JPH07128455A - Contact detector - Google Patents

Contact detector

Info

Publication number
JPH07128455A
JPH07128455A JP27360693A JP27360693A JPH07128455A JP H07128455 A JPH07128455 A JP H07128455A JP 27360693 A JP27360693 A JP 27360693A JP 27360693 A JP27360693 A JP 27360693A JP H07128455 A JPH07128455 A JP H07128455A
Authority
JP
Japan
Prior art keywords
signal
contact
ultrasonic waves
ultrasonic
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27360693A
Other languages
Japanese (ja)
Inventor
Yasuo Imai
康夫 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27360693A priority Critical patent/JPH07128455A/en
Publication of JPH07128455A publication Critical patent/JPH07128455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To provide a contact detector which can specify a position where collapse deformation occurs and degree of collapse deformation due to contact concerning contact detector. CONSTITUTION:An elastomer tube 10 is formed out of an elastomer. An ultrasonic sensor 11 is arranged at one end of the elastomer tube 10 and transmits ultrasonic waves at a fixed cycle. A measurement circuit measures a period of time from transmission of ultrasonic waves to detection of ultrasonic waves reflected by the collapse deformation of the elastomer tube 10 by an ultrsonic sensor 11, thereby measuring a deformation position of the elastomer tube 10. Further, the measurement circuit measures a degree of collapse deformation of the elastomer tube 10 according to the detected intensity of reflected ultrasonic waves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は接触検出装置に関し、物
体の接触を検出する接触検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact detecting device, and more particularly to a contact detecting device for detecting contact of an object.

【0002】[0002]

【従来の技術】従来より、物体の接触を検出する装置と
して、例えば特開昭61−253487号公報に記載さ
れた接触検出装置がある。
2. Description of the Related Art Conventionally, as a device for detecting the contact of an object, there is a contact detecting device described in, for example, Japanese Patent Application Laid-Open No. 61-253487.

【0003】この接触検出装置は、ゴムチューブの一端
に発光素子又は超音波発信素子を設け、他端に受光素子
又は超音波受信素子を設けており、ゴムチューブに物体
が接触してゴムチューブが変形すると、チューブ内径が
減少し、受光レベル又は受信レベルが低下することか
ら、上記受光レベル又は受信レベルが所定値以下となっ
たとき、何らかの物体がゴムチューブに接触したと判定
する。
In this contact detecting device, a light emitting element or an ultrasonic wave transmitting element is provided at one end of a rubber tube, and a light receiving element or an ultrasonic wave receiving element is provided at the other end of the rubber tube. When deformed, the inner diameter of the tube is reduced and the light receiving level or the receiving level is lowered. Therefore, when the light receiving level or the receiving level becomes equal to or less than a predetermined value, it is determined that an object has come into contact with the rubber tube.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来装置は、
ゴムチューブのどの位置に物体が接触したかという接触
位置の検出が不可能であるという第1の問題点を有して
いた。更には物体が接触したときの接触圧がどの程度で
あるかを判定できないという第2の問題点を有してい
た。
However, the conventional device is
The first problem is that it is impossible to detect the contact position of the rubber tube at which the object contacts. Furthermore, there is a second problem that it is not possible to determine what the contact pressure is when an object contacts.

【0005】本発明は上記の点に鑑みなされたもので、
超音波の発信から弾性体チューブのつぶれ変形によって
反射された超音波の受信までの時間を測定することによ
り、物体の接触によるつぶれ変形の発生位置を特定でき
る接触検出装置を提供することを第1の目的とし、チュ
ーブのつぶれ変形度を検出できる接触検出装置を提供す
ることを第2の目的とする。
The present invention has been made in view of the above points,
A first object of the present invention is to provide a contact detection device capable of specifying the occurrence position of crush deformation due to contact of an object by measuring the time from the transmission of ultrasonic waves to the reception of ultrasonic waves reflected by the crush deformation of an elastic tube. A second object of the present invention is to provide a contact detection device capable of detecting the collapse deformation degree of a tube.

【0006】[0006]

【課題を解決するための手段】本発明の接触検出装置
は、弾性体で形成された弾性体チューブと、上記弾性体
チューブの一端部に配設され、一定周期で超音波を発信
する超音波センサと、上記超音波を発信してから上記弾
性体チューブのつぶれ変形により反射された超音波が上
記超音波センサで検出されるまでの時間を計測して上記
弾性体チューブのつぶれ変形位置を測定する測定回路と
を有する。
A contact detection device of the present invention comprises an elastic tube formed of an elastic body and an ultrasonic wave which is disposed at one end of the elastic tube and which transmits ultrasonic waves at a constant cycle. Measuring the crush deformation position of the elastic tube by measuring the time from the sensor and the ultrasonic wave being transmitted until the ultrasonic wave reflected by the crush deformation of the elastic tube is detected by the ultrasonic sensor And a measuring circuit for

【0007】また、測定回路は、反射された超音波の検
出強度に応じて前記弾性体チューブのつぶれ変形度を測
定する。
Further, the measuring circuit measures the degree of crush deformation of the elastic tube according to the detected intensity of the reflected ultrasonic waves.

【0008】また、測定回路は、前記超音波センサの検
出信号の時間変化量に基づき、前記弾性体チューブのつ
ぶれ変形度を測定する。
The measuring circuit measures the degree of collapse deformation of the elastic tube based on the amount of time change of the detection signal of the ultrasonic sensor.

【0009】[0009]

【作用】本発明においては、超音波の発信から弾性体チ
ューブのつぶれ変形により反射された超音波の受信まで
の時間を測定し、この測定された時間が超音波センサか
らつぶれ変形までの距離に対応することにより、つぶれ
変形位置つまり接触位置を知ることができる。
In the present invention, the time from the transmission of ultrasonic waves to the reception of the ultrasonic waves reflected by the crush deformation of the elastic tube is measured, and this measured time is set to the distance from the ultrasonic sensor to the crush deformation. By corresponding, it is possible to know the collapse deformation position, that is, the contact position.

【0010】また、つぶれ変形度が大なるほど超音波の
反射量が大となることにより、反射された超音波の検出
強度からつぶれ変形度を知ることができる。
Further, the greater the degree of crush deformation, the greater the amount of reflection of ultrasonic waves. Therefore, the degree of crush deformation can be known from the detected intensity of the reflected ultrasonic waves.

【0011】また、つぶれ変形度が大なるほど超音波の
反射量が大となり、超音波の検出信号の増加又は減衰の
傾きつまり時間変化量は大となり、上記時間変化量から
つぶれ変形度を知ることができる。
Further, the greater the degree of crush deformation, the greater the amount of reflection of ultrasonic waves, and the greater the slope of the increase or attenuation of the ultrasonic detection signal, that is, the amount of change with time. You can

【0012】[0012]

【実施例】図1は本発明装置の一実施例の構成図を示
す。同図中、10は弾性体チューブとしてのゴムチュー
ブである。このゴムチューブ10は物体の接触により弾
性変形して、その断面積が変化する。ゴムチューブ10
の一端部には超音波センサ11が嵌合装着されて閉塞さ
れている。またゴムチューブ10の他端部は開放されて
いる。但し、この他端部は閉塞しても良い。
1 is a block diagram of an embodiment of the device of the present invention. In the figure, 10 is a rubber tube as an elastic tube. The rubber tube 10 is elastically deformed by the contact of an object, and its cross-sectional area changes. Rubber tube 10
An ultrasonic sensor 11 is fitted and attached to one end of the closed position. The other end of the rubber tube 10 is open. However, the other end may be closed.

【0013】超音波センサ11は図2に示す如く、ホー
ン状の共振子12を持つ圧電セラミック板14をベース
15に固定し、開放型のケース16で覆った構成であ
り、端子17a,17b間に高周波発振信号を印加され
ると超音波をホーン12より前方に発信し、またホーン
12で超音波を受信して端子17a,17bから高周波
信号を出力する。
As shown in FIG. 2, the ultrasonic sensor 11 has a structure in which a piezoelectric ceramic plate 14 having a horn-shaped resonator 12 is fixed to a base 15 and covered with an open type case 16, and between terminals 17a and 17b. When a high frequency oscillating signal is applied to the horn 12, ultrasonic waves are transmitted forward from the horn 12, and the horn 12 receives the ultrasonic waves and outputs high frequency signals from the terminals 17a and 17b.

【0014】図1に示す送受信回路18は上記超音波セ
ンサ11に高周波発振信号を供給すると共に、超音波セ
ンサ11の出力する高周波信号を供給され、その信号解
析を行なう。
The transmitting / receiving circuit 18 shown in FIG. 1 supplies a high-frequency oscillation signal to the ultrasonic sensor 11 and a high-frequency signal output from the ultrasonic sensor 11, and analyzes the signal.

【0015】図3は上記送受信回路18内の信号解析部
の第1実施例のブロック図、図4は送受信回路18の各
部の信号波形図を示す。送受信回路18は図4(A),
図5(A)夫々に示す矩形波のHレベル時に一定周波数
の高周波発信信号を数周期から数十周期だけ超音波セン
サ11に供給した超音波を発信させ、矩形波のLレベル
時に超音波センサ11の出力する高周波信号の受信を行
なう。上記の矩形波は一定周期の信号である。
FIG. 3 is a block diagram of a first embodiment of the signal analysis section in the transmission / reception circuit 18, and FIG. 4 is a signal waveform diagram of each section of the transmission / reception circuit 18. The transmitter / receiver circuit 18 is shown in FIG.
When the rectangular wave shown in FIG. 5 (A) is at the H level, a high-frequency transmission signal of a constant frequency is supplied to the ultrasonic sensor 11 for several to several tens of cycles, and the ultrasonic wave is emitted. The high frequency signal output from 11 is received. The above rectangular wave is a signal with a constant period.

【0016】図3において、端子21には超音波センサ
11で受信した図4(B),図5(B)夫々に示す如き
高周波信号が入来する。この高周波信号は前置増幅器2
2で増幅された後、整流回路23で全波整流されて図4
(C),図5(C)に示す如き信号とされる。整流回路
23の出力する全波整流信号は積分回路24で積分され
た後、比較回路25で基準レベルと比較される。比較回
路25は全波整流信号のレベルが基準レベル以下のとき
Hレベルで、基準レベルを越えたときLレベルとなる図
4(D),図5(D)に示す如き比較結果信号を出力す
る。
In FIG. 3, the terminal 21 receives a high frequency signal received by the ultrasonic sensor 11 as shown in FIGS. 4 (B) and 5 (B). This high frequency signal is transmitted to the preamplifier 2
After being amplified by 2, it is full-wave rectified by the rectifier circuit 23 and
(C) and a signal as shown in FIG. 5 (C). The full-wave rectified signal output from the rectifying circuit 23 is integrated by the integrating circuit 24 and then compared with the reference level by the comparing circuit 25. The comparison circuit 25 outputs a comparison result signal as shown in FIGS. 4 (D) and 5 (D), which is H level when the level of the full-wave rectified signal is below the reference level and L level when the level exceeds the reference level. .

【0017】上記比較結果信号は測定回路26に供給さ
れる。測定回路26は例えばマイクロコンピュータ又は
クロック発生器及びカウンタで構成されており、端子2
7からは図4(A),図5(A)に示す矩形波を供給さ
れている。測定回路26は矩形波の立上り時点から、比
較結果信号の2番目の負極性パルスの立下り時点までの
時間ΔT1 を測定すると共に、上記比較結果信号の2番
目の負極性パルスのパルス幅ΔT2 を測定する。
The comparison result signal is supplied to the measuring circuit 26. The measuring circuit 26 is composed of, for example, a microcomputer or a clock generator and a counter, and has a terminal 2
The rectangular wave shown in FIG. 4 (A) and FIG. 5 (A) is supplied from 7. The measurement circuit 26 measures the time ΔT 1 from the rising time of the rectangular wave to the falling time of the second negative polarity pulse of the comparison result signal, and at the same time, measures the pulse width ΔT of the second negative polarity pulse of the comparison result signal. Measure 2 .

【0018】ここで、図4(A),図5(A)に示す矩
形波の立下り直後に、図4(C),図5(C)に示す全
波整流信号のレベル増大は送信状態から受信状態への遷
移に伴うノイズであり、ゴムチューブ10に物体の接触
がなくても常時発生する。ゴムチューブ10に物体の接
触がない場合には全波整流信号の矩形波立下り直後から
2番目のレベル増大は発生せず図4(D),図5(D)
に示す比較結果信号の矩形波立下りを後から2番目の負
極性パルスは発生しない。
Immediately after the falling of the rectangular wave shown in FIGS. 4A and 5A, the level increase of the full-wave rectified signal shown in FIGS. 4C and 5C is in the transmission state. Is a noise that accompanies the transition from the receiving state to the receiving state, and is always generated even if the rubber tube 10 is not in contact with an object. When the rubber tube 10 is not in contact with the object, the second level increase from immediately after the falling of the rectangular wave of the full-wave rectified signal does not occur, and thus, FIG. 4 (D) and FIG. 5 (D)
The second negative pulse from the trailing edge of the rectangular wave of the comparison result signal shown in FIG.

【0019】しかし、ゴムチューブ10に物体が接触し
てゴムチューブ10がつぶれて変形すると、超音波セン
サ11から発信されて変形部分で反射された超音波が超
音波センサ11で受信されるため、図4(C),図5
(C)に示す全波整流信号の矩形波立下り直後から2番
目のレベル増大が発生し、図4(D),図5(D)に示
す比較結果信号の矩形波立下り直後から2番目の負極性
パルスが発生する。
However, when an object comes into contact with the rubber tube 10 and the rubber tube 10 is crushed and deformed, the ultrasonic wave transmitted from the ultrasonic sensor 11 and reflected by the deformed portion is received by the ultrasonic sensor 11, 4 (C) and 5
The second level increase occurs immediately after the falling of the rectangular wave of the full-wave rectified signal shown in (C), and the second negative electrode immediately after the falling of the rectangular wave of the comparison result signal shown in FIGS. 4 (D) and 5 (D). A sex pulse is generated.

【0020】矩形波の立上り時点から比較結果信号の上
記2番目の負極性パルスの立下り時点までの時間ΔT1
は、ゴムチューブ10の超音波センサ11取付け位置か
らつぶれ変形位置までの長さLと次式の関係がある。
Time ΔT 1 from the rising time of the rectangular wave to the falling time of the second negative polarity pulse of the comparison result signal
Is the relationship between the length L of the rubber tube 10 from the position where the ultrasonic sensor 11 is attached to the collapse deformation position and the following expression.

【0021】L=ΔT1 ×V/2 但しVは音速である。L = ΔT 1 × V / 2 where V is the speed of sound.

【0022】つまり時間ΔT1 を測定することによりゴ
ムチューブ10に発生したつぶれ変形位置を知ることが
できる。
That is, by measuring the time ΔT 1 , it is possible to know the collapse deformation position generated in the rubber tube 10.

【0023】また、全波整流信号の矩形波立上り直後か
ら2番目のレベル増大は、つぶれ変形の大きさが大なる
ほど超音波の反射量が大きくなるため大きくなる。この
ため上記全波整流信号の積分信号は、全波整流信号のレ
ベルが大なるほど基準レベルを越える期間が長くなり、
これによって時間ΔT2 が長くなる。つまり、時間ΔT
2 を測定して、この時間ΔT2 が長いほどゴムチューブ
10のつぶれ変形が大きいこと、つまりチューブ変形度
を知ることができる。
Further, the second level increase immediately after the rising of the rectangular wave of the full-wave rectified signal becomes larger because the amount of reflected ultrasonic waves becomes larger as the size of the crush deformation becomes larger. Therefore, as the level of the full-wave rectified signal increases, the integrated signal of the full-wave rectified signal has a longer period of exceeding the reference level.
This prolongs the time ΔT 2 . That is, time ΔT
By measuring 2 , it is possible to know that the crush deformation of the rubber tube 10 is larger as the time ΔT 2 is longer, that is, the degree of tube deformation.

【0024】図6は送受信回路18内の信号解析部の第
2実施例のブロック図を示す。同図中、図3と同一部分
には同一符号を付し、その説明を省略する。図6におい
て、積分回路24の出力する、図7(B),(C)に夫
々に示す超音波センサ11の出力信号を整流かつ積分し
た積分信号をピーク検出回路35及び測定回路36に供
給する。図7(B)はつぶれ変形が大なるとき、図7
(C)はつぶれ変形が小なるときの波形である。
FIG. 6 shows a block diagram of a second embodiment of the signal analysis section in the transmission / reception circuit 18. In the figure, those parts which are the same as those corresponding parts in FIG. 3 are designated by the same reference numerals, and a description thereof will be omitted. In FIG. 6, the integrated signal output from the integration circuit 24, which is obtained by rectifying and integrating the output signals of the ultrasonic sensors 11 shown in FIGS. 7B and 7C, is supplied to the peak detection circuit 35 and the measurement circuit 36. . FIG. 7B shows that when the deformation is large,
(C) is a waveform when the crush deformation is small.

【0025】ピーク検出回路35は積分信号のピークを
検出して図7(D)に示す如く、ピーク位置にて立上
り、ピーク位置から所定時間Δt後に立下るピーク検出
パルスを測定回路36に供給する。
The peak detection circuit 35 detects the peak of the integrated signal and supplies a peak detection pulse which rises at the peak position and falls after a predetermined time Δt from the peak position to the measurement circuit 36 as shown in FIG. 7D. .

【0026】測定回路36は端子27から図7(A)に
示す矩形波を供給されている。測定回路36は矩形波の
立上り時点から2番目のピーク検出パルスの立上り時及
び立下り時夫々における積分信号のレベルV1 とV2
はV3 とV4 をサンプリングホールドし、両サンプル値
の差ΔV(=V1 −V2 又はV3 −V4 )を測定する。
The measuring circuit 36 is supplied with the rectangular wave shown in FIG. 7A from the terminal 27. The measuring circuit 36 samples and holds the integrated signal levels V 1 and V 2 or V 3 and V 4 at the rising and falling edges of the second peak detection pulse from the rising edge of the rectangular wave, and the difference between the two sample values. ΔV (= V 1 −V 2 or V 3 −V 4 ) is measured.

【0027】ここで、つぶれ変形の大きさが大なるほど
超音波の反射量が大となり、矩形波立上り直後から2番
目の積分信号の増加又は減衰の傾き、つまり時間変化量
ΔV/Δtは大となり、上記時間変化量ΔV/Δtから
つぶれ変形の大きさ即ちチューブのつぶれ変形度を知る
ことができる。
Here, the greater the size of the crush deformation, the greater the amount of reflection of the ultrasonic waves, and the larger the slope of increase or attenuation of the second integral signal immediately after the rising of the rectangular wave, that is, the amount of time change ΔV / Δt, becomes larger. The magnitude of the crush deformation, that is, the crush deformation degree of the tube can be known from the time change amount ΔV / Δt.

【0028】ところで、この接触検出装置は、例えばゴ
ムチューブ10を車両のバンパに取り付けて異物の接触
検出に利用でき、またゴムチューブを車両の床下に取り
付けて例えば小供の車両下へのもぐり込みの検出を行な
うことができ、ゴムチューブ10をスライドドアやサン
ルーフ部に取り付けてスライドドア,サンルーフを閉じ
るときの挟み込みの検出を行なうことができる。
By the way, in this contact detecting device, for example, the rubber tube 10 can be attached to the bumper of the vehicle to be used for detecting the contact of foreign matters, and the rubber tube can be attached to the underfloor of the vehicle to dig into under the vehicle, for example. The rubber tube 10 can be attached to the slide door or the sunroof portion to detect the trapping when the slide door or the sunroof is closed.

【0029】しかも、ゴムチューブ10に接触する位置
あるいは接触圧も判断できる。
In addition, the contact position or contact pressure with the rubber tube 10 can also be determined.

【0030】また、この接触検出装置の他の応用とし
て、ゴムチューブ10のつぶれ変形位置に応じて値の異
なる信号を出力する信号出力器を設置し、前記信号出力
器からの信号をコンピュータ等に接続すれば、前記ゴム
チューブによってコンピュータ等へデータ入力を行うこ
とが可能となる。
As another application of this contact detection device, a signal output device for outputting a signal having a different value depending on the crushing deformation position of the rubber tube 10 is installed, and the signal from the signal output device is sent to a computer or the like. When connected, it becomes possible to input data to a computer or the like through the rubber tube.

【0031】更には、信号出力器からの出力信号を電子
楽器の発音信号出力装置に応用することも可能である。
この場合は前記出力信号を音階情報に変換する音階情報
変換器と、音階情報に応じて発音する音源を設ければよ
く、今までにない電子楽器を構成できる。
Furthermore, it is possible to apply the output signal from the signal output device to a sounding signal output device of an electronic musical instrument.
In this case, a scale information converter that converts the output signal into scale information and a sound source that emits sound according to the scale information may be provided, and an unprecedented electronic musical instrument can be configured.

【0032】電子楽器に応用した時には、つぶれの大き
さをモジュレート信号に変換し、前記音源から出力され
る音を前記モジュレート信号に応じて微妙に変化させ、
演奏表現力を高めることも可能となる。
When applied to an electronic musical instrument, the size of crushing is converted into a modulation signal, and the sound output from the sound source is subtly changed according to the modulation signal.
It is also possible to improve performance expression.

【0033】例えば、つぶれの大きさに比例して発せら
れる音量を増大させてもよく、またつぶれの大きさに比
例してピッチ(音程)が変化するようにしてもよい。
For example, the volume of sound emitted may be increased in proportion to the size of the collapse, or the pitch (pitch) may be changed in proportion to the size of the collapse.

【0034】以上説明したように本発明の接触検出装置
は物体の接触検出用、各種データ入力用等、各種の分野
に応用することが可能である。
As described above, the contact detection device of the present invention can be applied to various fields such as contact detection of an object and various data input.

【0035】[0035]

【発明の効果】上述の如く、本発明の接触検出装置によ
れば、超音波の発信から弾性体チューブのつぶれ変形に
よって反射された超音波の受信までの時間を測定するこ
とにより、物体の接触によるつぶれ変形の発生位置を特
定でき、更に、反射された超音波の検出強度、又は超音
波センサの検出信号の時間変化量からチューブのつぶれ
変形度を知ることができ、実用上きわめて有用である。
As described above, according to the contact detecting apparatus of the present invention, the contact of the object is measured by measuring the time from the transmission of the ultrasonic wave to the reception of the ultrasonic wave reflected by the elastic deformation of the elastic tube. It is possible to identify the position of the crush deformation due to, and further, to know the crush deformation degree of the tube from the detection intensity of the reflected ultrasonic wave or the time change amount of the detection signal of the ultrasonic sensor, which is extremely useful in practice. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の構成図である。FIG. 1 is a block diagram of an apparatus of the present invention.

【図2】超音波センサの構造図である。FIG. 2 is a structural diagram of an ultrasonic sensor.

【図3】信号解析部のブロック図である。FIG. 3 is a block diagram of a signal analysis unit.

【図4】送受信回路の各部の信号波形図である。FIG. 4 is a signal waveform diagram of each part of the transmission / reception circuit.

【図5】送受信回路の各部の信号波形図である。FIG. 5 is a signal waveform diagram of each part of the transmission / reception circuit.

【図6】信号解析部のブロック図である。FIG. 6 is a block diagram of a signal analysis unit.

【図7】送受信回路の各部の信号波形図である。FIG. 7 is a signal waveform diagram of each part of the transmission / reception circuit.

【符号の説明】[Explanation of symbols]

10 ゴムチューブ 11 超音波センサ 18 送受信回路 23 整流回路 24 積分回路 25 比較回路 26,36 測定回路 35 ピーク検出回路 10 Rubber Tube 11 Ultrasonic Sensor 18 Transmitter / Receiver Circuit 23 Rectifier Circuit 24 Integrator Circuit 25 Comparison Circuit 26, 36 Measurement Circuit 35 Peak Detection Circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 弾性体で形成された弾性体チューブと、 上記弾性体チューブの一端部に配設され、一定周期で超
音波を発信する超音波センサと、 上記超音波を発信してから上記弾性体チューブのつぶれ
変形により反射された超音波が上記超音波センサで検出
されるまでの時間を計測して上記弾性体チューブのつぶ
れ変形位置を測定する測定回路とを有することを特徴と
する接触検出装置。
1. An elastic tube formed of an elastic body, an ultrasonic sensor which is disposed at one end of the elastic tube and which emits ultrasonic waves at a constant cycle, and after transmitting the ultrasonic waves, A contact having a measuring circuit for measuring the time until the ultrasonic wave reflected by the elastic deformation of the elastic tube is detected by the ultrasonic sensor to measure the elastic deformation position of the elastic tube. Detection device.
【請求項2】 前記測定回路は、反射された超音波の検
出強度に応じて前記弾性体チューブのつぶれ変形度を測
定することを特徴とする請求項1記載の接触検出装置。
2. The contact detection device according to claim 1, wherein the measurement circuit measures a crush deformation degree of the elastic tube according to a detection intensity of reflected ultrasonic waves.
【請求項3】 前記測定回路は、前記超音波センサの検
出信号の時間変化量に基づき、前記弾性体チューブのつ
ぶれ変形度を測定することを特徴とする請求項1記載の
接触検出装置。
3. The contact detection device according to claim 1, wherein the measurement circuit measures a crush deformation degree of the elastic tube based on a time change amount of a detection signal of the ultrasonic sensor.
JP27360693A 1993-11-01 1993-11-01 Contact detector Pending JPH07128455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27360693A JPH07128455A (en) 1993-11-01 1993-11-01 Contact detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27360693A JPH07128455A (en) 1993-11-01 1993-11-01 Contact detector

Publications (1)

Publication Number Publication Date
JPH07128455A true JPH07128455A (en) 1995-05-19

Family

ID=17530103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27360693A Pending JPH07128455A (en) 1993-11-01 1993-11-01 Contact detector

Country Status (1)

Country Link
JP (1) JPH07128455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156720A (en) * 2015-02-25 2016-09-01 国立大学法人東京工業大学 Acoustic two-dimensional distribution tactile sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156720A (en) * 2015-02-25 2016-09-01 国立大学法人東京工業大学 Acoustic two-dimensional distribution tactile sensor

Similar Documents

Publication Publication Date Title
CA1238110A (en) Method and arrangement for signal transmission in ultrasonic echo sounding systems
US6573706B2 (en) Method and apparatus for distance based detection of wear and the like in joints
CA2187844A1 (en) Device for Monitoring a Predetermined Level of a Liquid in a Container
US6614719B1 (en) Ultrasonic doppler effect speed measurement
EP2356440B1 (en) Method for determining the starting instant of an acoustic signal response
KR960037147A (en) Bone evaluation device and evaluation method thereof
US4785287A (en) Oil condition detecting apparatus
GB2318232A (en) Adaptive threshold circuit
US6831875B2 (en) Apparatus for ultrasonically detecting position of web edge and method of doing the same
KR950001281A (en) Obstacle distance measuring device using ultrasonic sensor and method
US5031451A (en) Fluid level monitor
JPH07128455A (en) Contact detector
CA2291544A1 (en) Prodder with force feedback
JP3169534B2 (en) Inundation detection method
US20230062377A1 (en) Robust touch sensing via ultra-sonic sensors
US6738312B1 (en) Arrangement and method for measuring the speed of sound
JPH08136643A (en) Ultrasonic distance measuring instrument
JP3248177B2 (en) Signal processing circuit of ultrasonic liquid level meter
JP2795099B2 (en) Device for measuring DUT using electromagnetic waves
JPS5810691B2 (en) Ultrasonic measuring device
RU2039367C1 (en) Method of classification of moored mine provided with sonar equipment
JP2962535B2 (en) Ultrasonic liquid level gauge
RU2082160C1 (en) Ultrasound depth meter or depth meter of flaw detector
JPS6394184A (en) Ultrasonic wave displacement detecting device
EP0075617A1 (en) Ultrasonic distance measuring device