JPH07130351A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH07130351A
JPH07130351A JP5272759A JP27275993A JPH07130351A JP H07130351 A JPH07130351 A JP H07130351A JP 5272759 A JP5272759 A JP 5272759A JP 27275993 A JP27275993 A JP 27275993A JP H07130351 A JPH07130351 A JP H07130351A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
electrolyte secondary
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5272759A
Other languages
Japanese (ja)
Inventor
Nobuhiro Fujiwara
信浩 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5272759A priority Critical patent/JPH07130351A/en
Publication of JPH07130351A publication Critical patent/JPH07130351A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To suppress excessive heat generation in the battery inside, increase the output density per unit weight and unit volume, remarkably lower the manufacturing cost, and improve the production yield. CONSTITUTION:An electrode part 1 is composed by arranging a plurality of coiled electrode elements 11 in parallel and symmetric positions and bundling them by a belt or a thermally shrinkable tube 32. A negative electrode lead 12 made of Ni and a positive electrode lead 12 made of pure aluminum are connected with each coiled electrode element 11 and the divided negative electrode leads 12 are converged into one negative electrode lead 12. A heat sensitive battery shutting element 16, which is a protective element, is connected with each positive electrode lead 13 in series and at the tips, the divided positive electrode leads 13 are converged into one positive electrode lead 13 in the same way as the negative electrode leads 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
関し、特にその電極部の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to the structure of its electrode portion.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型・軽量化を次々と実現させている。それに
伴い、移動用電源としての電池に対しても益々小型・軽
量且つ高エネルギー密度であることが求められるように
なっている。
2. Description of the Related Art Recent remarkable advances in electronic technology have made electronic devices smaller and lighter one after another. Along with this, batteries, which are used as mobile power sources, are required to be smaller and lighter and have high energy density.

【0003】従来、一般用途の二次電池としては、鉛電
池、ニッケル・カドミウム電池等の水溶液系二次電池が
主流である。しかし、これらの水溶液系二次電池は、サ
イクル特性には優れるものの、電池重量やエネルギー密
度の点で十分に満足できるものとは言えない。
Conventionally, an aqueous solution type secondary battery such as a lead battery or a nickel-cadmium battery has been mainly used as a secondary battery for general use. However, although these aqueous secondary batteries have excellent cycle characteristics, they cannot be said to be sufficiently satisfactory in terms of battery weight and energy density.

【0004】そこで、最近、リチウムやリチウム合金さ
らには炭素材料のようなリチウムイオンをドープ且つ脱
ドープが可能な物質を負極として使用し、また、正極に
リチウムコバルト複合酸化物等のリチウム複合酸化物を
使用する非水電解液二次電池の研究・開発が盛んに行わ
れている。この電池は、電池電圧が高く、高エネルギー
密度を有し、サイクル特性に優れた電池である。
Therefore, recently, a material capable of doping and dedoping lithium ions such as lithium, a lithium alloy and a carbon material is used as a negative electrode, and a lithium composite oxide such as a lithium cobalt composite oxide is used as a positive electrode. Research and development of a non-aqueous electrolyte secondary battery using a battery have been actively conducted. This battery has a high battery voltage, a high energy density, and excellent cycle characteristics.

【0005】従来の非水電解液二次電池は、円筒形状の
ものを例にとると、図8に示すように、負極集電体10
6に負極活性物質を塗布してなる負極101と、正極集
電体107に正極活性物質を塗布してなる正極102と
を、セパレータ103を介して巻回し、この巻回体の上
下に絶縁体104を載置した状態で電池容器105に収
納してなるものである。
Taking a cylindrical non-aqueous electrolyte secondary battery as an example, as shown in FIG. 8, a negative electrode current collector 10 is used.
6, a negative electrode 101 formed by applying a negative electrode active substance and a positive electrode 102 formed by applying a positive electrode active substance on a positive electrode current collector 107 are wound around a separator 103, and an insulator is provided above and below the wound body. The battery pack 105 is housed in a battery container 105 with 104 mounted thereon.

【0006】電池容器105には、電池蓋108が封口
ガスケット109をを介してかしめることによって取り
付けられ、それぞれ負極リード110及び正極リード1
11を介して負極101或は正極102と電気的に接続
され、電池の負極または正極として機能するように構成
されている。
A battery lid 108 is attached to the battery container 105 by caulking via a sealing gasket 109, and the negative electrode lead 110 and the positive electrode lead 1 are respectively attached.
It is electrically connected to the negative electrode 101 or the positive electrode 102 via 11 and is configured to function as the negative electrode or the positive electrode of the battery.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
非水電解液二次電池においては、その大容量化を図った
場合に、使用するにつれて放電末期では電池容器内部に
おける発熱が増大し、また、電池に電子負荷等の重負荷
がかかる場合でも、電池容器内部における発熱が大き
く、電池の性能(エネルギー密度、パワー密度、サイク
ル特性等)が著しく劣化するために、結果として高性能
な電池を得ることは非常に困難である。
However, in the conventional non-aqueous electrolyte secondary battery, when the capacity is increased, heat generation inside the battery container increases at the end of discharge as it is used, and Even if a heavy load such as an electronic load is applied to the battery, the heat generated inside the battery container is large and the battery performance (energy density, power density, cycle characteristics, etc.) is significantly deteriorated, resulting in a high-performance battery. Things are very difficult.

【0008】さらに、上記非水電解液二次電池の大容量
化に伴って、その構成要素である電極(正極101及び
負極102)等の表面積も大きなものとなるが、大表面
積の電極等を使用することで電池内部におけるショート
の発生率が著しく増大する。しかも上記電極等が大表面
積を有するために当然製造コスト高となり、歩溜りの低
下を招くという問題がある。
Further, as the capacity of the non-aqueous electrolyte secondary battery is increased, the surface area of the electrodes (the positive electrode 101 and the negative electrode 102) and the like which are the constituent elements also becomes large. When used, the rate of occurrence of short circuits inside the battery significantly increases. Moreover, since the electrodes and the like have a large surface area, the manufacturing cost is naturally high, and the yield is reduced.

【0009】それに加えて、上記大表面積の電極をその
正極101及び負極102の密着性を保って高密度化し
つつ、しかも上記電池性能を劣化させずに高出力密度を
維持することは、技術上困難である。現在、このような
様々な問題が上記非水電解液二次電池の大容量化の実現
にとって大きな障害となっている。
In addition to the above, it is technically possible to maintain the high output density of the electrode having a large surface area while maintaining the adhesion between the positive electrode 101 and the negative electrode 102 and densifying the electrode while not deteriorating the battery performance. Have difficulty. At present, such various problems are major obstacles to the realization of the large capacity of the non-aqueous electrolyte secondary battery.

【0010】本発明は、上述の様々な課題に鑑みてなさ
れたものであり、その目的とするところは、容易且つ安
価に大容量化が実現可能であり、しかも、電池内部にお
ける過度の発熱を抑制し、単位重量及び単位体積当りの
出力密度を増大させることができ、更に製造コストを大
幅に低減させて歩溜りの向上を図ることが可能となる非
水電解液二次電池を提供することにある。
The present invention has been made in view of the above-mentioned various problems, and it is an object of the present invention to easily and inexpensively realize a large capacity and to prevent excessive heat generation inside the battery. To provide a non-aqueous electrolyte secondary battery which can suppress and increase the output density per unit weight and unit volume and further can significantly reduce the manufacturing cost to improve the yield. It is in.

【0011】[0011]

【課題を解決するための手段】本発明は、正極及び負極
がセパレータを介して巻回されてなる複数の巻回電極素
子を、同一電池容器内に収納し並列結合すると共に、非
水溶媒に電解質が溶解されてなる非水電解液を注入し、
且つ、各巻回電極素子のリードには保護素子を結合し、
電池容器には電池容器内圧の異常上昇に応じて開放され
る安全弁を設けて構成する。
According to the present invention, a plurality of spirally wound electrode elements in which a positive electrode and a negative electrode are wound with a separator interposed therebetween are housed in the same battery container and connected in parallel, and a nonaqueous solvent is used. Inject a non-aqueous electrolyte solution in which the electrolyte is dissolved,
Moreover, a protective element is coupled to the lead of each wound electrode element,
The battery container is provided with a safety valve that opens when the internal pressure of the battery container rises abnormally.

【0012】この場合、上記保護素子としては、感熱電
池遮断素子及び/又はヒューズを用いて構成する。
In this case, the protective element is constituted by using a thermal battery cutoff element and / or a fuse.

【0013】またこの場合、上記保護素子として上記感
熱電池遮断素子と上記ヒューズとを直列に接続して構成
してもよい。
Further, in this case, the protection element may be constituted by connecting the thermal battery cutoff element and the fuse in series.

【0014】[0014]

【作用】本発明に係る非水電解液二次電池においては、
多数個の巻回電極素子を並列に結合して効率よく電池容
器部内に収納するので、電池全体としての電極(正極及
び負極)の表面積は非常に大きなものとなる。従って、
電池全体として大きなエネルギー密度を有するので、効
率よく出力することが可能となる。
In the non-aqueous electrolyte secondary battery according to the present invention,
Since a large number of wound electrode elements are coupled in parallel and efficiently housed in the battery container, the surface area of the electrodes (positive electrode and negative electrode) of the battery as a whole becomes very large. Therefore,
Since the entire battery has a large energy density, it is possible to efficiently output.

【0015】さらに、上記各巻回電極素子の出力リード
には保護素子(感熱電池遮断素子又はヒューズ)が結合
されているので、各々の上記巻回電極素子について高温
抑制が行われて、結果として電池全体の温度が許容範囲
内に抑制されることとなる。
Furthermore, since a protective element (heat-sensitive battery blocking element or fuse) is coupled to the output lead of each of the wound electrode elements, high temperature suppression is performed for each of the wound electrode elements, resulting in a battery. The overall temperature will be suppressed within the allowable range.

【0016】[0016]

【実施例】以下、本発明に係る非水電解液二次電池の実
施例を図面を参照しながら説明する。
EXAMPLES Examples of the non-aqueous electrolyte secondary battery according to the present invention will be described below with reference to the drawings.

【0017】本実施例に係る非水電解液二次電池は、図
1に示すように、電極部1、上蓋部2、及び電池容器部
3で構成されている。
As shown in FIG. 1, the non-aqueous electrolyte secondary battery according to this embodiment comprises an electrode portion 1, an upper lid portion 2 and a battery container portion 3.

【0018】電極部1は、複数個(図示の例では7個)
の巻回電極素子11が並列に対称形状(図示の例では6
角形状)に配置され、図2に示すように、ベルトまたは
熱収縮性を有するチューブ32を用いて結束されて構成
されている。各巻回電極素子11には、Niを材料とす
る負極リード12及び純Alを材料とする正極リード1
3が接続され、各負極リード12の分岐は1本の負極リ
ード12に集約されている。また、各正極リード13に
は、保護素子である感熱電池遮断素子16が直列に結合
され、その先では負極リード12と同様に各正極リード
13の分岐が1本の正極リード13に集約されている。
A plurality of electrode parts 1 (7 in the illustrated example)
Of the spirally wound electrode elements 11 are arranged in parallel and have a symmetrical shape (6 in the illustrated example).
It is arranged in a rectangular shape, and as shown in FIG. 2, a belt or a tube 32 having heat-shrinkability is used for binding. Each wound electrode element 11 has a negative electrode lead 12 made of Ni and a positive electrode lead 1 made of pure Al.
3 are connected, and the branches of each negative electrode lead 12 are integrated into one negative electrode lead 12. Further, a thermal battery cutoff element 16 which is a protection element is connected in series to each positive electrode lead 13, and the branches of each positive electrode lead 13 are integrated into one positive electrode lead 13 in the same manner as the negative electrode lead 12 after that. There is.

【0019】各巻回電極素子11は、銅を材料とする負
極集電体にリチウムのドープ・脱ドープが可能な炭素材
料(例えばKHカーボン)を塗布又は金属リチウムを貼
り合わせてなる負極と、Alを材料とする正極集電体に
リチウムと遷移金属の複合酸化物であるLiCoO2
塗布してなる正極とがポリエチレンまたはポリプロピレ
ンを材料とするセパレータを介して複数組巻回されて配
置されて構成されている。
Each wound electrode element 11 has a negative electrode made of a negative electrode current collector made of copper coated with a carbon material (for example, KH carbon) capable of doping or dedoping lithium or bonded with metallic lithium, and Al. And a positive electrode obtained by applying LiCoO 2 , which is a composite oxide of lithium and a transition metal, to a positive electrode current collector made of a material such that a plurality of sets are wound and arranged via a separator made of polyethylene or polypropylene. Has been done.

【0020】保護素子である感熱電池遮断素子16とし
ては、レイケム社製の商品名ポリスイッチPTC(ポジ
ティブ・テンパレチャー・コエフィシェント)素子を用
いる。この感熱電池遮断素子16は、図3に示すよう
に、トーラス形状を有し、Niを材料とする上板21と
下板23とでPTC素子22をサンドイッチした構造を
有する。
A polyswitch PTC (Positive Temperer Coefficient) element manufactured by Raychem Co., Ltd. is used as the thermal battery cutoff element 16 which is a protective element. As shown in FIG. 3, the thermal battery cutoff element 16 has a torus shape and has a structure in which a PTC element 22 is sandwiched between an upper plate 21 and a lower plate 23 made of Ni.

【0021】この感熱電池遮断素子16は、周囲温度の
上昇により熱せられて温度が上昇すると急激に電気抵抗
が増大し、電流を電流を微妙に制限する機能を有する素
子である。この感熱電池遮断素子16の構成要素である
PTC素子22は、導電体であるカーボンと絶縁体であ
るポリマーよりなる。このPTC素子22の性質として
は、平常時においては導電体であるカーボンが連結され
ており(比喩的には、カーボンの海にポリマーの島が浮
遊している状態)、電子の通るパス(伝導路)が形成さ
れているが、加熱されてある臨界温度を越えると、各々
のポリマーが連結し、カーボンの連結が断ち切られて電
子が伝導不能となる。即ち、図4に示すように、ある臨
界温度(図示の例では120℃前後)に達すると、急激
に抵抗値が増大(10万倍以上)して電流値が抑制され
る。
The thermal battery cutoff element 16 is an element having a function of delicately limiting the electric current by being heated by an increase in the ambient temperature and rapidly increasing the electric resistance when the temperature rises. The PTC element 22 which is a component of the thermal battery cutoff element 16 is made of carbon which is a conductor and polymer which is an insulator. The nature of the PTC element 22 is that carbon, which is a conductor in normal times, is connected (metaphorically, a polymer island is suspended in a sea of carbon), and a path through which electrons pass (conduction) However, when the temperature exceeds a certain critical temperature by heating, each polymer is connected and the carbon connection is cut off, and electrons cannot conduct. That is, as shown in FIG. 4, when a certain critical temperature (120 ° C. in the illustrated example) is reached, the resistance value rapidly increases (100,000 times or more) and the current value is suppressed.

【0022】上蓋部2は、円形状をなす基板20上に、
負極端子14及び正極端子15が絶縁材18及び19を
介して設置され、これら負極端子14及び正極端子15
には負極リード線12及び正極リード13が電気的に接
続されて導通している。更に、電池使用中に電池内圧の
異常上昇に応じて開放し、内圧を軽減化するための安全
弁17を有して上蓋部2が構成されている。
The upper lid portion 2 is formed on a circular substrate 20.
The negative electrode terminal 14 and the positive electrode terminal 15 are installed via the insulating materials 18 and 19, and the negative electrode terminal 14 and the positive electrode terminal 15 are provided.
A negative electrode lead wire 12 and a positive electrode lead 13 are electrically connected to and electrically connected to each other. Further, the upper lid portion 2 is configured to have a safety valve 17 that is opened according to an abnormal increase in the battery internal pressure during use of the battery to reduce the internal pressure.

【0023】電池容器部3は、比強度の高いポリエチレ
ン又はポリプロピレンの合成樹脂板又は鉄板に熱伝導度
の高いNiメッキを施したものであり、円筒形状をな
し、その上部には開口部3aを有する。この開口部3a
から電池容器部3内に、各巻回電極素子11がベルト又
は熱収縮性チューブ32で結束された電極部1をポリエ
チレン製のシートを介して配置し、電解質を非水溶媒に
溶解してなる非水電解液を開口部3aから注入して電極
部1を浸漬させ、開口部3aに上蓋部2を超音波又は熱
圧着を用いて接合し固定して閉塞することで、本実施例
に係る非水電解液二次電池が構成される。
The battery container 3 is made of a synthetic resin plate or iron plate of polyethylene or polypropylene having a high specific strength and plated with Ni having a high thermal conductivity, has a cylindrical shape, and has an opening 3a at its upper part. Have. This opening 3a
In the battery container part 3, the electrode part 1 in which each wound electrode element 11 is bound by a belt or a heat-shrinkable tube 32 is arranged via a polyethylene sheet, and the electrolyte is dissolved in a non-aqueous solvent. By injecting the water electrolytic solution through the opening 3a to immerse the electrode portion 1 and joining and fixing the upper lid portion 2 to the opening 3a by using ultrasonic waves or thermocompression, the non-contact according to the present embodiment A water electrolyte secondary battery is configured.

【0024】ここで、電池容器部3の内面又は外面に放
熱性の向上を考慮してNiメッキを施し、Niメッキ層
を形成する際は、電池容器部3の接合部分にNiメッキ
が施されると接合の際に溶着し難くなるという不都合が
生じるために、この接合部分にはマスキングを施して電
池容器部3にNiメッキを施すことが好ましい。
Here, when Ni plating is applied to the inner surface or the outer surface of the battery container portion 3 in consideration of the improvement of heat dissipation and a Ni plating layer is formed, the joint portion of the battery container portion 3 is plated with Ni. In that case, there is a disadvantage that it is difficult to cause welding at the time of joining. Therefore, it is preferable to mask this joining portion and apply Ni plating to the battery container portion 3.

【0025】なお、上記実施例では、保護素子として感
熱電池遮断素子16を用いたが、同様にある臨界温度以
上になると電流遮断効果を有するヒューズを保護素子と
して用いてもよい。
In the above embodiment, the thermal battery cutoff element 16 is used as the protection element, but a fuse having a current cutoff effect at a certain critical temperature or higher may be used as the protection element.

【0026】上記実施例に係る非水電解液二次電池にお
いては、多数個の巻回電極素子11を並列に結合して効
率よく電池容器部3内に収納するので、電池全体として
の電極(正極及び負極)の表面積は非常に大きなものと
なる。従って、電池全体として大きなエネルギー密度を
有するので、効率よく出力することが可能となる。
In the non-aqueous electrolyte secondary battery according to the above embodiment, a large number of spirally wound electrode elements 11 are connected in parallel and efficiently housed in the battery container 3, so that the electrode () The surface area of the positive and negative electrodes is very large. Therefore, since the battery as a whole has a large energy density, it is possible to efficiently output.

【0027】その結果、電池の単位重量及び単位体積当
りの出力密度が大幅に増加し、電池性能の向上を図るこ
とが可能となる。
As a result, the power density per unit weight and unit volume of the battery is significantly increased, and the battery performance can be improved.

【0028】さらに、各巻回電極素子11の出力リード
には保護素子(感熱電池遮断素子16又はヒューズ)が
結合されているので、各々の巻回電極素子11について
高温抑制が行われて、結果として電池全体の温度が許容
範囲内に抑制されることとなる。
Further, since the protective element (the thermal battery breaking element 16 or the fuse) is coupled to the output lead of each wound electrode element 11, the high temperature is suppressed for each wound electrode element 11 and, as a result, The temperature of the entire battery is suppressed within the allowable range.

【0029】従って、従来の非水電解液二次電池の大き
な問題であった使用時における電池内部の発熱を確実に
抑えることができ、電池性能(エネルギー密度、パワー
密度、サイクル特性等)の劣化を防止することが可能と
なる。
Therefore, it is possible to surely suppress the heat generation inside the battery during use, which is a big problem of the conventional non-aqueous electrolyte secondary battery, and deteriorate the battery performance (energy density, power density, cycle characteristics, etc.). Can be prevented.

【0030】次に、上記実施例のいくつかの変形例を図
面を参照しながら説明する。なお、図1と対応するもの
については同符号を記す。
Next, some modifications of the above embodiment will be described with reference to the drawings. The same reference numerals are given to those corresponding to FIG.

【0031】先ず、第1の変形例を図5に示す。この第
1の変形例は、上記実施例とほぼ同様の構成及び機能を
有するが、主に、上記実施例に係る非水電解液二次電池
の構成要素である電池容器部3をその形状が角型形状を
有する電池容器部31とする点で異なる。
First, a first modification is shown in FIG. This first modified example has almost the same configuration and function as the above-mentioned embodiment, but mainly the battery container portion 3 which is a constituent element of the non-aqueous electrolyte secondary battery according to the above-mentioned embodiment is The difference is that the battery container portion 31 has a rectangular shape.

【0032】すなわち、この第1の変形例においては、
角型形状をなす電池容器部31内に、複数個(図示の例
では7個)の巻回電極素子11が一列に設置され、上記
実施例と同様に負極リード12及び正極リード13が接
続され、各負極リード12の分岐は1本の負極リード1
2に集約されて電池容器部31の下部に設けられている
負極端子14と接続されて導通する。また、各正極リー
ド13には、保護素子である感熱電池遮断素子16が直
列に結合され、その先では負極リード12と同様に各正
極リード13の分岐が1本の正極リード13に集約され
て上蓋2に設けられている正極端子15と接続され導通
する。
That is, in the first modification,
A plurality of (seven in the illustrated example) spirally wound electrode elements 11 are installed in a line in a rectangular battery container portion 31, and the negative electrode lead 12 and the positive electrode lead 13 are connected in the same manner as in the above embodiment. , The branch of each negative electrode lead 12 is one negative electrode lead 1
2 and are connected to the negative electrode terminal 14 provided in the lower portion of the battery container portion 31 to conduct electricity. Further, a thermal battery cutoff element 16 which is a protection element is connected in series to each positive electrode lead 13, and the branches of each positive electrode lead 13 are integrated into one positive electrode lead 13 in the same manner as the negative electrode lead 12 after that. It is connected to the positive electrode terminal 15 provided on the upper lid 2 to conduct electricity.

【0033】この第1の変形例では、上記実施例と同様
に、複数個の巻回電極素子11が並列接続されて電極部
1を構成し、この電極部1が電池容器部31内に非水電
解液に浸漬されて収納され、上蓋部2で閉塞されて構成
される。
In the first modification, a plurality of spirally wound electrode elements 11 are connected in parallel to form an electrode portion 1 as in the above embodiment, and the electrode portion 1 is not placed inside the battery container portion 31. It is soaked in a water electrolytic solution, housed therein, and closed by the upper lid portion 2.

【0034】この第1の変形例においても、上記実施例
と同様に、多数個の巻回電極素子11を並列に結合して
効率よく電池容器部31内に収納するので、電池全体と
しての電極(正極及び負極)の表面積は非常に大きなも
のとなる。従って、電池全体として大きなエネルギー密
度を有するので、効率よく出力することが可能となる。
Also in the first modification, as in the above-described embodiment, a large number of spirally wound electrode elements 11 are coupled in parallel and efficiently housed in the battery container 31, so that the electrodes of the entire battery are The surface area of (positive electrode and negative electrode) becomes very large. Therefore, since the battery as a whole has a large energy density, it is possible to efficiently output.

【0035】その結果、電池の単位重量及び単位体積当
りの出力密度が大幅に増加し、電池性能の向上を図るこ
とが可能となる。
As a result, the power density per unit weight and unit volume of the battery is significantly increased, and the battery performance can be improved.

【0036】さらに、上記実施例と同様に、各巻回電極
素子11の出力リードには保護素子(感熱電池遮断素子
16又はヒューズ)が結合されているので、各々の巻回
電極素子11について高温抑制が行われて、結果として
電池全体の温度が許容範囲内に抑制されることとなる。
Further, as in the above-described embodiment, since the output lead of each wound electrode element 11 is connected to the protection element (the heat-sensitive battery cutoff element 16 or the fuse), the high temperature of each wound electrode element 11 is suppressed. As a result, the temperature of the entire battery is suppressed within the allowable range.

【0037】従って、従来の非水電解液二次電池の大き
な問題であった使用時における電池内部の発熱を確実に
抑えることができ、電池性能(エネルギー密度、パワー
密度、サイクル特性等)の劣化を防止することが可能と
なる。
Therefore, heat generation inside the battery during use, which is a major problem of the conventional non-aqueous electrolyte secondary battery, can be reliably suppressed, and the battery performance (energy density, power density, cycle characteristics, etc.) is deteriorated. Can be prevented.

【0038】次に、第2の変形例を図6に示す。この第
2の変形例は、上記実施例とほぼ同様の構成及び機能を
有するが、主に、電極部1を更に複数個設けて電極部4
1とする点で異なる。
Next, a second modification is shown in FIG. The second modified example has substantially the same configuration and function as the above-described embodiment, but is mainly provided with a plurality of electrode parts 1 to form an electrode part 4.
The difference is that it is 1.

【0039】すなわち、この第2の変形例では、複数個
(図示の例では3個)の感熱電池遮断素子16を並列接
続して構成する電極部1を、更に複数個(図示の例では
3個)電池容器部3内に設置して電極部41を構成す
る。
That is, in the second modification, a plurality of electrode parts 1 (three in the illustrated example) are connected in parallel, and a plurality of electrode parts 1 (three in the illustrated example) are formed. Individual pieces) are installed in the battery container portion 3 to form the electrode portion 41.

【0040】ここで、各電極部1の各巻回電極素子11
には負極リード12及び正極リード13が接続され、各
負極リード12の分岐は1本の負極リード12に集約さ
れ、各電極部1ごとの集約された負極リード12は更に
接続されて1本の負極リード12となり電池容器部3の
円筒形状の下部に設けられた負極端子14と接続されて
導通する。また、各々保護素子である感熱電池遮断素子
16が直列に結合された各正極リード14の分岐は1本
の正極リード14に集約され、各電極部1ごとの集約さ
れた正極リード14は更に接続されて1本の負極リード
12となり上蓋部2に設けられた負極端子15と接続さ
れて導通する。
Here, each wound electrode element 11 of each electrode portion 1
The negative electrode lead 12 and the positive electrode lead 13 are connected to each other, the branches of each negative electrode lead 12 are integrated into one negative electrode lead 12, and the combined negative electrode lead 12 of each electrode unit 1 is further connected to form one negative electrode lead 12. It becomes the negative electrode lead 12 and is connected to the negative electrode terminal 14 provided on the lower portion of the cylindrical shape of the battery container part 3 to conduct electricity. In addition, the branches of the positive electrode leads 14 to which the thermosensitive battery cutoff elements 16 that are protection elements are connected in series are aggregated into one positive electrode lead 14, and the aggregated positive electrode leads 14 of each electrode unit 1 are further connected. As a result, a single negative electrode lead 12 is formed, which is connected to the negative electrode terminal 15 provided on the upper lid portion 2 to conduct electricity.

【0041】この第2の変形例においては、多数個の巻
回電極素子11を並列に結合した電極部1を複数個設け
て電極部41として効率よく電池容器部3内に収納する
ので、電池全体としての電極(正極及び負極)の表面積
は非常に大きなものとなる。従って、電池全体として大
きなエネルギー密度を有するので、更に効率よく出力す
ることが可能となる。
In the second modification, a plurality of electrode parts 1 in which a large number of wound electrode elements 11 are connected in parallel are provided and efficiently housed in the battery container part 3 as the electrode parts 41. The surface area of the electrodes (positive electrode and negative electrode) as a whole becomes very large. Therefore, since the battery as a whole has a large energy density, it is possible to output more efficiently.

【0042】その結果、電池の単位重量及び単位体積当
りの出力密度が大幅に増加し、電池性能の更なる向上を
図ることが可能となる。
As a result, the power density per unit weight and unit volume of the battery is significantly increased, and the battery performance can be further improved.

【0043】さらに、上記実施例と同様に、各巻回電極
素子11の出力リードには保護素子(感熱電池遮断素子
16又はヒューズ)が結合されているので、各々の巻回
電極素子11について高温抑制が行われて、結果として
電池全体の温度が許容範囲内に抑制されることとなる。
Further, as in the above-mentioned embodiment, since the protective element (the heat-sensitive battery cutoff element 16 or the fuse) is coupled to the output lead of each wound electrode element 11, the high temperature of each wound electrode element 11 is suppressed. As a result, the temperature of the entire battery is suppressed within the allowable range.

【0044】従って、従来の非水電解液二次電池の大き
な問題であった使用時における電池内部の発熱を確実に
抑えることができ、電池性能(エネルギー密度、パワー
密度、サイクル特性等)の劣化を防止することが可能と
なる。
Therefore, heat generation inside the battery during use, which was a major problem of the conventional non-aqueous electrolyte secondary battery, can be surely suppressed, and the battery performance (energy density, power density, cycle characteristics, etc.) is deteriorated. Can be prevented.

【0045】次に、第3の変形例を図7に示す。この第
3の変形例は、上記実施例とほぼ同様の構成及び機能を
有するが、上記保護素子として感熱電池遮断素子16と
ヒューズ51を直列に接続して用いる点で異なる。
Next, FIG. 7 shows a third modification. The third modification has substantially the same configuration and function as the above-described embodiment, but is different in that the thermal battery cutoff element 16 and the fuse 51 are connected in series as the protection element.

【0046】すなわち、この第3の変形例では、各巻回
電極素子11に接続されている正極リード13にそれぞ
れ感熱電池遮断素子16とヒューズ51とが直列に接続
されている。そして各正極リード13の分岐は1本の正
極リード13に集約され、正極端子15に電気的に接続
されて導通して構成されている。
That is, in the third modification, the thermal battery cutoff element 16 and the fuse 51 are connected in series to the positive electrode lead 13 connected to each wound electrode element 11. The branches of each positive electrode lead 13 are integrated into one positive electrode lead 13, and are electrically connected to the positive electrode terminal 15 to be electrically connected.

【0047】この第3の変形例においても、上記実施例
と同様に、多数個の巻回電極素子11を並列に結合して
効率よく電池容器部31内に収納するので、電池全体と
しての電極(正極及び負極)の表面積は非常に大きなも
のとなる。従って、電池全体として大きなエネルギー密
度を有するので、効率よく出力することが可能となる。
Also in the third modification, as in the above-described embodiment, a large number of spirally wound electrode elements 11 are connected in parallel and efficiently housed in the battery container portion 31, so that the electrodes of the entire battery are provided. The surface area of (positive electrode and negative electrode) becomes very large. Therefore, since the battery as a whole has a large energy density, it is possible to efficiently output.

【0048】その結果、電池の単位重量及び単位体積当
りの出力密度が大幅に増加し、電池性能の向上を図るこ
とが可能となる。
As a result, the power density per unit weight and unit volume of the battery is significantly increased, and the battery performance can be improved.

【0049】さらに、上記実施例と同様に、各巻回電極
素子11の出力リードには保護素子として感熱電池遮断
素子16とヒューズとが直列に結合されているので、各
々の巻回電極素子11について更に高温抑制が行われ
て、結果として電池全体の温度が許容範囲内に抑制され
ることとなる。
Further, as in the above embodiment, the output lead of each spirally wound electrode element 11 is connected in series with the thermal battery cutoff element 16 and the fuse as a protective element. Further, the high temperature is suppressed, and as a result, the temperature of the entire battery is suppressed within the allowable range.

【0050】従って、従来の非水電解液二次電池の大き
な問題であった使用時における電池内部の発熱を確実に
抑えることができ、更に電池性能(エネルギー密度、パ
ワー密度、サイクル特性等)の劣化を防止することが可
能となる。
Therefore, it is possible to surely suppress the heat generation inside the battery during use, which is a big problem of the conventional non-aqueous electrolyte secondary battery, and to further improve the battery performance (energy density, power density, cycle characteristics, etc.). It is possible to prevent deterioration.

【0051】[0051]

【発明の効果】本発明に係る非水電解液二次電池によれ
ば、並列結合された複数個の、正極及び負極がセパレー
タを介して巻回されてなる巻回電極素子と、非水溶媒に
電解質が溶解されてなる非水電解液とを同一電池容器内
に収納し、且つ、各巻回電極素子の出力リードには保護
素子を結合し、且つ、電池容器には電池容器内圧の異常
上昇に応じて開放される安全弁を設けて構成したので、
容易且つ安価に大容量化が実現可能であり、しかも、電
池内部における過度の発熱を抑制し、単位重量及び単位
体積当りの出力密度を増大させることができ、更に製造
コストを大幅に低減させて歩溜りの向上を図ることが可
能となる。
According to the non-aqueous electrolyte secondary battery of the present invention, a plurality of parallel-connected positive electrode and negative electrode are wound with a separator interposed therebetween, and a non-aqueous solvent. The non-aqueous electrolyte solution in which the electrolyte is dissolved is housed in the same battery container, and the output lead of each wound electrode element is connected with the protective element, and the battery container internal pressure rises abnormally in the battery container. Since it is configured with a safety valve that is opened according to
It is possible to easily and inexpensively realize a large capacity, suppress excessive heat generation inside the battery, increase the output density per unit weight and unit volume, and further significantly reduce the manufacturing cost. It is possible to improve the yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る非水電解液二次電池の構
造を模式的に示す斜視図である。
FIG. 1 is a perspective view schematically showing the structure of a non-aqueous electrolyte secondary battery according to an example of the present invention.

【図2】本実施例に係る非水電解液二次電池の構成要素
である電極部を模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing an electrode portion that is a constituent element of the non-aqueous electrolyte secondary battery according to this example.

【図3】本発明の実施例に係る非水電解液二次電池の保
護素子である感熱電池遮断素子を模式的に示す斜視図で
ある。
FIG. 3 is a perspective view schematically showing a heat-sensitive battery blocking element which is a protection element for a non-aqueous electrolyte secondary battery according to an example of the present invention.

【図4】上記感熱電池遮断素子の電気抵抗と温度特性を
示す特性図である。
FIG. 4 is a characteristic diagram showing electric resistance and temperature characteristics of the thermal battery cutoff element.

【図5】本発明の実施例に係る非水電解液二次電池の第
1の変形例を模式的に示す斜視図である。
FIG. 5 is a perspective view schematically showing a first modified example of the non-aqueous electrolyte secondary battery according to the example of the present invention.

【図6】本発明の実施例に係る非水電解液二次電池の第
2の変形例を模式的に示す斜視図である。
FIG. 6 is a perspective view schematically showing a second modified example of the non-aqueous electrolyte secondary battery according to the example of the present invention.

【図7】本発明の実施例に係る非水電解液二次電池の第
3の変形例を模式的に示す斜視図である。
FIG. 7 is a perspective view schematically showing a third modified example of the non-aqueous electrolyte secondary battery according to the example of the present invention.

【図8】従来の非水電解液二次電池の構造を模式的に示
す断面図である。
FIG. 8 is a cross-sectional view schematically showing the structure of a conventional non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1・・・電極部 2・・・上蓋部 3,31・・・電池容器部 11・・・巻回電極素子 16・・・感熱電池遮断素子 51・・・ヒューズ DESCRIPTION OF SYMBOLS 1 ... Electrode part 2 ... Upper lid part 3, 31 ... Battery container part 11 ... Winding electrode element 16 ... Thermal battery cutoff element 51 ... Fuse

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極及び負極がセパレータを介して巻回
されてなる複数の巻回電極素子を、同一電池容器内に収
納し並列結合すると共に、非水溶媒に電解質が溶解され
てなる非水電解液を注入してなり、 且つ、各巻回電極素子のリードには保護素子が結合さ
れ、 電池容器は電池容器内圧の異常上昇に応じて開放される
安全弁を有してなることを特徴とする非水電解液二次電
池。
1. A non-aqueous solution in which a plurality of spirally wound electrode elements in which a positive electrode and a negative electrode are wound with a separator interposed therebetween are housed in the same battery container and connected in parallel, and an electrolyte is dissolved in a non-aqueous solvent. It is characterized in that an electrolytic solution is injected, a protective element is coupled to the lead of each wound electrode element, and the battery container has a safety valve that is opened according to an abnormal rise in the internal pressure of the battery container. Non-aqueous electrolyte secondary battery.
【請求項2】 保護素子は、感熱電池遮断素子及び/又
はヒューズであることを特徴とする請求項1記載の非水
電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the protection element is a thermal battery blocking element and / or a fuse.
【請求項3】 保護素子として感熱電池遮断素子とヒュ
ーズとが直列に接続されていることを特徴とする請求項
1又は2記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein a heat-sensitive battery cutoff element and a fuse are connected in series as a protection element.
JP5272759A 1993-10-29 1993-10-29 Nonaqueous electrolyte secondary battery Withdrawn JPH07130351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5272759A JPH07130351A (en) 1993-10-29 1993-10-29 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5272759A JPH07130351A (en) 1993-10-29 1993-10-29 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH07130351A true JPH07130351A (en) 1995-05-19

Family

ID=17518357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5272759A Withdrawn JPH07130351A (en) 1993-10-29 1993-10-29 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07130351A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265704A (en) * 1998-03-17 1999-09-28 Asahi Chem Ind Co Ltd Nonaqueous battery and electrode terminal
JP2000223109A (en) * 1999-02-03 2000-08-11 Japan Storage Battery Co Ltd Battery
JP2003045410A (en) * 2001-08-02 2003-02-14 Mitsubishi Heavy Ind Ltd Secondary battery
JP2009501412A (en) * 2005-07-13 2009-01-15 バッツキャップ Electrical connection terminals for power storage cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265704A (en) * 1998-03-17 1999-09-28 Asahi Chem Ind Co Ltd Nonaqueous battery and electrode terminal
JP2000223109A (en) * 1999-02-03 2000-08-11 Japan Storage Battery Co Ltd Battery
JP4552237B2 (en) * 1999-02-03 2010-09-29 株式会社Gsユアサ Single cell
JP2003045410A (en) * 2001-08-02 2003-02-14 Mitsubishi Heavy Ind Ltd Secondary battery
JP2009501412A (en) * 2005-07-13 2009-01-15 バッツキャップ Electrical connection terminals for power storage cells

Similar Documents

Publication Publication Date Title
JP5186529B2 (en) Lithium secondary battery
KR100449757B1 (en) Battery unit and secondary battery applying the such
US20070020509A1 (en) Rechargeable battery with ptc device
KR101146465B1 (en) Pouch type secondary battery and the fabrication method thereof
KR20040100264A (en) Pouched-type lithium secondary battery and the fabrication method thereof
KR101734703B1 (en) Battery Cell
KR101766047B1 (en) Battery Cell
JP6902607B2 (en) Pouch type rechargeable battery including electrode leads using conductive polymer
KR100686851B1 (en) Composite Material Tape for Lithium Secondary battery and Lithium Secondary battery using the Same
CN110024179A (en) Bag type secondary battery
US20070154798A1 (en) Secondary battery
US9269960B2 (en) Electrode lead and secondary battery having the same
CN106025322B (en) Secondary battery
JPH1167188A (en) Lead terminal for secondary battery and lithium secondary battery
US10673028B2 (en) Electrochemical element
KR20180090100A (en) Short circuiting Structure for Lithium Secondary Battery Having Excellent Stability against Overcharge and Pouch Type Lithium Secondary Battery Comprising the Same
JPH1167190A (en) Thermal fuse and lithium secondary battery provided therewith
JPH07130351A (en) Nonaqueous electrolyte secondary battery
KR100601555B1 (en) Jelly-roll type electrode assembly and Li Secondary battery with the same
KR102295034B1 (en) Pouch Type Lithium Secondary Battery comprising Lead Wing having External Force Properties
JP2019160659A (en) Electrochemical element
US11431046B2 (en) Lithium-ion cell using aluminum can
KR20220033944A (en) The Electrode Assembly And The Secondary Battery
JP2001283828A (en) Polymer lithium secondary battery
KR100803434B1 (en) PTC device mounted to battery cap and Secondary battery having the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130