiber transmission system, the emission wavelengths of the electro-optical converters are offset from each other to reduce the beat noise in the transmission band. However, the emission wavelength of the electro-optical converter 12 changes from the initial set value due to changes over time and changes in ambient temperature. Therefore, beat noise may increase during operation, and the signal power to noise power ratio (S / N) may significantly decrease.

【0006】一例として、図6Aに示すようにターミナ
ル111 の電気−光変換器12としてのレーザダイオー
ド(LD)の波長がλ1、ターミナル112 の電気−光
変換器12の波長がλ2、ターミナル113 の電気−光
変換器12の波長がλ3である場合について考える。タ
ーミナル112 の電気−光変換器12の波長がλ2の場
合、本来設定されている波長λ2′よりも短い波長であ
るために、ターミナル111 からの光信号のスペクトル
と重なり、RF信号の伝送帯域におけるビート性雑音が
増大し、S/N特性の劣化が著しい。例えば、RF伝送
帯域が2GHz以下の場合には、λ2−λ1<0.01
nmとなった場合に、ビート性雑音が伝送帯域に影響を
及ぼす。また、電気−光変換器12の光信号のスペクト
ルは位相雑音を有することから、中心波長よりも分布的
に広がりをもっており、λ2−λ1>0.01nm以上
の発光波長の変動であってもRF伝送帯域内に影響を及
ぼすことになる。図6Aに示したように、ターミナル1
2 の波長λ2と、ターミナル111 の波長λ1の波長
差が小さくなると、RF信号の伝送帯域内のビート性雑
音レベルは、図6Bに示すように増大する。
As an example, as shown in FIG. 6A, the wavelength of the laser diode (LD) as the electro-optical converter 12 of the terminal 11 1 is λ1, the wavelength of the electro-optical converter 12 of the terminal 11 2 is λ2, and the terminal Consider the case where the wavelength of the electro-optical converter 12 of 11 3 is λ3. When the wavelength of the electro-optical converter 12 of the terminal 11 2 is λ2, the wavelength is shorter than the originally set wavelength λ2 ′, so that it overlaps with the spectrum of the optical signal from the terminal 11 1 and the RF signal is transmitted. The beat noise in the band increases, and the S / N characteristics deteriorate significantly. For example, when the RF transmission band is 2 GHz or less, λ2-λ1 <0.01
When it becomes nm, beat noise influences the transmission band. Further, since the spectrum of the optical signal of the electro-optical converter 12 has phase noise, it has a distribution broader than the central wavelength, and even if the emission wavelength fluctuates λ2-λ1> 0.01 nm or more, the RF It will affect the transmission band. As shown in FIG. 6A, terminal 1
When the wavelength difference between the wavelength λ2 of 1 2 and the wavelength λ1 of the terminal 11 1 becomes smaller, the beat noise level in the transmission band of the RF signal increases as shown in FIG. 6B.

【0007】この発明は、波長多重により大容量の伝送
を行う上で生じる、電気−光変換器の波長の変動による
ビート性雑音の増大を軽減する手段を有するアナログ光
ファイバ伝送システムを提供することにある。
The present invention provides an analog optical fiber transmission system having means for reducing an increase in beat noise caused by a wavelength variation of an electro-optical converter which occurs when a large capacity transmission is performed by wavelength multiplexing. It is in.

【0008】[0008]

【課題を解決するための手段】請求項1の発明によれば
光フアイバの伝送信号が光カプラにより分岐されて波長
制御回路へ供給され、波長制御回路で光信号中の雑音レ
ベルが測定され、その雑音レベルが低減するように、各
ターミナルごとの波長制御信号が生成される。その波長
制御信号は対応するターミナルの駆動電流制御回路に供
給され、駆動電流制御回路によりその波長制御信号に応
じてそのターミナルの電気−光変換器の駆動電流が制御
されてその発光波長が制御される。
According to the present invention, the transmission signal of the optical fiber is branched by the optical coupler and supplied to the wavelength control circuit, and the noise level in the optical signal is measured by the wavelength control circuit. A wavelength control signal for each terminal is generated so that its noise level is reduced. The wavelength control signal is supplied to the drive current control circuit of the corresponding terminal, and the drive current control circuit controls the drive current of the electro-optical converter of the terminal according to the wavelength control signal to control the emission wavelength. It

【0009】請求項2の発明では請求項1の発明におけ
る駆動電流制御回路の代りに温度制御回路が設けられ、
入力された波長制御信号に応じてそのターミナルの電気
−光変換器の温度が制御されてその発光波長が制御され
る。
In the invention of claim 2, a temperature control circuit is provided in place of the drive current control circuit in the invention of claim 1,
The temperature of the electro-optical converter at the terminal is controlled according to the inputted wavelength control signal to control the emission wavelength.

【0010】[0010]

【実施例】図1に請求項1の発明の実施例を示し、図5
と対応する部分に同一符号が付けられている。この発明
ではターミナル111 〜11n 側に波長制御回路21が
設けられ、波長制御回路21で各ターミナルごとに生成
された波長制御信号が、ターミナル111 〜11n にそ
れぞれ設けられた駆動電流制御回路22の対応するもの
に供給される。また光ファイバ14の光スターカプラ1
3側において光カプラ23が設けられ、光ファイバ14
で伝送される光信号の一部が分岐されて波長制御回路2
1に供給される。
FIG. 1 shows an embodiment of the invention of claim 1 and FIG.
The same symbols are attached to the portions corresponding to. In the present invention, the wavelength control circuit 21 is provided on the side of the terminals 11 1 to 11 n , and the wavelength control signal generated by the wavelength control circuit 21 for each terminal is controlled by the drive currents provided to the terminals 11 1 to 11 n. It is supplied to the corresponding one of the circuits 22. Also, the optical star coupler 1 of the optical fiber 14
The optical coupler 23 is provided on the third side, and the optical fiber 14
A part of the optical signal transmitted by the optical fiber is branched and the wavelength control circuit 2
1 is supplied.

【0011】波長制御回路21では入力された光信号の
雑音レベルを測定し、この測定値をもとに、これを減少
するように波長制御信号を生成する。例えば図2Aに示
すように光カプラ23からの光信号は光−電気変換器2
4によりRF信号に変換復調され、そのRF信号はバン
ドパスフィルタ25へ入力され、図2Bに示すように伝
送RF信号の帯域を阻止し、この伝送RF信号帯域外の
一部の帯域がバンドパスフィルタ25から取出され、こ
の取出された雑音が雑音検波器26で検波され、この検
波雑音のレベルがプロセッサ27により測定される。プ
ロセッサ27は後述にて明らかにするが、その測定され
た雑音レベルから、いずれのターミナルの発光波長を、
どれだけオフセットする(ずらす)かの判定を行い、そ
のオフセット量に応じた波長制御信号を作り、その波長
制御信号を対応するターミナルの駆動電流制御回路22
へ供給する。
The wavelength control circuit 21 measures the noise level of the input optical signal, and generates a wavelength control signal so as to reduce the noise level based on the measured value. For example, as shown in FIG. 2A, the optical signal from the optical coupler 23 is the optical-electrical converter 2
4 is converted into an RF signal and demodulated, and the RF signal is input to the bandpass filter 25 to block the band of the transmission RF signal as shown in FIG. 2B, and a part of the band outside the band of the transmission RF signal is bandpassed. The noise picked up from the filter 25 is detected by the noise detector 26, and the level of this detected noise is measured by the processor 27. From the measured noise level, the processor 27 will determine the emission wavelength of either terminal from the measured noise level.
It is determined how much to offset (shift), a wavelength control signal is created according to the offset amount, and the drive current control circuit 22 of the terminal corresponding to the wavelength control signal is generated.
Supply to.

【0012】各ターミナル111 〜11n においては電
気−光変換器12として例えばレーザダイオードが設け
られ、駆動電流制御回路22は入力された波長制御信号
に応じて自局のレーザダイオード(電気−光変換器)1
2の駆動電流が変化され、これによりレーザダイオード
12の発光波長が変化する。ここで駆動電流の変化量は
発光強度に大きな影響を与えない程度にする。駆動電流
の制御は例えば図2Cに示すようにレーザダイオード1
2に流すバイアス電流を制御すればよい。
A laser diode, for example, is provided as the electro-optical converter 12 in each of the terminals 11 1 to 11 n , and the drive current control circuit 22 responds to the input wavelength control signal by the laser diode (electric-optical) of its own station. Converter) 1
2 is changed, and the emission wavelength of the laser diode 12 is changed accordingly. Here, the amount of change in the drive current is set to a level that does not significantly affect the emission intensity. The control of the drive current is performed, for example, as shown in FIG.
It suffices to control the bias current to be applied to 2.

【0013】波長制御回路21のプロセッサ27が信号
波長制御処理の例を図3の流れ図を参照して説明する。
まず伝送RF信号の帯域外の雑音レベル(以下単に雑音
レベルと記す)を測定し(S1 )、i番目のターミナル
11iのレーザダイオード12の波長を+Δλだけシフ
トする(S2 )。この時の雑音レベルを測定し
(S3)、この測定レベルがその直前の雑音レベルに対
する変化状態をチェックし(S 4 )、増大している場合
は、i番目のターミナル11iのレーザダイオード12
の波長をもとに戻し、更に−Δλシフトさせる
(S5 )。この状態で雑音レベルを測定し(S6 )、そ
の直前の雑音レベルと比較し(S7 )、増大している場
合はi番目のターミナル11iのレーザダイオード12
の波長をもとに戻し(S8)、その後、iを+1してス
テップS2 に戻って次のターミナルに対する制御に移る
(S9 )。ステップS4 において雑音レベルが変化して
いないならばステップS8 に移ってi番目のターミナル
11iのレーザダイオード12の波長をもとに戻し、雑
音レベルが減少している場合はステップS9 に移る。ス
テップS7 において測定雑音レベルが変化していない場
合はステップS8 に移り、減少した場合はステップS9
に移る。
The processor 27 of the wavelength control circuit 21 sends a signal
An example of the wavelength control process will be described with reference to the flowchart of FIG.
First, the noise level outside the band of the transmitted RF signal (hereinafter simply referred to as noise
Measured as (level) (S1), I-th terminal
Shift the wavelength of the 11i laser diode 12 by + Δλ.
(S2). Measure the noise level at this time
(S3), The measured level is
Check the change state (S Four), If increasing
Is the laser diode 12 of the i-th terminal 11i
To the original wavelength and shift by -Δλ
(SFive). In this state, measure the noise level (S6), So
Of the noise level immediately before (S7), The increasing place
In the case of i-th terminal 11i laser diode 12
To the original wavelength (S8), Then increment i by 1
Step S2Return to and transfer control to the next terminal
(S9). Step SFourThe noise level changed
If not, step S8Move to i-th terminal
Return the wavelength of the 11i laser diode 12 to the original
If the sound level is decreasing, step S9Move on to. Su
Step S7If the measurement noise level does not change in
If step S8Move on to step S9
Move on to.

【0014】このようにして各ターミナル111 〜11
n についてそのレーザダイオード12の波長を制御し
て、その時雑音レベルが変化しないか、減少するように
制御することを順次繰返し行うことにより、すべてのタ
ーミナル111 〜11n のレーザダイオード12の波長
を一定量変化しても雑音が変化せず、かつ雑音が最小と
なる波長に収束する。この状態はターミナル111 〜1
n の各レーザダイオード12の発光波長の波長差が大
きく、その差波長の周波数が伝送RF信号の周波数帯域
に入らない状態であって、光信号相互の干渉に影響され
ない。
In this way, each terminal 11 1 to 11
By controlling the wavelength of the laser diode 12 with respect to n and controlling so that the noise level does not change or decreases at that time, the wavelengths of the laser diodes 12 of all the terminals 11 1 to 11 n are changed. The noise does not change even if it changes by a certain amount, and the wavelength converges to a wavelength at which the noise is minimized. This condition is terminal 11 1 to 1
The wavelength difference between the emission wavelengths of the laser diodes 12 of 1 n is large, and the frequency of the difference wavelength does not fall within the frequency band of the transmission RF signal, and is not affected by the mutual interference of the optical signals.

【0015】次に図4を参照して請求項2の発明の実施
例を、図1と対応する部分に同一符号を付けて示す。こ
の場合は図1におけるレーザダイオード電流制御回路2
2の代りにレーザダイオード温度制御回路31を設け、
波長制御信号に応じてレーザダイオード12の温度を変
化させてレーザダイオード12の発光波長を制御する。
この温度制御に例えばペルチエ素子を用いて容易に実現
できる。つまりペルチエ素子に流す電流を変えて温度制
御する。あるいは恒温槽などに用いられる発熱体を用い
て制御してもよい。制御手順その他は図1の場合と同様
にすればよい。
Next, referring to FIG. 4, an embodiment of the invention according to claim 2 will be described by giving the same reference numerals to the portions corresponding to those in FIG. In this case, the laser diode current control circuit 2 in FIG.
A laser diode temperature control circuit 31 is provided instead of 2.
The emission wavelength of the laser diode 12 is controlled by changing the temperature of the laser diode 12 according to the wavelength control signal.
This temperature control can be easily realized by using, for example, a Peltier element. That is, the temperature is controlled by changing the current flowing through the Peltier element. Alternatively, it may be controlled by using a heating element used in a constant temperature bath or the like. The control procedure and the like may be the same as in the case of FIG.

【0016】なおこの発明は移動通信に限らず、波長多
重伝送するアナログ光ファイバ伝送システムに適用でき
る。
The present invention is applicable not only to mobile communication but also to an analog optical fiber transmission system for wavelength division multiplexing transmission.

【0017】[0017]

【発明の効果】以上述べたようにこの発明によれば、波
長多重光信号を一括してRF電気信号に変換でき、しか
も、周囲温度変動や経年変化とより発光波長が変動して
波長干渉の影響が生じるようになると、これがなくなる
ように、発光波長が自動的に制御され、S/Nの極めて
高いアナログ光ファイバ伝送システムを提供することが
できる。
As described above, according to the present invention, wavelength-multiplexed optical signals can be collectively converted into RF electric signals, and moreover, the emission wavelength fluctuates due to changes in ambient temperature and changes over time, resulting in wavelength interference. When the influence occurs, the emission wavelength is automatically controlled so as to eliminate the influence, and it is possible to provide an analog optical fiber transmission system having an extremely high S / N.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the invention of claim 1;

【図2】Aは波長制御回路21の具体例を示すブロック
図、Bは伝送RF信号帯域と検出雑音帯域との関係例を
示す図、Cは電気−光変換器12の具体例を示す回路図
である。
2A is a block diagram showing a specific example of the wavelength control circuit 21, FIG. 2B is a diagram showing a relationship example between a transmission RF signal band and a detection noise band, and C is a circuit showing a specific example of the electro-optical converter 12. FIG. It is a figure.

【図3】波長制御回路21における各ターミナルの発光
波長の制御手順の例を示す流れ図。
FIG. 3 is a flow chart showing an example of a control procedure of an emission wavelength of each terminal in the wavelength control circuit 21.

【図4】請求項2の発明の実施例を示すブロック図。FIG. 4 is a block diagram showing an embodiment of the invention of claim 2;

【図5】従来のアナログ光ファイバ伝送システムを示す
ブロック図。
FIG. 5 is a block diagram showing a conventional analog optical fiber transmission system.

【図6】Aはターミナルの発光波長の設定値からずれた
様子を示す図、Bは発光波長のずれと雑音レベルとの関
係を示す図である。
FIG. 6A is a diagram showing a state where the emission wavelength of the terminal is deviated from a set value, and B is a diagram showing a relationship between the emission wavelength shift and a noise level.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/06 10/04 10/02 10/18 9372−5K H04B 9/00 M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H04B 10/06 10/04 10/02 10/18 9372-5K H04B 9/00 M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数のターミナルの高周波電気信号を電
気−光変換器にてそれぞれ互いに異なる波長の光信号に
変換し、これら光信号を光スターカプラにより一本の光
ファイバに結合伝送するアナログ光ファイバ伝送システ
ムにおいて、 上記光ファイバの伝送光信号を分岐する光カプラと、 その光カプラにより分岐された光信号中の雑音レベルを
測定し、その雑音レベルが低減するように、上記各ター
ミナルごとの波長制御信号を生成する波長制御回路と、 上記各ターミナルに設けられ、上記波長制御回路から入
力された上記波長制御信号に応じてそのターミナルの上
記電気−光変換器の駆動電流を制御して、その発光波長
を制御する駆動電流制御回路と、 を設けたことを特徴とするアナログ光ファイバ伝送シス
テム。
1. An analog optical system in which high-frequency electrical signals from a plurality of terminals are converted into optical signals having mutually different wavelengths by an electro-optical converter, and these optical signals are coupled and transmitted to one optical fiber by an optical star coupler. In a fiber transmission system, an optical coupler that splits the optical signal transmitted by the optical fiber and the noise level in the optical signal split by the optical coupler are measured, and the noise level of each terminal is reduced so that the noise level is reduced. A wavelength control circuit that generates a wavelength control signal, provided in each of the terminals, and controls the drive current of the electro-optical converter of the terminal according to the wavelength control signal input from the wavelength control circuit, An analog optical fiber transmission system comprising: a drive current control circuit that controls the emission wavelength.
【請求項2】 複数のターミナルの高周波電気信号を電
気−光変換器にてそれぞれ互いに異なる波長の光信号に
変換し、これら光信号を光スターカプラにより一本の光
ファイバに結合伝送するアナログ光ファイバ伝送システ
ムにおいて、 上記光ファイバの伝送光信号を分岐する光カプラと、 その光カプラにより分岐された光信号中の雑音レベルを
測定し、その雑音レベルが低減するように、上記各ター
ミナルごとの波長制御信号を生成する波長制御回路と、 上記各ターミナルに設けられ、上記波長制御回路から入
力された上記波長制御信号に応じて、そのターミナルの
上記電気−光変換器の温度を制御して、その発光波長を
制御する温度制御回路と、 を設けたことを特徴とするアナログ光ファイバ伝送シス
テム。
2. An analog optical signal in which high-frequency electrical signals from a plurality of terminals are converted into optical signals having mutually different wavelengths by an electro-optical converter, and these optical signals are coupled and transmitted to one optical fiber by an optical star coupler. In a fiber transmission system, an optical coupler that splits the optical signal transmitted by the optical fiber and the noise level in the optical signal split by the optical coupler are measured, and the noise level of each terminal is reduced so that the noise level is reduced. A wavelength control circuit for generating a wavelength control signal, and provided in each of the terminals, according to the wavelength control signal input from the wavelength control circuit, to control the temperature of the electro-optical converter of the terminal, An analog optical fiber transmission system comprising: a temperature control circuit for controlling the emission wavelength, and a temperature control circuit.
JP5270763A 1993-10-28 1993-10-28 Analog optical fiber transmission system Expired - Lifetime JP3016462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5270763A JP3016462B2 (en) 1993-10-28 1993-10-28 Analog optical fiber transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5270763A JP3016462B2 (en) 1993-10-28 1993-10-28 Analog optical fiber transmission system

Publications (2)

Publication Number Publication Date
JPH07131440A true JPH07131440A (en) 1995-05-19
JP3016462B2 JP3016462B2 (en) 2000-03-06

Family

ID=17490658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5270763A Expired - Lifetime JP3016462B2 (en) 1993-10-28 1993-10-28 Analog optical fiber transmission system

Country Status (1)

Country Link
JP (1) JP3016462B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321825A (en) * 1995-03-22 1996-12-03 Toshiba Corp Wavelength multiplex light transmission device and optical repeater
JP2014525209A (en) * 2011-07-25 2014-09-25 オーロラ ネットワークス, インコーポレイテッド CPE device for RFoG with wavelength collision prevention function using local and / or remote tuning of laser transmitter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219050B (en) * 2018-03-29 2022-12-30 维特利公司 Valve assembly with integrated control and check functions for wet-type spray fire-extinguishing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321825A (en) * 1995-03-22 1996-12-03 Toshiba Corp Wavelength multiplex light transmission device and optical repeater
JP2014525209A (en) * 2011-07-25 2014-09-25 オーロラ ネットワークス, インコーポレイテッド CPE device for RFoG with wavelength collision prevention function using local and / or remote tuning of laser transmitter

Also Published As

Publication number Publication date
JP3016462B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US7127176B2 (en) Optical transmission system of radio signal over optical fiber link
US5923453A (en) Apparatus for measuring optical transmission line property and optical wavelength multiplexing transmission apparatus
US7388892B2 (en) System and method for optically powering a remote network component
US5212577A (en) Optical communication equipment and optical communication method
US7149425B2 (en) Monitoring system for an optical transmitter
JPH07131440A (en) Analog optical fiber transmission system
Souza et al. Performance of an optically powered radio-over-fiber system exploiting raman amplification
EP0884866A1 (en) Optical communication system
JP2879840B2 (en) Optical fiber transmission equipment for wireless signals
JPH05190958A (en) Wavelength switching equipment and wavelength switching method
EP0855112B1 (en) Optical communication system
US20020141010A1 (en) Coupled data and wavelength reference for optical performance monitoring in fiber optic systems
Souza et al. Transmission and reception of RF signals in power-over-fiber links powered by Raman lasers
JP2526466B2 (en) WDM optical transmission system
JP3016461B2 (en) Analog fiber optic link
JPH07235904A (en) Analog optical fiber transmitting device
KR101236598B1 (en) Phased array antenna using dispersion compensating fiber and tunable multi-wavelength laser
EP0598387B1 (en) Optical transmission line and distortion reduction technique
Hilbk et al. First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP
US20230269002A1 (en) Apparatus and method for maintaining wavelength interval of light sources
KR101304069B1 (en) Phased array antenna system using optical true time delay
CN115912058A (en) REC array tunable laser system for local oscillator light source in coherent system
Li et al. Harmonic signals from electroabsorption modulators for bias control
MacDonald et al. Optoelectronic switching'
Davies et al. Wavelength-multiplexed analog fiber optic link for wideband radio-frequency local oscillator signal transmission

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 14

EXPY Cancellation because of completion of term