JPH07131420A - Optical amplifying and repeating system - Google Patents

Optical amplifying and repeating system

Info

Publication number
JPH07131420A
JPH07131420A JP27057593A JP27057593A JPH07131420A JP H07131420 A JPH07131420 A JP H07131420A JP 27057593 A JP27057593 A JP 27057593A JP 27057593 A JP27057593 A JP 27057593A JP H07131420 A JPH07131420 A JP H07131420A
Authority
JP
Japan
Prior art keywords
optical
signal
frequency
level
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27057593A
Other languages
Japanese (ja)
Other versions
JP2508986B2 (en
Inventor
Shuji Yamashita
修司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27057593A priority Critical patent/JP2508986B2/en
Publication of JPH07131420A publication Critical patent/JPH07131420A/en
Application granted granted Critical
Publication of JP2508986B2 publication Critical patent/JP2508986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To provide the optical amplifying and repeating system which detects a fault point on a transmission line without adding a special circuit to an optical amplifying repeater provided on the transmission line. CONSTITUTION:A transmission part 11 of a terminal station constituting the optical amplifying and repeating system is provided with an oscillator 15 whose output signal frequency is periodically changed from f1 to f2, and the monitor signal is superposed on a transmission signal and they are outputted as an optical signal, and the change with time of the level of the monitor signal is monitored by a fault point detection circuit 17 provided in a reception part 13. The level of the monitor signal monitored by the fault point detection circuit 17 is reduced from a frequency fD when the frequency of the monitor signal in the optical signal placed at the fault point is defined to fD at the time of the occurrence of the fault in the transmission line, and an arbitrary point in the transmission line is allowed to correspond to the frequency of the monitor signal, and therefore, the fault point detection circuit 17 specifies the fault point on the transmission line in accordance with the frequency fD from which the level is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、たとえば、光海底通信
システムで使用される光増幅中継システムに係わり、特
に、光増幅中継器に特別な機能を付加することなく、伝
送路の障害点の標定を行なうことができる光増幅中継シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplification repeater system used in, for example, an optical submarine communication system, and more particularly, to a transmission line fault point without adding a special function to the optical amplification repeater. The present invention relates to an optical amplification repeater system capable of performing orientation.

【0002】[0002]

【従来の技術】光通信システムは、通常、1対の端局と
それらの端局間に設けられた2系統の伝送路で構成さ
れ、それぞれの伝送路には、減衰した光信号を増幅する
ための中継器が設けられる。このような光通信システム
では、通信障害によるサービス低下を回避すべく、伝送
路上の障害箇所、たとえば、故障した中継器や、光ファ
イバの損傷、破断箇所、などを迅速に特定できる機構が
備えられている。まず、現在、実用化されている光海底
通信システムを例に、従来の光通信システムで用いられ
ている障害点標定技術の説明を行なう。
2. Description of the Related Art An optical communication system is usually composed of a pair of terminal stations and two transmission lines provided between the terminal stations, and each transmission line amplifies an attenuated optical signal. A repeater is provided. In such an optical communication system, in order to avoid service deterioration due to communication failure, a mechanism for quickly identifying a failure point on the transmission path, such as a failed repeater or a damaged or broken optical fiber, is provided. ing. First, a fault location technique used in a conventional optical communication system will be described by taking an optical submarine communication system that is currently in practical use as an example.

【0003】図3に、光海底通信システムで用いられて
いる光海底中継器の概要を示す。光海底中継器は、光フ
ァイバ211 側に接続される端局から送信された光信号
を増幅して、光ファイバ212 側に接続される端局に出
力する中継回路271 と、逆方向に伝搬する光信号の増
幅のための中継回路272 で構成される。中継回路27
1 は、光ファイバ211 から入力された光信号を電気信
号に変換する光・電気変換素子22と、その信号波形の
等化増幅、整形および識別を行う波形整形・識別回路2
3と、その出力信号を光信号に変換する電気・光変換素
子24と、その光信号の出力経路を切り替えるための光
切替回路25と、各回路の状態の監視、制御を行う監視
回路26で構成されている。
FIG. 3 shows an outline of an optical submarine repeater used in an optical submarine communication system. Optical submarine repeater amplifies the optical signal transmitted from the terminal station connected to the optical fiber 21 1 side, and the relay circuit 27 1 to output to the terminal station connected to the optical fiber 21 2 side, reverse It is composed of a relay circuit 27 2 for amplifying an optical signal propagating to the. Relay circuit 27
Reference numeral 1 denotes an optical / electrical conversion element 22 for converting an optical signal input from the optical fiber 21 1 into an electric signal, and a waveform shaping / identification circuit 2 for equalizing amplification, shaping and identification of the signal waveform.
3, an electric / optical conversion element 24 for converting the output signal into an optical signal, an optical switching circuit 25 for switching the output path of the optical signal, and a monitoring circuit 26 for monitoring and controlling the state of each circuit. It is configured.

【0004】光ファイバ211 から入力された光信号
は、サービス中(オンライン状態)には、光・電気変換
素子22と波形整形・識別回路23と電気・光変換素子
24により増幅され、光切替回路25を介して、光ファ
イバ212 に出力される。この状態で、端局から特定コ
ードあるいは特定周波数の指令信号が送信され、その指
令信号が、波形整形・識別回路23で識別されると、監
視回路26は、障害点評定のための動作を開始する。監
視回路26の機能には、光ループバック機能、電気・光
変換素子のバイアス電流を端局へ通知する状態通知機能
や、予備回路への切替機能など、さまざまなものがあ
る。このうち、光ループバック機能は、一方の端局から
入力された光信号を、その端局に戻すための折り返し接
続を形成することによって、障害点の探索、標定を行う
ために用いられるものである。
The optical signal input from the optical fiber 21 1 is amplified by the optical / electrical conversion element 22, the waveform shaping / identification circuit 23, and the electric / optical conversion element 24 during the service (online state), and optical switching is performed. It is output to the optical fiber 21 2 via the circuit 25. In this state, a command signal of a specific code or a specific frequency is transmitted from the terminal station, and when the command signal is identified by the waveform shaping / identifying circuit 23, the monitoring circuit 26 starts an operation for fault point evaluation. To do. There are various functions of the monitoring circuit 26, such as an optical loopback function, a status notification function of notifying the terminal station of the bias current of the electric / optical conversion element, and a switching function to the standby circuit. Of these, the optical loopback function is used to search for and locate faults by forming a loopback connection for returning the optical signal input from one terminal station to that terminal station. is there.

【0005】この折り返し接続は、監視回路26が、光
切替回路25を切り替えることにより形成される。この
切り替えにより、光ファイバ211 から入力された光信
号が、光ファイバ213 に出力されるようになり、ま
た、光ファイバ213 は、中継回路272 内部の光・電
気変換素子に接続されているため、結果として、光ファ
イバ211 からの光信号が光ファイバ214 に出力され
る折り返し接続が形成される。
The loopback connection is formed by the monitoring circuit 26 switching the optical switching circuit 25. This switching, optical signal input from the optical fiber 21 1, come to be outputted to the optical fiber 21 3, The optical fiber 21 3 is connected to the relay circuit 27 2 inside the optical-electrical transducer element As a result, a folded connection is formed in which the optical signal from the optical fiber 21 1 is output to the optical fiber 21 4 .

【0006】図4を用いて、この光ルーブバック機能を
用いた障害点の探索、標定動作を簡単に説明する。障害
点の探索、標定は一方の端局上で行われ、たとえば、端
局291 で行なう場合には、端局291 から各中継器2
8へ、順に折り返し接続の実行を指示し、形成した折り
返し接続を通して光信号が正確に伝送できるか否かの確
認を行う。このような処理の結果、たとえば、折り返し
接続301 を形成したときには、送信した光信号が正常
に折り返され、折り返し接続302 の形成時に、正常な
受信が行えなかった場合には、障害点が、中継器281
と282 の間に設置された光ファイバに存在すると判断
することができる。
[0006] With reference to Fig. 4, a search for a fault point and an operation for locating the fault using the optical loopback function will be briefly described. A fault point is searched and located on one of the terminal stations. For example, when the terminal station 29 1 is used, the terminal station 29 1 to each of the repeaters 2 is used.
8 is instructed to execute the return connection in order, and it is confirmed whether the optical signal can be accurately transmitted through the formed return connection. As a result of such processing, for example, when the loop-back connection 30 1 is formed, the transmitted optical signal is normally looped back, and when the loop-back connection 30 2 is not formed, normal reception cannot be performed. , Repeater 28 1
It can be determined that the optical fiber is installed between the optical fiber and the optical fiber installed between 2 and 28 2 .

【0007】上述のような、遠隔制御により折り返し接
続を行い、障害点の発生箇所を検出する技術としては、
さまざまな形態のものが提案されており、たとえば、特
公平3−40985号公報には、各中継器が、光信号中
のある特定の周波数成分を基に、その光信号が、自装置
に対する折り返し接続形成命令であるか否かを判断する
システムが開示されている。
[0007] As a technique for detecting a location of a fault point by making a loopback connection by remote control as described above,
Various forms have been proposed, for example, in Japanese Patent Publication No. 3-40985, each repeater causes an optical signal to be returned to its own device based on a specific frequency component in the optical signal. A system for determining whether it is a connection formation command is disclosed.

【0008】また、各中継器に、その状態を監視する機
能をもたせ、異常が発生した際には、情報伝送を行うた
めの伝送路とは別に設けた監視用回線を用いて、その異
常を端局に通知するシステムもある。このようなシステ
ムは、たとえば、特開平3−46830号公報に開示さ
れている。
Further, each repeater is provided with a function of monitoring its state, and when an abnormality occurs, the abnormality is detected by using a monitoring line provided separately from a transmission line for transmitting information. There is also a system that notifies the terminal. Such a system is disclosed in, for example, Japanese Patent Laid-Open No. 3-46830.

【0009】[0009]

【発明が解決しようとする課題】以上説明した従来の光
通信システムでは、障害を検出するための回路が中継器
内に設けられ、これを用いて障害点の探索、標定が行わ
れる。光信号を電気信号に変換した後に、その等化増
幅、識別再生、リタイミングを行なう、いわゆる3R中
継器では、障害を検出のための回路を付加することは比
較的容易である。しかし、光信号を直接増幅する光増幅
器を利用した中継器では、光信号を電気信号に変換する
必要は全くない。このため、光増幅中継器を用いたシス
テムには、各中継器に特別な回路を付加することなく、
障害点の探索、標定が行えることが望まれる。
In the conventional optical communication system described above, a circuit for detecting a fault is provided in the repeater, and a fault point is searched for and located by using this circuit. It is relatively easy to add a circuit for detecting a failure in a so-called 3R repeater in which an optical signal is converted into an electric signal and thereafter, equalization amplification, identification reproduction, and retiming are performed. However, in a repeater using an optical amplifier that directly amplifies an optical signal, there is no need to convert the optical signal into an electric signal at all. Therefore, the system using the optical amplification repeater, without adding a special circuit to each repeater,
It is desirable to be able to search and locate fault points.

【0010】そこで、本発明の目的は、光増幅中継器に
特別な回路を付加することなく、障害点検出が行える光
増幅中継システムを提供することにある。
Therefore, it is an object of the present invention to provide an optical amplification repeater system capable of detecting a fault point without adding a special circuit to the optical amplification repeater.

【0011】[0011]

【課題を解決するための手段】本発明は、(イ)第1の
周波数から第2の周波数へ周期的に周波数が変化する信
号を監視信号として出力する監視信号出力手段と、監視
信号出力手段の出力する監視信号を伝送信号に重畳させ
る重畳手段と、重畳手段により重畳された信号を光信号
に変換する電気・光変換手段を備えた送信部と、(ロ)
送信部が出力する光信号を伝搬するための光ファイバお
よび光増幅中継器で構成された伝送路と、(ハ)伝送路
を通して受信した光信号を電気信号に変換する光・電気
変換手段と、光・電気変換手段が出力する電気信号から
監視信号を抽出してそのレベルを検出するレベル検出手
段と、レベル検出手段が検出する監視信号のレベルの時
間変化を監視してそのレベルが変化したときの監視信号
の周波数と監視信号出力手段における周波数の変化する
周期を基に伝送路中の障害点の特定を行なう特定手段を
備えた受信部とを具備する。
According to the present invention, (a) a supervisory signal output means for outputting as a supervisory signal a signal whose frequency periodically changes from a first frequency to a second frequency, and a supervisory signal output means. Superimposing means for superimposing the monitoring signal output by the superimposing means on the transmission signal, and a transmission section provided with an electrical / optical converting means for converting the signal superimposed by the superimposing means into an optical signal, (b)
A transmission line composed of an optical fiber and an optical amplification repeater for propagating the optical signal output from the transmission unit, and (c) an optical / electrical conversion means for converting the optical signal received through the transmission line into an electric signal, When a level detection unit that extracts a monitoring signal from the electric signal output by the optical-electrical conversion unit and detects the level of the monitoring signal and a time change of the level of the monitoring signal detected by the level detection unit and the level changes And a receiving unit provided with specifying means for specifying a failure point in the transmission path based on the frequency of the monitoring signal and the frequency changing cycle of the monitoring signal output means.

【0012】すなわち、本発明による光増幅中継システ
ムでは、送信部は、周期的にその周波数が変化する監視
信号を重畳させた光信号を送信し、その光信号を伝送路
を通して受信する受信部は、光信号中に含まれる監視信
号成分のレベルの時間変化を監視して、そのレベルが変
化した時の監視信号の周波数を基に、障害点の特定を行
う。伝送路に障害が発生した時点で、その障害点に位置
した光信号中の監視信号の周波数をfD とすると、受信
部で観測される監視信号のレベルはその周波数fD から
低下することになる。また、伝送路中の任意の点は、監
視信号の周波数と対応づけられることになるので、その
レベル低下が発生した周波数fD から、伝送路上の障害
点を特定することができることになる。なお、監視信号
出力手段の出力する監視信号の周波数の変化周期は、送
信部と受信部間を光信号が伝搬するのに要する時間と一
致させておくことが望ましい。
That is, in the optical amplification repeater system according to the present invention, the transmitting unit transmits the optical signal on which the supervisory signal whose frequency changes periodically and superimposes it, and the receiving unit which receives the optical signal through the transmission line is The time change of the level of the supervisory signal component contained in the optical signal is monitored, and the fault point is identified based on the frequency of the supervisory signal when the level changes. When the frequency of the supervisory signal in the optical signal located at the fault point is f D when the fault occurs in the transmission line, the level of the supervisory signal observed in the receiving unit is lowered from the frequency f D. Become. Further, since any point in the transmission line is associated with the frequency of the supervisory signal, it is possible to identify the faulty point on the transmission line from the frequency f D at which the level drop occurs. It is desirable that the frequency change cycle of the supervisory signal output by the supervisory signal output means is made to coincide with the time required for the optical signal to propagate between the transmitter and the receiver.

【0013】[0013]

【実施例】以下実施例につき本発明を詳細に説明する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0014】図1に、本発明の一実施例における光増幅
中継システムの構成を示す。光増幅中継システムは、送
信部11と、光増幅中継器12と光ファイバで形成され
る伝送路と、受信部13とで構成される。送信部11に
は、電気信号を光信号に変換するための電気・光変換素
子14と発振器15が設けられ、伝送すべき情報信号で
ある伝送信号31は、この発振器15の出力する監視用
信号が重畳された後に、電気・光変換素子14により光
信号に変換される。光増幅中継器12は、光ファイバア
ンプを用いた光信号の増幅を行なう機器である。受信部
13には、伝送路を通して入力される光信号を電気信号
に変換するための電気・光変換素子16と、変換された
電気信号内の監視信号成分のレベルを評価することによ
り、伝送路上の障害点の位置の検出を行なう障害点検出
回路17が設けられている。
FIG. 1 shows the configuration of an optical amplification repeater system according to an embodiment of the present invention. The optical amplification repeater system includes a transmission unit 11, an optical amplification repeater 12, a transmission line formed by an optical fiber, and a reception unit 13. The transmission unit 11 is provided with an electric / optical conversion element 14 for converting an electric signal into an optical signal and an oscillator 15, and a transmission signal 31 which is an information signal to be transmitted is a monitoring signal output from the oscillator 15. Are superposed on each other and then converted into an optical signal by the electro-optical conversion element 14. The optical amplification repeater 12 is a device that amplifies an optical signal using an optical fiber amplifier. The receiver 13 includes an electric / optical conversion element 16 for converting an optical signal input through the transmission line into an electric signal, and a level of a supervisory signal component in the converted electric signal to evaluate the level on the transmission line. A fault point detection circuit 17 for detecting the position of the fault point is provided.

【0015】この光増幅中継システムにおける障害点検
出動作を以下に説明する。
The fault detecting operation in this optical amplification repeater system will be described below.

【0016】ます、発振器15の動作の説明を行なう。
発振器15は、いわゆる、可変周波数発振器であり、こ
こでは、出力する監視信号の周波数fSVが、周波数f1
から周波数f2 (f1 <f2 )へ、時間に対してリニア
に変化し、その変化の周期Tが、送信部11から受信部
13に光信号が到達するのに要する時間と一致するよう
に構成されている。なお、監視信号のレベルおよび周波
数帯域は、伝送信号に悪影響を及ぼさないものに設定さ
れる。この発振器15の出力する監視信号は、送信器1
1内で、伝送信号に重畳された後に、電気・光変換素子
14により光信号に変換される。
First, the operation of the oscillator 15 will be described.
The oscillator 15 is a so-called variable frequency oscillator, and here, the frequency f SV of the output monitoring signal is the frequency f 1
From the frequency f 2 (f 1 <f 2 ) to the frequency f 2 so that the cycle T of the change coincides with the time required for the optical signal to reach the receiver 13 from the transmitter 11. Is configured. The level and frequency band of the supervisory signal are set so as not to adversely affect the transmission signal. The supervisory signal output from the oscillator 15 is transmitted by the transmitter 1
After being superposed on the transmission signal in 1, the electric / optical conversion element 14 converts the optical signal into an optical signal.

【0017】電気・光変換素子14が出力する光信号
は、光増幅中継器12を備えた伝送路を時間Tで伝搬
し、受信部13に入力される。受信器13に入力された
光信号は、光・電気変換素子16により電気信号に変換
される。その電気信号が入力される障害点検出回路17
は、一種のスペクトルアナライザであり、この回路は、
信号中の監視信号の周波数範囲であるf1 からf2 の信
号レベルの測定を行い、その測定結果を基に、伝送路上
の障害点の特定を行なう。障害点検出回路における障害
点特定動作の原理を以下に説明する。
The optical signal output from the electrical / optical conversion element 14 propagates through the transmission path provided with the optical amplification repeater 12 at time T, and is input to the reception unit 13. The optical signal input to the receiver 13 is converted into an electric signal by the optical / electrical conversion element 16. Fault point detection circuit 17 to which the electric signal is input
Is a kind of spectrum analyzer, and this circuit
The signal level of f 1 to f 2 which is the frequency range of the supervisory signal in the signal is measured, and the fault point on the transmission path is specified based on the measurement result. The principle of the fault point identification operation in the fault point detection circuit will be described below.

【0018】図2に、障害点検出回路内で測定される周
波数・レベル特性の障害の有無による違いを示す。図
中、実線で示した周波数・レベル特性は、伝送路に障害
が発生していない場合の特性(測定結果)であり、破線
で示したそれは、伝送路に障害が発生した直後の特性で
ある。伝送路上に何ら障害が生じていない場合に、障害
点検出回路17が測定する監視信号の周波数・レベル特
性がフラットになることは容易に理解できるものと考え
る。
FIG. 2 shows the difference between the frequency and level characteristics measured in the fault point detection circuit depending on the presence or absence of a fault. In the figure, the frequency / level characteristics shown by the solid line are the characteristics (measurement results) when there is no failure in the transmission line, and the ones shown by the broken line are the characteristics immediately after the failure has occurred in the transmission line. . It can be easily understood that the frequency / level characteristic of the supervisory signal measured by the fault point detection circuit 17 becomes flat when no fault occurs on the transmission path.

【0019】伝送路に障害が発生した場合に、破線で示
したような特性が得られるのは以下の理由による。すな
わち、障害が発生した時点で、その障害点より送信側の
伝送路内を伝搬している光信号は、障害点を通過する際
に、障害の程度に応じた減衰をうける。このため、障害
が発生した時点で、その障害点に位置した光信号中の監
視信号の周波数をfD とすると、受信部13に入力され
る監視信号のレベルは周波数fD から低下することにな
り、障害点検出回路17内で測定される周波数・レベル
特性は、障害発生直後には、図2に破線で示したような
ものとなることになる。一方、伝送路中の任意の点は、
監視信号の周波数と対応づけられることになるので、レ
ベル低下が発生した周波数fD から、伝送路上の障害点
が特定できることになる。
The reason why the characteristic shown by the broken line is obtained when a failure occurs in the transmission line is as follows. That is, when a failure occurs, the optical signal propagating in the transmission path on the transmission side from the failure point is attenuated according to the degree of the failure when passing through the failure point. For this reason, when the frequency of the supervisory signal in the optical signal located at the fault point is f D at the time of occurrence of the fault, the level of the supervisory signal input to the receiving unit 13 decreases from the frequency f D. Therefore, the frequency / level characteristic measured in the fault point detection circuit 17 becomes as shown by the broken line in FIG. 2 immediately after the fault occurs. On the other hand, any point in the transmission line
Since the frequency is correlated with the frequency of the supervisory signal, the fault point on the transmission line can be identified from the frequency f D at which the level drop occurs.

【0020】伝送路上の障害点の位置と、周波数の関係
を求める便宜上、発振器の発振周波数の変化周期は、送
信部から送出された光信号が受信部に到達するまでの時
間と一致していることが望ましいが、この時間より大き
く設定し、その違いを考慮にいれて障害点を特定するよ
うに構成することもできる。
For the purpose of obtaining the relationship between the position of the faulty point on the transmission line and the frequency, the change cycle of the oscillation frequency of the oscillator coincides with the time until the optical signal sent from the transmitter reaches the receiver. However, it is also possible to set the time to be larger than this time and to take the difference into consideration so as to identify the failure point.

【0021】[0021]

【発明の効果】以上説明したように本発明では、端局部
のみに機能追加するだけで、障害点の標定ができるた
め、中継器に特別な機能を付加する必要がなく、光増幅
中継システムの構成を簡単なものにすることができる。
As described above, according to the present invention, a fault point can be located only by adding a function only to a terminal portion, so that it is not necessary to add a special function to the repeater, and the optical amplification repeater system The configuration can be simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるの光増幅中継システ
ムの構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of an optical amplification repeater system according to an embodiment of the present invention.

【図2】実施例の光増幅中継システムにおける障害点検
出動作を説明するための周波数・レベル特性図である。
FIG. 2 is a frequency / level characteristic diagram for explaining a fault point detection operation in the optical amplification repeater system of the embodiment.

【図3】従来の光海底中継器の構成を示すブロック図で
ある。
FIG. 3 is a block diagram showing a configuration of a conventional optical submarine repeater.

【図4】従来の光海底中継システムにおける障害点検出
方法の概要を示す説明図である。
FIG. 4 is an explanatory diagram showing an outline of a fault point detection method in a conventional optical submarine repeater system.

【符号の説明】[Explanation of symbols]

11 送信部 12 光増幅中継器 13 受信部 14、24 電気・光変換素子 15 発振器 16、22 光・電気変換素子 17 障害点検出回路 21 光ファイバ 23 波形整形・識別回路 25 光切替回路 26 監視回路 27 中継回路 28 中継器 29 端局 30 折り返し接続 31 伝送信号 11 Transmitter 12 Optical amplification repeater 13 Receiver 14 Electro-optical conversion element 15 Oscillator 16 22 Optical-electrical conversion element 17 Fault detection circuit 21 Optical fiber 23 Waveform shaping / identification circuit 25 Optical switching circuit 26 Monitoring circuit 27 Relay circuit 28 Repeater 29 Terminal station 30 Return connection 31 Transmission signal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H04B 10/16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の周波数から第2の周波数へ周期的
に周波数が変化する信号を監視信号として出力する監視
信号出力手段と、前記監視信号出力手段の出力する監視
信号を伝送信号に重畳させる重畳手段と、前記重畳手段
により重畳された信号を光信号に変換する電気・光変換
手段を備えた送信部と、 前記送信部が出力する光信号を伝搬するための光ファイ
バおよび光増幅中継器で構成された伝送路と、 前記伝送路を通して受信した光信号を電気信号に変換す
る光・電気変換手段と、前記光・電気変換手段が出力す
る電気信号から前記監視信号を抽出してそのレベルを検
出するレベル検出手段と、前記レベル検出手段が検出す
る監視信号のレベルの時間変化を監視してそのレベルが
変化したときの監視信号の周波数と前記監視信号出力手
段における周波数の変化する周期を基に前記伝送路中の
障害点の特定を行なう特定手段を備えた受信部とを具備
することを特徴とする光増幅中継システム。
1. A supervisory signal output means for outputting, as a supervisory signal, a signal whose frequency periodically changes from a first frequency to a second frequency, and a supervisory signal output by the supervisory signal output means is superimposed on a transmission signal. A superposing means, a transmitting section having an electric / optical converting means for converting the signal superposed by the superposing means into an optical signal, an optical fiber for propagating the optical signal output by the transmitting section, and an optical amplification relay. A transmission line composed of a device, an optical / electrical conversion unit that converts an optical signal received through the transmission line into an electric signal, and the monitoring signal is extracted from the electric signal output by the optical / electrical conversion unit. Level detecting means for detecting a level, monitoring the time change of the level of the monitor signal detected by the level detecting means, and the frequency of the monitor signal when the level changes and the monitor signal output means Optical amplification relay system characterized by comprising a receiving unit having a specific means for a particular point of failure in the transmission path based on the period of change in the definitive frequency.
【請求項2】 前記監視信号出力手段における周波数の
変化する周期を、前記送信部から前記受信部まで光信号
が伝搬するのに必要な時間と一致させたこと特徴とする
請求項1記載の光増幅中継システム。
2. The light according to claim 1, wherein the period in which the frequency of the monitor signal output means changes is matched with the time required for the optical signal to propagate from the transmitter to the receiver. Amplification relay system.
JP27057593A 1993-10-28 1993-10-28 Optical amplification repeater system Expired - Lifetime JP2508986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27057593A JP2508986B2 (en) 1993-10-28 1993-10-28 Optical amplification repeater system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27057593A JP2508986B2 (en) 1993-10-28 1993-10-28 Optical amplification repeater system

Publications (2)

Publication Number Publication Date
JPH07131420A true JPH07131420A (en) 1995-05-19
JP2508986B2 JP2508986B2 (en) 1996-06-19

Family

ID=17488055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27057593A Expired - Lifetime JP2508986B2 (en) 1993-10-28 1993-10-28 Optical amplification repeater system

Country Status (1)

Country Link
JP (1) JP2508986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012826A (en) * 2014-06-30 2016-01-21 富士通株式会社 Optical transmission system and optical transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012826A (en) * 2014-06-30 2016-01-21 富士通株式会社 Optical transmission system and optical transmission device

Also Published As

Publication number Publication date
JP2508986B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
US6215565B1 (en) Method of and system for diagnosing optical system failures
US4564933A (en) Supervision of digital transmission systems
US8135274B2 (en) System and method for fault identification in optical communication systems
US6708004B1 (en) Method and apparatus for reducing crosstalk between a monitoring channel and a data channel in a WDM optical communication system
US20020129295A1 (en) Network node apparatus, network system using the same and fault location detecting method
WO2000060773A1 (en) Method and apparatus for automatically identifying system faults in an optical communications system from repeater loop gain signatures
US5453865A (en) Monitoring system
JP2719654B2 (en) Monitoring method of optical amplification repeater transmission line
US4266183A (en) Fault locating arrangement for a two-way repeatered transmission link
JPH04235425A (en) Method and system of remote measurement
US5510925A (en) Relay transmission system including optical amplification
EP0932948B1 (en) Pinpointing interruptions in communication links
JP2508986B2 (en) Optical amplification repeater system
JPS5811563B2 (en) Hikari Eye Bar Tsuushin Houshiki
JP2781720B2 (en) Optical subscriber system monitoring system
JPWO2004010612A1 (en) Optical transmission method and system
JPH02155323A (en) Supervisory system for optical repeater
US11936423B2 (en) Fault detection apparatus, fault detection method, and submarine cable system
JP2536940B2 (en) Output control method of optical repeater
JPS58215838A (en) Monitoring circuit of optical repeater
JPS6033764A (en) System for supervising repeater
JPS61224738A (en) Fault location retrieval system in optical relay transmission system
JPS6253975B2 (en)
JPS58175329A (en) Light source switching system of optical repeater
JPH11220456A (en) Wavelength multiplex transmission system, monitor signal transmitter, monitor for optical linear repeater and wavelength multiplex transmission monitor