JPH07130528A - Manufacture of sintered material of porous soft magnetic ferrite - Google Patents

Manufacture of sintered material of porous soft magnetic ferrite

Info

Publication number
JPH07130528A
JPH07130528A JP5294430A JP29443093A JPH07130528A JP H07130528 A JPH07130528 A JP H07130528A JP 5294430 A JP5294430 A JP 5294430A JP 29443093 A JP29443093 A JP 29443093A JP H07130528 A JPH07130528 A JP H07130528A
Authority
JP
Japan
Prior art keywords
ferrite
soft magnetic
weight
granules
polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5294430A
Other languages
Japanese (ja)
Inventor
Seiichi Oikawa
誠一 及川
Kaoru Satake
芳 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP5294430A priority Critical patent/JPH07130528A/en
Publication of JPH07130528A publication Critical patent/JPH07130528A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance density and strength by forming a press molded body after polystyrene fiber is mixed at the time of forming a press molded body of a soft magnetic ferrite powder and then sintering such a molded body at a high temperature after the polystyrene fiber is splashed by the heat processing. CONSTITUTION:The primary molding is carried out into the predetermined shape by adding polystyrene fiber in such a length as longer than the press molding thickness with the diameter of 0.6mm to 0.2mm to particles of an average grain size of 50mum or less formed by adding an organic binder to the fine powder of the soft magnetic Ni-Zn ferrite in the 20wt.% to 5wt.% for the weight of ferrite particles. Next, a molded ferrite is maintained under the pressure of 250MPa/cm<2> or more to carry out the CIP processing and is then graudally cooled up to 500 deg.C to splash the polystyrene fiber. Thereafter, it is sintered at the temperature of 110 deg.C to 1300 deg.C under the atmospheric condition to obtain a porous soft magnetic ferrite sintered body. The porous soft magnetic ferrite sintered body obtained assures porous property and high processing efficiency having improved product strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、廃水中の強磁性微粉等
を取り除くための高勾配磁気分離装置(HGMS)に使
用する多孔質軟磁性フェライト焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous soft magnetic ferrite sintered body used in a high gradient magnetic separation device (HGMS) for removing ferromagnetic fine particles and the like in wastewater.

【0002】[0002]

【従来の技術】従来、液体中に浮遊する鉄錆等の弱い磁
性を有する微粒子を除去するために、非磁性の容器に、
フィルタ材として磁束密度が高く耐蝕性のよい例えばク
ロム(Cr)入りの鉄系アモルファス合金の細線を封入
し、鉄錆を含んだ液体を容器内に通し、容器の外から電
磁石により磁界を加え、アモルファス合金のまわりに生
じている高い磁界傾度を利用して細線のまわりに鉄錆を
吸着させて除去する高勾配磁気分離装置(HGMS−H
igh Gradient MagneticSepa
rator)がある。
2. Description of the Related Art Conventionally, in order to remove fine particles having weak magnetism such as iron rust suspended in a liquid, a non-magnetic container has been used.
For example, a fine wire of iron-based amorphous alloy containing chromium (Cr), which has a high magnetic flux density and good corrosion resistance, is enclosed as a filter material, a liquid containing iron rust is passed through the container, and a magnetic field is applied from outside the container by an electromagnet. High gradient magnetic separation device (HGMS-H) that adsorbs and removes iron rust around fine wires by utilizing the high magnetic field gradient generated around the amorphous alloy.
high Gradient Magnetic Sepa
ratio).

【0003】従来の高勾配磁気分離装置は、原子力発電
装置の冷却水中に発生した鉄錆などの弱い磁性を有する
鉄錆等を分離することを目的とした高性能な装置であ
り、高価なものである。一方、一般の工業用廃水にふく
まれる研削した鉄粉等は、永久磁石を用いたロールを利
用して鉄粉を除去しているが、装置を通った廃水には鉄
粉が残り、特に人体に有害な重金属等の元素を含む合金
は廃液から除去することが必要であり、本発明は液体中
に酸、アルカリ等が含まれていてもフィルタ材として使
用出来る耐酸性、耐アルカリ性に優れた多孔質軟磁性フ
ェライト焼結体の製造方法である。
A conventional high gradient magnetic separator is a high-performance device for separating iron rust or the like having weak magnetism such as iron rust generated in cooling water of a nuclear power plant, and is expensive. Is. On the other hand, iron powder etc. ground in general industrial wastewater is removed by using a roll using a permanent magnet, but iron powder remains in the wastewater passing through the device, especially human body. It is necessary to remove the alloy containing elements such as heavy metals which are harmful to the waste liquid, and the present invention can be used as a filter material even if the liquid contains acid, alkali, etc. It is a method for producing a porous soft magnetic ferrite sintered body.

【0004】多孔質軟磁性フェライト焼結体のような多
孔質のセラミックス焼結体については、機能材として各
種触媒、フィルタ等に、構造材としては軽量化や原材料
の削減が必要な部材等に用いられており、近年の材料に
対する多機能化、軽量化の要求により重要性を増してい
る。
The porous ceramics sintered body such as the porous soft magnetic ferrite sintered body is used as various functional materials such as catalysts and filters, and as the structural material, such as a member which needs to be lighter in weight and requires less raw materials. It is used and is becoming more important due to the recent demand for multifunctional and lightweight materials.

【0005】多孔質の非磁性セラミックス焼結体の製造
方法としては、以下の(1)、(2)に示すように各種
の提案がなされている。 (1)特開昭55−125202のアルカリ電池用電極
の製造法に示されている方法で、焼結用原料をポリビニ
ールアルコール等の有機結着材と混練し、ウレタン等の
発泡樹脂、フェルト等の樹脂繊維の電極芯材に塗布し、
1200℃で30分、非酸化性の水素ガス中にて焼結し
多孔質材を得る方法。 (2)特開平2−277703号に示されている方法
で、平均粒子径50μm以下の鉄系粉末と、ポリアクリ
ル酸等の有機性バインダー、あるいはリン酸ボンド、水
ガラス等の無機質バインダーを水に溶解してスラリー状
の混練液を作製し、スチレン製等の高分子球体を規則配
列させた型枠の中に流し込み、乾燥させ、100℃ない
し400℃まで15分ないし30分加熱して、球体を熱
分解により消失させ、1000℃ないし1200℃で鉄
系粉末の焼結を完了させ、多孔体を得る方法がある。
As a method for producing a porous nonmagnetic ceramics sintered body, various proposals have been made as shown in the following (1) and (2). (1) The sintering raw material is kneaded with an organic binder such as polyvinyl alcohol by the method described in JP-A-55-125202, which is a method for manufacturing an electrode for an alkaline battery, and a foamed resin such as urethane and felt. Apply to the resin fiber electrode core material such as
A method of obtaining a porous material by sintering in a non-oxidizing hydrogen gas at 1200 ° C. for 30 minutes. (2) An iron-based powder having an average particle size of 50 μm or less, an organic binder such as polyacrylic acid, or an inorganic binder such as phosphoric acid bond or water glass is treated with water by the method described in JP-A-2-277703. To prepare a slurry-like kneading liquid, pour it into a mold in which polymer spheres made of styrene or the like are regularly arranged, dry and heat to 100 ° C. to 400 ° C. for 15 minutes to 30 minutes, There is a method in which the spheres are extinguished by thermal decomposition and the iron-based powder is sintered at 1000 ° C. to 1200 ° C. to obtain a porous body.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述した
(1)及び(2)の製造方法では、焼結後の所望の形状
に加工するための加工性や強度において優れているとは
言えない。本発明は、工業廃液中の強磁性合金の微粉末
を分離回収するための多数の貫通孔を有する多孔質軟磁
性フェライト焼結体であって、焼結後において所望の形
状に加工する際の加工性を向上し、又強度を向上した多
孔質軟磁性フェライト焼結体の製造方法を提供する。
However, the manufacturing methods (1) and (2) described above are not excellent in workability and strength for processing into a desired shape after sintering. The present invention is a porous soft magnetic ferrite sintered body having a large number of through holes for separating and recovering a fine powder of a ferromagnetic alloy in an industrial waste liquid, and when processing into a desired shape after sintering. Provided is a method for producing a porous soft magnetic ferrite sintered body having improved workability and strength.

【0007】[0007]

【課題を解決するための手段】本発明は、高勾配磁気分
離装置で工業廃水の液体に含まれる強磁性微粉末を分離
する多数の貫通孔を有する多孔質軟質フェライト焼結体
を得るのに、軟磁性フェライト粉末の圧粉成形体を形成
する時にポリスチレン繊維を混入して圧粉成形体を形成
し、500℃迄徐熱してポリスチレン繊維を飛散させ、
後高温焼結を施して多孔質軟質フェライト焼結体とする
もので、又無数の貫通孔を有するにかかわらず、強度と
加工性に優れた材料とするものである。本発明において
は強度及び加工性を向上させるために、高温焼結前に冷
間等圧加圧処理(CIP−Cold Isotropi
c Press)を行うか、又は高温焼結後、更に高温
等圧加熱処理(HIP−Hot Isotropic
Press)を行う。この方法により無数の貫通孔を有
する多孔質のフェライト焼結体であるにもかかわらず、
材料の緻密度及び強度を向上することができ上述の課題
を解決する。
The present invention provides a porous soft ferrite sintered body having a large number of through holes for separating ferromagnetic fine powder contained in a liquid of industrial wastewater in a high gradient magnetic separator. When forming a soft magnetic ferrite powder compact, a polystyrene compact is mixed to form a compact, which is gradually heated to 500 ° C. to scatter the polystyrene fiber.
It is then subjected to high-temperature sintering to obtain a porous soft ferrite sintered body, and a material excellent in strength and workability despite having innumerable through holes. In the present invention, in order to improve strength and workability, cold isostatic pressing (CIP-Cold Isotropi) is performed before high temperature sintering.
c Press) or after high temperature sintering, further high temperature isostatic heat treatment (HIP-Hot Isotropic).
Press). Despite being a porous ferrite sintered body having innumerable through holes by this method,
The density and strength of the material can be improved and the above problems can be solved.

【0008】本発明による第一の多孔質軟磁性フェライ
ト焼結体の製造方法として、平均粒径が1μm以下のN
i−Znフェライト又はMn−Znフェライトに有機バ
インダとして5%ポリビニールアルコール(PVA)等
の溶液を添加し、スプレードライヤーにて平均粒子径5
0μm以下の顆粒を作製し、直径が0.6mmないし
0.2mm、長さ10mmないし20mmのポリスチレ
ン繊維をフェライト顆粒の重量に対し、重量比で5%な
いし20%添加し攪拌して成形材を得る。ついで120
MPa/cm2の圧力で一次成形し、ついで250MP
a/cm2で1分間CIP処理を行い、大気中で500
℃迄徐熱し昇温してポリスチレン樹脂を飛散させ、後1
100℃ないし1300℃で高温焼結を行い焼結体を得
るものである。
As the first method for producing a porous soft magnetic ferrite sintered body according to the present invention, N having an average particle diameter of 1 μm or less is used.
A solution of 5% polyvinyl alcohol (PVA) or the like as an organic binder was added to i-Zn ferrite or Mn-Zn ferrite, and the average particle size was 5 with a spray dryer.
A granule having a diameter of 0 μm or less is prepared, and a polystyrene fiber having a diameter of 0.6 mm to 0.2 mm and a length of 10 mm to 20 mm is added to the weight of the ferrite granule in a weight ratio of 5% to 20% and stirred to form a molding material. obtain. Then 120
Primary molding at pressure of MPa / cm 2 , then 250MP
CIP treatment for 1 minute at a / cm 2 and 500 in air
Gradually heat up to ℃ and raise the temperature to scatter polystyrene resin.
High temperature sintering is performed at 100 ° C. to 1300 ° C. to obtain a sintered body.

【0009】CIP法と同様の原料粉末を用いて、本発
明による第二の多孔質軟磁性フェライト焼結体の製造方
法として、平均粒径が1μm以下のNi−Znフェライ
ト又はMn−Znフェライトに有機バインダとして、5
%ポリビニールアルコール(PVA)等の溶液を添加
し、スプレードライヤーにて平均粒子径50μm以下の
顆粒を作製し、平均直径が0.6mmないし0.2m
m、長さ10mmないし20mmのポリスチレン繊維を
フェライト顆粒の重量に対し重量比で5%ないし20%
添加し攪拌して成形材を得る。ついで120MPa/c
2の圧力で一次成形した後大気中500℃迄徐熱昇温
してポリスチレン繊維を飛散させ、後Ni−Znフェラ
イトでは大気中で、Mn−Znフェライトでは微量の酸
素を添加した窒素ガス雰囲気中で1100℃ないし13
00℃で2時間程度保持して1次の高温焼結を行い、さ
らに1200℃で100MPa/cm2の条件で3時間
程度Arガス雰囲気中でHIP処理を行い焼結体を得る
ものである。
As a method for producing the second porous soft magnetic ferrite sintered body according to the present invention by using the same raw material powder as in the CIP method, Ni-Zn ferrite or Mn-Zn ferrite having an average particle diameter of 1 μm or less is obtained. 5 as an organic binder
% Polyvinyl alcohol (PVA) and other solutions are added, and granules with an average particle size of 50 μm or less are produced with a spray dryer, and the average diameter is 0.6 mm to 0.2 m.
5% to 20% by weight of polystyrene fiber having a length of 10 mm to 20 mm and a weight of ferrite granules.
A molding material is obtained by adding and stirring. Then 120 MPa / c
After primary molding at a pressure of m 2, the temperature was gradually raised to 500 ° C. in the atmosphere to scatter polystyrene fibers, and in the atmosphere for the later Ni—Zn ferrite, in the atmosphere for a Mn—Zn ferrite, a nitrogen gas atmosphere with a small amount of oxygen added. In 1100 ℃ to 13
The temperature is maintained at 00 ° C. for about 2 hours to perform the first high-temperature sintering, and further the HIP treatment is performed at 1200 ° C. under the condition of 100 MPa / cm 2 for about 3 hours in an Ar gas atmosphere to obtain a sintered body.

【0010】即ち本発明は、1.軟磁性Ni−Znフェ
ライトの微粉末に有機バインダを添加し形成した平均粒
径が50μm以下の顆粒に、直径が0.6mmないし
0.2mmで圧粉成形厚さ以上の長さのポリスチレン繊
維を、フェライト顆粒の重量に対し20重量%ないし5
重量%添加し所望の形状に一次成形を行った後、250
MPa/cm2以上の圧力で保持してCIP処理を行
い、大気中で500℃迄徐熱して前記ポリスチレン繊維
を飛散させた後、大気中で1100℃ないし1300℃
の温度で焼結することを特徴とする多孔質軟磁性フェラ
イト焼結体の製造方法である。
That is, the present invention is as follows. Granules having an average particle size of 50 μm or less formed by adding an organic binder to fine powder of soft magnetic Ni—Zn ferrite, and polystyrene fibers having a diameter of 0.6 mm to 0.2 mm and a length of not less than the powder compacting thickness. , 20% by weight to 5% by weight of ferrite granules
After adding 50% by weight and performing primary molding into a desired shape, 250
CIP treatment is carried out by holding at a pressure of MPa / cm 2 or more, and the polystyrene fibers are scattered by gradually heating to 500 ° C. in the atmosphere, then 1100 ° C. to 1300 ° C. in the atmosphere.
The method for producing a porous soft magnetic ferrite sintered body is characterized in that sintering is performed at a temperature of.

【0011】2.軟磁性Ni−Znフェライトの微粉末
に有機バインダを添加し形成した平均粒径が50μm以
下の顆粒に、直径が0.6mmないし0.2mmで圧粉
成形厚さ以上の長さのポリスチレン繊維をフェライト顆
粒の重量に対し20重量%ないし5重量%添加し所望の
形状に一次成形を行い、大気中で500℃迄徐熱して前
記ポリスチレン繊維を飛散させた後、大気中で1100
℃ないし1300℃の温度で焼結し、ついで1200℃
以上の温度でアルゴンガス中で100MPa/cm2
上の圧力で保持してHIP処理を施してなることを特徴
とする多孔質軟磁性フェライト焼結体の製造方法であ
る。
2. Granules having an average particle size of 50 μm or less formed by adding an organic binder to fine powder of soft magnetic Ni—Zn ferrite, and polystyrene fibers having a diameter of 0.6 mm to 0.2 mm and a length of not less than the powder compacting thickness. 20% to 5% by weight relative to the weight of the ferrite granules was added to perform primary molding into a desired shape, and the polystyrene fiber was scattered by gradually heating to 500 ° C in the atmosphere, and then 1100 in the atmosphere.
Sintered at a temperature of ℃ to 1300 ℃, then 1200 ℃
The method for producing a porous soft magnetic ferrite sintered body is characterized in that the HIP treatment is carried out by maintaining the pressure at 100 MPa / cm 2 or more in argon gas at the above temperature.

【0012】3.軟磁性Mn−Znフェライトの微粉末
に有機バインダを添加し形成した平均粒径が50μm以
下の顆粒に、直径が0.6mmないし0.2mmで圧粉
成形厚さ以上の長さのポリスチレン繊維をフェライト顆
粒の重量に対し20重量%ないし5重量%添加し所望の
形状に一次成形を行った後、250MPa/cm2以上
の圧力で保持してCIP処理を行い、大気中で500℃
迄徐熱して前記ポリスチレン繊維を飛散させた後、微量
の酸素を添加した窒素ガス中で1100℃ないし130
0℃の温度で焼結することを特徴とする多孔質軟磁性フ
ェライト焼結体の製造方法である。
3. Granules having an average particle size of 50 μm or less formed by adding an organic binder to fine powder of soft magnetic Mn-Zn ferrite, and polystyrene fibers having a diameter of 0.6 mm to 0.2 mm and a length of not less than the compacting thickness. After adding 20 wt% to 5 wt% to the weight of the ferrite granules and performing primary molding to a desired shape, CIP treatment is performed by holding at a pressure of 250 MPa / cm 2 or more and 500 ° C. in the atmosphere.
The polystyrene fibers are scattered by being slowly heated to 1100 ° C. to 130 ° C. in nitrogen gas containing a slight amount of oxygen.
A method for producing a porous soft magnetic ferrite sintered body, which is characterized in that sintering is performed at a temperature of 0 ° C.

【0013】4.軟磁性Mn−Znフェライトの微粉末
に有機バインダを添加し形成した平均粒径が50μm以
下の顆粒に、直径が0.6mmないし0.2mmで圧粉
成形厚さ以上の長さのポリスチレン繊維をフェライト顆
粒の重量に対し20重量%ないし5重量%添加し所望の
形状に一次成形を行った後、大気中で500℃迄徐熱し
て前記ポリスチレン繊維を飛散させた後、1100℃な
いし1300℃の温度で微量の酸素を添加した窒素ガス
中で焼結し、ついで1200℃以上の温度でアルゴンガ
ス中で100MPa/cm2以上の圧力で保持してHI
P処理を施してなることを特徴とする多孔質軟磁性フェ
ライト焼結体の製造方法である。
4. Granules having an average particle size of 50 μm or less formed by adding an organic binder to fine powder of soft magnetic Mn-Zn ferrite, and polystyrene fibers having a diameter of 0.6 mm to 0.2 mm and a length of not less than the compacting thickness. 20 wt% to 5 wt% of the weight of the ferrite granules was added to perform primary molding into a desired shape, and the polystyrene fibers were scattered by gradually heating to 500 ° C. in the atmosphere and then at 1100 ° C. to 1300 ° C. Sintered in nitrogen gas to which a slight amount of oxygen was added at a temperature, and then kept at a temperature of 1200 ° C. or higher in argon gas at a pressure of 100 MPa / cm 2 or higher to obtain HI
A method for producing a porous soft magnetic ferrite sintered body, which is characterized in that P treatment is performed.

【0014】[0014]

【作用】本発明による多孔質軟磁性フェライト焼結体の
製造方法において、Ni−Znフェライト、及びMn−
Znフェライトの顆粒に添加するポリスチレン繊維は、
フェライト粉末の重量に対し、重量比で20重量%ない
し5重量%の範囲が好ましく、ポリスチレン繊維の添加
量が20重量%を越えると圧粉成形体を形成する時にポ
リスチレン繊維がスプリングバックして圧粉成形体を損
傷してしまうこと、又フェライト焼結体の強度が弱くな
り使用に耐えないこと、一方5重量%以下ではフェライ
ト焼結体に形成される貫通孔の割合が少なくなり、フィ
ルタとしての性能が低くなるため、重量比で20重量%
ないし5重量%の範囲が好適である。
In the method for producing a porous soft magnetic ferrite sintered body according to the present invention, Ni-Zn ferrite and Mn-
The polystyrene fibers added to the Zn ferrite granules are
The weight ratio is preferably in the range of 20% by weight to 5% by weight with respect to the weight of the ferrite powder. If the amount of polystyrene fiber added exceeds 20% by weight, the polystyrene fibers will spring back when the powder compact is formed and the pressure will be reduced. The powder compact will be damaged, and the strength of the ferrite sintered body will be weak so that it cannot be used. On the other hand, if it is 5% by weight or less, the proportion of the through holes formed in the ferrite sintered body will be small, and as a filter, 20% by weight due to poor performance of
The preferred range is from 5 to 5% by weight.

【0015】又、無数の貫通孔を形成するための圧粉成
形体に混入するポリスチレン繊維の直径は、ポリスチレ
ン繊維の径が0.6mm以上の太さでは、粉末を圧粉成
形して圧粉体を成形した時ポスチレン繊維がスプリング
バックし圧粉体を破壊してしまい、又直径が0.2mm
以下ではHIP処理を施した時焼結体に作られた貫通孔
につぶれを生じ、貫通孔の一部の孔を閉じてしまうもの
が生じる。又ポリスチレンの長さは本発明の実施例では
焼結体の厚さを6mm(圧粉体の厚さは8mm)とした
ので圧粉体の厚さより長い10mmないし20mmのも
のを使用したが、使用するポリスチレン繊維の長さは焼
結体の厚さにより適宜選択すればよい。
Further, the diameter of the polystyrene fiber mixed in the powder compact for forming the innumerable through-holes is such that if the diameter of the polystyrene fiber is 0.6 mm or more, the powder is compacted by powder compaction. When the body is molded, the polystyrene fiber springs back and destroys the green compact, and the diameter is 0.2 mm.
In the following, when the HIP process is performed, the through holes formed in the sintered body are crushed and some of the through holes are closed. The length of polystyrene is 10 mm or 20 mm, which is longer than the thickness of the green compact, because the thickness of the sintered body is 6 mm (the thickness of the green compact is 8 mm) in the embodiment of the present invention. The length of the polystyrene fiber used may be appropriately selected depending on the thickness of the sintered body.

【0016】又ポリスチレン繊維を圧粉体から除去する
ための脱脂温度は大気中500℃迄室温から20℃/時
程の割合で昇温したが、最高保持温度及び時間当りの徐
熱する昇温速度は、次の焼結体を形成する1100℃な
いし1300℃の焼結を行う際に、ポリスチレン繊維が
飛散されて充分除去されている状態にあればよい。
The degreasing temperature for removing the polystyrene fiber from the green compact was raised from room temperature to 500 ° C. in the air at a rate of about 20 ° C./hour. The speed may be such that the polystyrene fibers are scattered and sufficiently removed during the sintering at 1100 ° C. to 1300 ° C. for forming the next sintered body.

【0017】なお、HIP処理を施す際の一次の高温焼
結時に形成した貫通孔は、HIP処理時1200℃に保
持しアルゴンガス中で100MPa/cm2の圧力を加
えながら3時間程保持し焼結を行なっても、HIP処理
時のアルゴンガス中での加圧高温焼結状態においては、
材料中の粒界に存在する空孔はつぶされても貫通孔の孔
がつぶされることはない。従って無数の貫通孔を有する
高温焼結材はHIP処理により更に焼結体の材料強度を
増し、又表面加工時のチッピングの発生を防止する。
The through-holes formed during the primary high-temperature sintering during the HIP treatment are maintained at 1200 ° C. during the HIP treatment and maintained for 3 hours while applying a pressure of 100 MPa / cm 2 in argon gas. Even if the binding is performed, in the pressurized high temperature sintering state in argon gas during HIP processing,
Even if the holes existing at the grain boundaries in the material are crushed, the holes of the through holes are not crushed. Therefore, the high-temperature sintered material having innumerable through-holes further increases the material strength of the sintered body by the HIP treatment and prevents the occurrence of chipping during surface processing.

【0018】使用するフェライト材はHGMSに用いる
場合、高い磁束密度の材料が好ましく、一方材料の磁気
特性の値はフェライトに加えられる磁界を除去し液体を
流した時に、フェライトに形成された貫通孔内に付着し
た強磁性の微粒子が貫通孔内から除去される強さの保磁
力を保証する程の値であればよく、保磁力に対比した比
透磁率の値は100ないし1000もあればよい。従っ
て本発明の軟磁性フェライト材では、Ni−Znフェラ
イトではFe23が49モル%ないし49.9モル%、
NiOが16モル%ないし20モル%、残ZnOの組成
範囲の材料、Mn−ZnフェライトではFe23が55
モル%ないし58モル%、MnOが26モル%ないし3
0モル%、残ZnOの値の組成範囲の材料を用いる。
When HGMS is used, the ferrite material used is preferably a material having a high magnetic flux density, while the value of the magnetic characteristics of the material is such that the through holes formed in the ferrite when the magnetic field applied to the ferrite is removed and a liquid is made to flow. Any value may be sufficient as long as it guarantees the coercive force of the strength with which the ferromagnetic fine particles adhered inside are removed from the through-hole, and the value of the relative magnetic permeability relative to the coercive force may be 100 to 1000. . Therefore, in the soft magnetic ferrite material of the present invention, in Ni—Zn ferrite, Fe 2 O 3 is 49 mol% to 49.9 mol%,
NiO is 16 mol% to 20 mol%, and the material having the composition range of residual ZnO, Mn-Zn ferrite has Fe 2 O 3 of 55.
Mol% to 58 mol%, MnO 26 mol% to 3
A material having a composition range of 0 mol% and residual ZnO is used.

【0019】[0019]

【実施例】次に本発明の実施例について説明する。 (実施例1)焼結体原料粉末として、平均粒径が1μm
以下のNi−Znフェライト(Fe2355モル%、M
nO28モル%、ZnO残)の予焼粉末を使用し、この
予焼粉末にポリビニールアルコール(PVA)#170
0を5%水溶液にしたものを20重量%添加し、ボール
ミルにて混合し、スプレードライヤーにて50μm以下
の顆粒に造粒し、母粉末を製造する。上記母粉末に対し
て、直径が0.6mmないし0.2mm、長さが10m
mないし20mmのポリスチレン樹脂繊維を20重量%
(ポリスチレン繊維の添加量が最大)添加し、乾式混合
を行い原料粉末を得た。次に50mm×50mmの金型
を用いて、120MPa/cm2の圧力で厚さ8mmの
一次の圧粉成形体を得た。
EXAMPLES Next, examples of the present invention will be described. (Example 1) As a raw material powder for a sintered body, the average particle size is 1 μm.
Following Ni-Zn ferrite (Fe 2 O 3 55 mol%, M
nO 28 mol%, ZnO residue) was used as a pre-calcined powder, and polyvinyl alcohol (PVA) # 170 was added to the pre-calcined powder.
20% by weight of 0 in a 5% aqueous solution is added, mixed by a ball mill, and granulated into particles of 50 μm or less by a spray dryer to produce a mother powder. The diameter is 0.6 mm to 0.2 mm and the length is 10 m with respect to the above mother powder.
20% by weight of m to 20 mm polystyrene resin fiber
(The maximum amount of polystyrene fiber added) was added and dry mixing was performed to obtain a raw material powder. Next, using a mold of 50 mm × 50 mm, a primary powder compact having a thickness of 8 mm was obtained at a pressure of 120 MPa / cm 2 .

【0020】ここで、冷間等圧加圧処理(CIP)によ
る成形では、一次圧粉成形体をポリスチレン製ビニール
袋にて真空パックを行い、湿式法CIP装置にて、25
0MPa/cm2の圧力で1分間程の時間保持の条件に
てCIP処理を行った。次いで、この圧粉成形体を20
℃/時の昇温速度で500℃まで昇温してポリスチレン
樹脂繊維を分解飛散させた。得られた多孔体を1200
℃大気中で約2時間保持して高温焼結を行いNi−Zn
フェライトの本発明による焼結体を得た。
Here, in the molding by the cold isostatic pressing (CIP), the primary powder compact is vacuum-packed in a polystyrene vinyl bag, and the wet compact CIP apparatus is used for 25
The CIP treatment was performed under the condition of maintaining the pressure at 0 MPa / cm 2 for about 1 minute. Then, the green compact is
The polystyrene resin fiber was decomposed and scattered by raising the temperature to 500 ° C. at a temperature rising rate of ° C./hour. The obtained porous body is 1200
Ni-Zn
A sintered body of ferrite according to the invention was obtained.

【0021】(実施例2)Ni−Znフェライトの熱間
等圧加圧焼結(HIP)を行う方法では、実施例1のN
i−Znフェライト一次圧粉成形体を500℃迄徐熱し
ポリスチレン樹脂繊維を分解飛散させたものを、120
0℃大気中で約2時間保持し一次の高温焼結体を作製
し、さらに1200℃で100MPa/cm2の圧力を
加えながら3時間保持の条件にてアルゴンガス雰囲気中
にてHIP処理を行った。
(Example 2) In the method of performing hot isostatic pressing (HIP) of Ni-Zn ferrite, N of Example 1 was used.
The i-Zn ferrite primary green compact was gradually heated to 500 ° C and the polystyrene resin fiber was decomposed and scattered.
A primary high temperature sintered body is produced by holding it in the atmosphere at 0 ° C. for about 2 hours, and further subjected to HIP treatment in an argon gas atmosphere under the condition of holding it for 3 hours while applying a pressure of 100 MPa / cm 2 at 1200 ° C. It was

【0022】(実施例3)焼結体原料粉末として平均粒
径が1μm以下のMn−Znフェライト(Fe2356
モル%、MnO28モル%、ZnO残)の予焼粉末を使
用し、この粉末にポリビニルアルコール(PVA)#1
700を5%水溶液にしたものを20重量%添加し、ボ
ールミルにより混合し、スプレードライヤーにて50μ
m以下の顆粒に造粒し母粉末とした。前記母粉末に対し
て、直径が0.6mmないし0.2mm、長さが10m
mないし20mmのポリスチレン樹脂繊維を最大添加量
である20重量%添加し、乾式混合を行い原料粉末を得
た。次に50mm×50mmの金型を用いて120MP
a/cm2の圧力を加えて厚さ8mmに一次成形を行っ
た。
(Embodiment 3) Mn-Zn ferrite (Fe 2 O 3 56) having an average particle diameter of 1 μm or less was used as a raw material powder for a sintered body.
Mol%, MnO 28 mol%, ZnO residue) was used as a pre-baked powder, and polyvinyl alcohol (PVA) # 1 was added to this powder.
20% by weight of 5% aqueous solution of 700 was added, mixed by a ball mill, and 50 μ by a spray dryer.
Granules of m or less were granulated to obtain a mother powder. The diameter of the mother powder is 0.6 mm to 0.2 mm, and the length is 10 m.
A polystyrene resin fiber of m to 20 mm was added at a maximum addition amount of 20% by weight, and dry mixing was performed to obtain a raw material powder. Next, 120MP using a 50mm x 50mm die
A pressure of a / cm 2 was applied to carry out primary molding to a thickness of 8 mm.

【0023】ここで、冷間等圧加圧焼結(CIP)によ
る成形では、一次成形体をポリエチレン製ビニール袋に
封入して真空パックを行い、湿式法CIP装置にて、2
50MPa/cm2で1分間程保持の加圧条件によりC
IP処理を行った。次いで、この成形体を大気中で20
℃/時の昇温速度で500℃まで徐熱昇温してポリスチ
レン樹脂繊維を分解飛散させた。得られた多孔体を12
00℃で微量の酸素を添加した窒素ガス雰囲気中で約2
時間焼結し、Mn−Znフェライトによる本発明の焼結
体を得た。
Here, in the molding by cold isostatic pressing (CIP), the primary compact is enclosed in a polyethylene vinyl bag and vacuum packed, and the wet compact CIP apparatus is used for 2
C under a pressure condition of holding at 50 MPa / cm 2 for about 1 minute
IP treatment was performed. Then, this molded body is subjected to 20
The polystyrene resin fiber was decomposed and scattered by gradually raising the temperature to 500 ° C. at a temperature rising rate of ° C./hour. The obtained porous body is 12
About 2 in a nitrogen gas atmosphere with a slight amount of oxygen added at 00 ° C
After sintering for a time, a sintered body of the present invention made of Mn-Zn ferrite was obtained.

【0024】(実施例4)Mn−Znフェライトの熱間
等圧加圧焼結(HIP)を行う方法では、実施例3のM
n−Znフェライト一次成形体を500℃迄徐熱しポリ
スチレン樹脂繊維を分解飛散させたものを、1200℃
で微量の酸素を含む窒素ガス雰囲気中で2時間保持して
一次焼結体を作成し、さらに1200℃で100MPa
/cm23時間アルゴンガス雰囲気中でHIP処理を行
った。
(Example 4) In the method of performing hot isostatic pressing (HIP) of Mn-Zn ferrite, M of Example 3 was used.
The n-Zn ferrite primary molded body was gradually heated to 500 ° C and the polystyrene resin fiber was decomposed and scattered to 1200 ° C.
And hold it in a nitrogen gas atmosphere containing a small amount of oxygen for 2 hours to create a primary sintered body, and further to 100 MPa at 1200 ° C.
/ Cm 2 HIP treatment was performed for 3 hours in an argon gas atmosphere.

【0025】(比較例1)Ni−ZnフェライトのCI
P処理を行った焼結体、HIP処理を行った焼結体と同
一母粉末を用いて、50mm×50mm×8mmの寸法
に120MPa/cm2の圧力にて成形して圧粉成形体
を得、さらに、20℃/時の昇温速度で徐熱し500℃
まで昇温してポリスチレン樹脂繊維を分解飛散させたも
のを、1200℃大気中2時間保持して得た焼結体を比
較例1として強度及び加工性を評価した。
(Comparative Example 1) CI of Ni-Zn ferrite
Using the same mother powder as the P-processed sintered body and the HIP-processed sintered body, the powder was compacted into a size of 50 mm × 50 mm × 8 mm at a pressure of 120 MPa / cm 2. Furthermore, it is gradually heated at a temperature rising rate of 20 ° C / hour to 500 ° C.
The strength and workability were evaluated by using as a comparative example 1 a sintered body obtained by holding the polystyrene resin fiber decomposed and scattered at 1200 ° C. for 2 hours in the air.

【0026】(比較例2)Mn−ZnフェライトのCI
P処理、HIP処理を行ったと同じ同一母粉末を用い
て、50mm×50mm×8mmの寸法に120MPa
/cm2の圧力を加えて成形して圧粉成形体を得、つい
で20℃/時の昇温速度で500℃迄徐熱昇温してポリ
スチレン樹脂繊維を分解飛散させたものを、1200℃
で微量の酸素を添加した窒素ガス雰囲気中で2時間保持
して焼結体を得、比較例2として強度及び加工性を評価
した。
(Comparative Example 2) CI of Mn-Zn ferrite
120 MPa in a size of 50 mm × 50 mm × 8 mm using the same mother powder that has been subjected to P treatment and HIP treatment
1200 ° C is obtained by decomposing and scattering polystyrene resin fibers by gradually heating to 500 ° C at a temperature rising rate of 20 ° C / hour to obtain a powder compact, which is molded by applying a pressure of / cm 2
The sintered body was obtained by holding in a nitrogen gas atmosphere to which a small amount of oxygen was added for 2 hours, and as Comparative Example 2, strength and workability were evaluated.

【0027】以上の工程により得られたCIP処理によ
る実施例1、実施例3による試料、HIP処理による実
施例2、実施例4による試料、さらに比較例1、比較例
2として作成した6条件の試料の抗折強度とチッピング
発生率を測定した。抗折強度は2mm×2mm×25m
mに加工したものを用いてロードセル試験器にて測定
し、またチッピングについては、粒度が#800で幅
0.8mmのダイヤモンド砥石を用い、回転数1000
rpm、送り速度10mm/分、溝の深さ2.0mmの
条件で外周刃切断機にて溝加工を行ってチッピングの深
さを光学顕微鏡にて測定した。
The samples according to the examples 1 and 3 by the CIP treatment obtained by the above steps, the samples according to the examples 2 and 4 by the HIP treatment, and the 6 conditions prepared as the comparative example 1 and the comparative example 2. The bending strength and chipping occurrence rate of the sample were measured. The bending strength is 2mm × 2mm × 25m
Measured with a load cell tester using the one processed to m, and for chipping, use a diamond grindstone with a grain size of # 800 and a width of 0.8 mm, and rotate at 1000 rpm.
Grooving was performed with an outer peripheral blade cutting machine under the conditions of rpm, feed rate 10 mm / min, and groove depth 2.0 mm, and the chipping depth was measured with an optical microscope.

【0028】結果を表1に示す。なお、チッピング測定
時の溝加工の長さは30mmである。
The results are shown in Table 1. The length of groove processing at the time of chipping measurement is 30 mm.

【表1】 [Table 1]

【0029】表1の結果より明らかなように、本発明の
製造方法により、加工性及び強度が向上したHGMSに
用いる多孔質軟磁性フェライトが得られるようになっ
た。
As is clear from the results shown in Table 1, the manufacturing method of the present invention has made it possible to obtain porous soft magnetic ferrite for HGMS, which has improved workability and strength.

【0030】なお、本発明の実施例に用いたNi−Zn
フェライトは、Fe2355モル%、MnO28モル
%、ZnO残の材料で、Mn−Znフェライトは、Fe
2356モル%、MnO28モル%、残ZnOであり、
貫通孔を形成するためのポリスチレン繊維も20重量%
添加した多孔質軟磁性フェライトの製造方法についての
み説明したが、Ni−Znフェライトについては材料の
磁性特性上からFe23が49モル%ないし49.9モ
ル%、NiOが16モル%ないし20モル%、残がZn
Oの軟磁性材、又Mn−ZnフェライトではFe23
55モル%ないし58モル%、MnOが26モル%ない
し30モル%、残ZnOの組成範囲の軟磁性材が適当で
ある。
The Ni--Zn used in the examples of the present invention
Ferrite is a material of 55 mol% of Fe 2 O 3 , 28 mol% of MnO, and ZnO residue, and Mn-Zn ferrite is Fe.
2 O 3 56 mol%, MnO 28 mol%, residual ZnO,
20% by weight of polystyrene fiber for forming through holes
Although only the method for producing the added porous soft magnetic ferrite has been described, regarding Ni—Zn ferrite, Fe 2 O 3 is 49 mol% to 49.9 mol% and NiO is 16 mol% to 20 because of the magnetic properties of the material. Mol%, balance Zn
O is a soft magnetic material, and in the case of Mn-Zn ferrite, a soft magnetic material having a composition range of 55 mol% to 58 mol% Fe 2 O 3 , 26 mol% to 30 mol% MnO, and residual ZnO is suitable.

【0031】又多孔質を形成するための顆粒粉末に添加
するポリスチレン繊維の量も最大重量比で20%迄は添
加出来、最低の添加量は多孔質を形成する貫通孔の量か
ら5重量%程とすればよい。
The amount of polystyrene fibers added to the granular powder for forming the porosity can be added up to 20% at the maximum weight ratio, and the minimum addition amount is 5% by weight from the amount of the through holes forming the porosity. It should be about the same.

【0032】なお本発明に用いた湿式法CIP処理、及
びHIP処理は使用する装置により加圧能力を異にする
が、本実施例に用いた装置では湿式法CIP処理装置は
加圧力は450MPa/cm2の条件まで可能であり、
HIP処理では120MPa/cm2迄可能である。
The wet process CIP treatment and the HIP process used in the present invention have different pressurizing abilities depending on the apparatus used, but in the apparatus used in this embodiment, the pressure applied by the wet method CIP processing apparatus is 450 MPa / The condition of cm 2 is possible,
With HIP treatment, up to 120 MPa / cm 2 is possible.

【0033】ポリスチレン樹脂繊維を分解飛散した処理
を行った後の焼結は本実施例では1200℃で行った
が、通常軟磁性フェライトを焼結する1100℃ないし
1300℃の焼結温度範囲であれば本発明と同様な特性
のフェライト材が得られる。
Sintering after the treatment of decomposing and scattering polystyrene resin fibers was carried out at 1200 ° C. in this embodiment, but it is usually within a sintering temperature range of 1100 ° C. to 1300 ° C. for sintering soft magnetic ferrite. For example, a ferrite material having characteristics similar to those of the present invention can be obtained.

【0034】[0034]

【発明の効果】本発明による多孔質軟磁性フェライトの
製造方法により、工業廃水用の高勾配磁気分離装置に用
いる軟磁性のNi−Znフェライト、Mn−Znフェラ
イトにおいて、多孔質で加工性がよく、製品強度の向上
した多孔質軟磁性フェライト焼結体を提供できるように
なった。
By the method for producing a porous soft magnetic ferrite according to the present invention, a soft magnetic Ni-Zn ferrite or Mn-Zn ferrite used in a high gradient magnetic separator for industrial wastewater is porous and has good workability. Now, it is possible to provide a porous soft magnetic ferrite sintered body having improved product strength.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B01D 35/06 A H01F 1/34 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area // B01D 35/06 A H01F 1/34 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性Ni−Znフェライトの微粉末に
有機バインダを添加し形成した平均粒径が50μm以下
の顆粒に、直径が0.6mmないし0.2mmで圧粉成
形厚さ以上の長さのポリスチレン繊維を、フェライト顆
粒の重量に対し20重量%ないし5重量%添加し所望の
形状に一次成形を行った後、250MPa/cm2以上
の圧力で保持してCIP処理を行い、大気中で500℃
迄徐熱して前記ポリスチレン繊維を飛散させた後、大気
中で1100℃ないし1300℃の温度で焼結すること
を特徴とする多孔質軟磁性フェライト焼結体の製造方
法。
1. Granules having an average particle size of 50 μm or less formed by adding an organic binder to a fine powder of soft magnetic Ni—Zn ferrite, and having a diameter of 0.6 mm to 0.2 mm and a length of at least the compacting thickness. 20% to 5% by weight based on the weight of the ferrite granules of polystyrene fiber is added to perform primary molding into a desired shape, and then CIP treatment is performed by holding at a pressure of 250 MPa / cm 2 or more and in the atmosphere. At 500 ° C
A method for producing a porous soft magnetic ferrite sintered body, characterized in that the polystyrene fiber is scattered to be gradually heated until it is sintered at a temperature of 1100 ° C. to 1300 ° C. in the atmosphere.
【請求項2】 軟磁性Ni−Znフェライトの微粉末に
有機バインダを添加し形成した平均粒径が50μm以下
の顆粒に、直径が0.6mmないし0.2mmで圧粉成
形厚さ以上の長さのポリスチレン繊維をフェライト顆粒
の重量に対し20重量%ないし5重量%添加し所望の形
状に一次成形を行い、大気中で500℃迄徐熱して前記
ポリスチレン繊維を飛散させた後、大気中で1100℃
ないし1300℃の温度で焼結し、ついで1200℃以
上の温度でアルゴンガス中で100MPa/cm2以上
の圧力で保持してHIP処理を施してなることを特徴と
する多孔質軟磁性フェライト焼結体の製造方法。
2. Granules having an average particle size of 50 μm or less formed by adding an organic binder to a fine powder of soft magnetic Ni—Zn ferrite, and having a diameter of 0.6 mm to 0.2 mm and a length of at least the compacting thickness. 20% to 5% by weight with respect to the weight of ferrite granules is added to the polystyrene granules to perform primary molding into a desired shape, and the polystyrene fibers are scattered by gradually heating to 500 ° C. in the air, and then in the air. 1100 ° C
To 1300 ° C., and then HIP treatment is carried out by holding at a temperature of 1200 ° C. or higher in argon gas at a pressure of 100 MPa / cm 2 or higher, and then performing a HIP treatment. Body manufacturing method.
【請求項3】 軟磁性Mn−Znフェライトの微粉末に
有機バインダを添加し形成した平均粒径が50μm以下
の顆粒に、直径が0.6mmないし0.2mmで圧粉成
形厚さ以上の長さのポリスチレン繊維を、フェライト顆
粒の重量に対し20重量%ないし5重量%添加し所望の
形状に一次成形を行った後、250MPa/cm2以上
の圧力で保持してCIP処理を行い、大気中で500℃
迄徐熱して前記ポリスチレン繊維を飛散させた後、微量
の酸素を添加した窒素ガス中で1100℃ないし130
0℃の温度で焼結することを特徴とする多孔質軟磁性フ
ェライト焼結体の製造方法。
3. Granules having an average particle size of 50 μm or less formed by adding an organic binder to fine powder of soft magnetic Mn—Zn ferrite, and having a diameter of 0.6 mm to 0.2 mm and a length of at least the powder compacting thickness. 20% to 5% by weight based on the weight of the ferrite granules of polystyrene fiber is added to perform primary molding into a desired shape, and then CIP treatment is performed by holding at a pressure of 250 MPa / cm 2 or more and in the atmosphere. At 500 ° C
The polystyrene fibers are scattered by being slowly heated to 1100 ° C. to 130 ° C. in nitrogen gas containing a slight amount of oxygen.
A method for producing a porous soft magnetic ferrite sintered body, which comprises sintering at a temperature of 0 ° C.
【請求項4】 軟磁性Mn−Znフェライトの微粉末に
有機バインダを添加し形成した平均粒径が50μm以下
の顆粒に、直径が0.6mmないし0.2mmで圧粉成
形厚さ以上の長さのポリスチレン繊維をフェライト顆粒
の重量に対し20重量%ないし5重量%添加し所望の形
状に一次成形を行い、大気中で500℃迄徐熱して前記
ポリスチレン繊維を飛散させた後、1100℃ないし1
300℃の温度で微量の酸素を添加した窒素ガス中で焼
結し、ついで1200℃以上の温度でアルゴンガス中で
100MPa/cm2以上の圧力で保持してHIP処理
を施してなることを特徴とする多孔質軟磁性フェライト
焼結体の製造方法。
4. Granules having an average particle diameter of 50 μm or less formed by adding an organic binder to a fine powder of soft magnetic Mn—Zn ferrite, and having a diameter of 0.6 mm to 0.2 mm and a length not less than the powder compacting thickness. 20% by weight to 5% by weight based on the weight of the ferrite granules is added, primary molding is performed to a desired shape, and the polystyrene fibers are scattered by gradually heating to 500 ° C. in the air, and then at 1100 ° C. 1
Characterized by sintering at a temperature of 300 ° C. in nitrogen gas to which a small amount of oxygen is added, and then performing HIP treatment at a temperature of 1200 ° C. or higher in argon gas at a pressure of 100 MPa / cm 2 or higher. And a method for producing a porous soft magnetic ferrite sintered body.
JP5294430A 1993-10-29 1993-10-29 Manufacture of sintered material of porous soft magnetic ferrite Pending JPH07130528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5294430A JPH07130528A (en) 1993-10-29 1993-10-29 Manufacture of sintered material of porous soft magnetic ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5294430A JPH07130528A (en) 1993-10-29 1993-10-29 Manufacture of sintered material of porous soft magnetic ferrite

Publications (1)

Publication Number Publication Date
JPH07130528A true JPH07130528A (en) 1995-05-19

Family

ID=17807668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5294430A Pending JPH07130528A (en) 1993-10-29 1993-10-29 Manufacture of sintered material of porous soft magnetic ferrite

Country Status (1)

Country Link
JP (1) JPH07130528A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005253A1 (en) * 2004-07-09 2006-01-19 Beijing University Of Chemical Technology A porous magnetic ferrite and its preparation
JP2006516678A (en) * 2003-01-30 2006-07-06 プランゼー アクチエンゲゼルシヤフト Method for producing porous sintered compact
WO2017074658A1 (en) * 2015-10-27 2017-05-04 The Trustees Of The University Of Pennsylvania Magnetic separation filters and microfluidic devices using magnetic separation filters

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516678A (en) * 2003-01-30 2006-07-06 プランゼー アクチエンゲゼルシヤフト Method for producing porous sintered compact
WO2006005253A1 (en) * 2004-07-09 2006-01-19 Beijing University Of Chemical Technology A porous magnetic ferrite and its preparation
WO2017074658A1 (en) * 2015-10-27 2017-05-04 The Trustees Of The University Of Pennsylvania Magnetic separation filters and microfluidic devices using magnetic separation filters
US11786914B2 (en) 2015-10-27 2023-10-17 The Trustees Of The University Of Pennsylvania Magnetic separation filters and microfluidic devices using magnetic separation filters

Similar Documents

Publication Publication Date Title
DE3120169C2 (en) Process for making a metal object
CN103081038B (en) Rare earth element permanent magnet and the manufacture method of rare earth element permanent magnet
JP6511832B2 (en) Soft magnetic metal powder and soft magnetic metal powder core using the powder
US2964793A (en) Method of making permanent magnets
CN101316674A (en) Process for producing rare-earth permanent magnet material
JPWO2009128425A1 (en) Composite magnetic material and method for producing the same
JPH10212503A (en) Compact of amorphous soft magnetic alloy powder and its production
JP2006077264A (en) METHOD FOR RECYCLING RARE-EARTH SINTERED MAGNET AND TRANSITION-METAL BASED SCRAP, AND METHOD FOR MANUFACTURING MAGNETIC-MATERIAL POWDER FOR GHz BAND WAVE ABSORBER AND METHOD FOR MANUFACTURING WAVE ABSORBER
US4881985A (en) Method for producing anisotropic RE-FE-B type magnetically aligned material
CA1233679A (en) Wrought p/m processing for prealloyed powder
JPH07130528A (en) Manufacture of sintered material of porous soft magnetic ferrite
CN104837581A (en) Iron powder for dust cores
CN107903014A (en) A kind of Inorganic whisker porous ceramic filter material and preparation method thereof
JP2005116820A (en) Dust core
JPH02164008A (en) Manufacture of soft magnetic sintered body of fe-si alloy
JPH056323B2 (en)
JP3201428B2 (en) Manufacturing method of powder for permanent magnet
Behnam et al. The effect of size and morphology of iron powder on shell density in low carbon steel hollow spheres
Takata et al. Influence of Hipping Pressure on The Strength and The Porosity of Porous Copper
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JPH0372011A (en) Manufacture of rare earth metal-ion-boron series alloy powder for sintered magnet
JP2019090103A (en) Soft magnetic metal powder, production method thereof and soft magnetic metal dust core
JP3940291B2 (en) Method for producing porous vitrified grinding wheel and method for recycling pore forming agent
US6461562B1 (en) Methods of making sintered metal oxide articles
JPH039161B2 (en)