JPH07128408A - Eo probe - Google Patents

Eo probe

Info

Publication number
JPH07128408A
JPH07128408A JP5275326A JP27532693A JPH07128408A JP H07128408 A JPH07128408 A JP H07128408A JP 5275326 A JP5275326 A JP 5275326A JP 27532693 A JP27532693 A JP 27532693A JP H07128408 A JPH07128408 A JP H07128408A
Authority
JP
Japan
Prior art keywords
phase
laser light
measured
laser
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5275326A
Other languages
Japanese (ja)
Inventor
Masaru Nishida
勝 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5275326A priority Critical patent/JPH07128408A/en
Publication of JPH07128408A publication Critical patent/JPH07128408A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance S/N ratio of a non-contact electric test probe using an EO (electric optical effect) element and a laser light. CONSTITUTION:An EO element 101, a deflection beam splitter 103 that separates a laser light modulated by an electric field of an object 102 to be measured to an inphase one and an antiphase one and photodetectors 104, 105 are integrated into a unit and the unit is rotated so that separation ratio of quantities of the in-phase and antiphase of the laser is controlled to be equalized. One of the detectors 104, 105 is moved to be adjusted so that the phases of the separated lasers 108c, 108d are adjusted. The difference between the separated lasers of which optical quantities and phases are adjusted is obtained so that a noise caused by the laser light 108a is removed and S/N ratio is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気回路を非接触で試
験する非接触型電圧測定装置であるEOプローブに関
し、特にEOプローブのレーザ光源に起因する雑音成分
を除去する光作動入力光学系路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an EO probe which is a non-contact type voltage measuring device for testing an electric circuit in a non-contact manner, and more particularly to an optically actuated input optical system for eliminating a noise component caused by a laser light source of the EO probe. Regarding the road.

【0002】[0002]

【従来の技術】従来この種のレーザ光を用いた非接触型
電圧測定装置は、例えば特開平3−6465号公報に示
されるように、被測定物である電気回路に容量負荷を与
えないため高周波数領域でも正確な波形観測が可能にな
るといった目的で用いられている。
2. Description of the Related Art Conventionally, a non-contact type voltage measuring device using a laser beam of this type does not apply a capacitive load to an electric circuit which is an object to be measured, as disclosed in Japanese Patent Application Laid-Open No. 3-6465. It is used for the purpose of enabling accurate waveform observation even in the high frequency region.

【0003】次に、この従来例の非接触型電圧測定装置
について図面を参照して説明する。
Next, this conventional non-contact type voltage measuring device will be described with reference to the drawings.

【0004】図3は従来のレーザ光を用いた非接触型電
圧測定装置の一例を示すブロック図である。
FIG. 3 is a block diagram showing an example of a conventional non-contact type voltage measuring device using a laser beam.

【0005】レーザ光源301から放射されるレーザ光
の周波数は特定の周波数に安定化されている。この光は
ミラー302で光路を変更され、ビームスプリッタ30
3、凸レンズ304、マイクロセル305を通過し、ウ
ェハー上に形成されたIC306の電極上に集光され
る。この電極からの反射光は再度マイクロセル305、
凸レンズ304を通過し平行光と成った後ビームスプリ
ッタ303で反射され光検出器310に入射される。こ
こで、マイクロセル305はシュタルク効果を有するガ
スを封入したものである。
The frequency of the laser light emitted from the laser light source 301 is stabilized at a specific frequency. The optical path of this light is changed by the mirror 302, and the beam splitter 30
3, passes through the convex lens 304 and the microcell 305, and is focused on the electrode of the IC 306 formed on the wafer. Light reflected from this electrode is again transmitted to the microcell 305,
After passing through the convex lens 304 to become parallel light, it is reflected by the beam splitter 303 and is incident on the photodetector 310. Here, the microcell 305 is one in which a gas having a Stark effect is filled.

【0006】光検出器310ではフォトダイオード、水
銀カドミテルル検出器等を用いて光信号を電気信号に変
換する。光検出器310の出力信号はロックイン増幅器
311で発振器308の参照信号と同期検波され参照信
号と同期の取れた成分のみが検出される。その結果、レ
−ザ光源301の光強度のドリフトが除去できS/N比
の良い信号が検出できる。又、検出信号は周波数変調さ
れたレーザ光を同期検波しているので光吸収強度の一次
微分となっている。マイクロセル305の凸レンズ30
4よりの面には導電性で光を通す透明薄膜電極が付けら
れており、この電極にIC306のグランド電位を基準
とした電圧が直流増幅器307によりかけられている。
直流増幅器307の電圧はレーザ光源301の発振周波
数との兼ね合いでマイクロセル305内のガスの光吸収
周波数がIC306の電極の電圧の変化とロックイン増
幅器311で出力する信号の変化が比例する位置に来る
ように設定されている。ここで、IC306上の電極の
電圧が変化するとシュタルク効果によりマイクロセル3
05内のガスの光吸収周波数が変化し、検出される光強
度が変化しロックイン増幅器311の出力は変化する。
The photodetector 310 converts a light signal into an electric signal by using a photodiode, a mercury cadmite tellurite detector or the like. The output signal of the photodetector 310 is synchronously detected with the reference signal of the oscillator 308 by the lock-in amplifier 311, and only the component in synchronization with the reference signal is detected. As a result, the drift of the light intensity of the laser light source 301 can be removed and a signal with a good S / N ratio can be detected. Further, the detection signal is a first derivative of the light absorption intensity because the frequency-modulated laser light is synchronously detected. Convex lens 30 of microcell 305
A transparent thin film electrode that is conductive and allows light to pass through is attached to the surface of No. 4, and a voltage based on the ground potential of the IC 306 is applied to this electrode by a DC amplifier 307.
Since the voltage of the DC amplifier 307 is in balance with the oscillation frequency of the laser light source 301, the light absorption frequency of the gas in the microcell 305 is located at a position where the change of the voltage of the electrode of the IC 306 and the change of the signal output by the lock-in amplifier 311 are proportional. Is set to come. Here, when the voltage of the electrode on the IC 306 changes, the microcell 3 is caused by the Stark effect.
The light absorption frequency of the gas in 05 changes, the detected light intensity changes, and the output of the lock-in amplifier 311 changes.

【0007】また、他の例としてレーザ光源の光強度の
ドリフトしか補償していないものもある。
Another example is one in which only the drift of the light intensity of the laser light source is compensated.

【0008】[0008]

【発明が解決しようとする課題】上述した従来のレーザ
光を用いた非接触型電圧測定装置では、被測定物である
電気回路(ここではIC)に印加する電圧をロックイン
増幅器の参照信号と同期させている。つまり予め周波数
の解っている信号の電気回路内での波形観測にしか適用
できないという課題がある。
In the above-mentioned conventional non-contact type voltage measuring device using laser light, the voltage applied to the electric circuit (here, IC) as the DUT is used as the reference signal of the lock-in amplifier. Synchronize. That is, there is a problem that it can be applied only to the waveform observation of the signal whose frequency is known in advance in the electric circuit.

【0009】また、他の例のものは、レーザ光源の光強
度のドリフトしか補償していないため、EO(電気光学
効果)素子を用いてその偏光面の変化を被測定物の電圧
の変化として捕らえる場合、レーザ光源の偏光面のドリ
フト及びEO素子の自然複屈折によるレーザ光偏光面の
回転によるビームスプリッタ反射光量の変化を補償でき
ず、光検出器入力光量不足により被測定物電圧検出感度
が低下するという課題がある。
Further, in another example, since only the drift of the light intensity of the laser light source is compensated, the change of the polarization plane is changed as the change of the voltage of the object to be measured by using the EO (electro-optical effect) element. In case of catching, it is impossible to compensate the change of the light quantity reflected by the beam splitter due to the rotation of the polarization plane of the laser beam due to the drift of the polarization plane of the laser light source and the natural birefringence of the EO element, and the detection voltage of the DUT is insufficient due to insufficient light input to the photodetector. There is a problem of decrease.

【0010】[0010]

【課題を解決するための手段】本発明のEOプローブ
は、レーザ光と被測定物の電気信号により印加されレー
ザ光の偏光状態に変調をかけるEO素子とを用いて被測
定物を測定する非接触電気信号試験用EOプローブにお
いて、被測定物で反射されEO素子を通過した被測定レ
ーザ光を同相・逆相成分に分離する偏光ビームスプリッ
タ及び分離された被測定レーザ光の両成分を電気信号に
変換する光検出器を一体化した構造を具備し、一体化し
た構造を回転させることにより被測定レーザ光の偏光面
の偏光ビームスプリッタに対する入射角を調整し分離さ
れた両成分の光量を同量に調整する機能と、同相・逆相
に分離した被測定レーザ光の光路差を光検出器を移動さ
せることにより調整しレーザ光両成分の位相差を調整す
る機能と、同相・逆相に分離し位相差を調整された被測
定レーザ光量の両成分の差分をとることで雑音成分を除
去する機能とを含むことを特徴としている。
The EO probe of the present invention is a non-measuring device for measuring an object to be measured using a laser beam and an EO element that is applied by an electric signal of the object to be measured and modulates the polarization state of the laser beam. In a contact electric signal test EO probe, a polarization beam splitter that separates the measured laser light reflected by the object to be measured and passed through the EO element into in-phase and anti-phase components, and both separated components of the measured laser light are electric signals. It is equipped with a structure that integrates a photodetector that converts the light into two components.By rotating the integrated structure, the incident angle of the polarization plane of the laser light to be measured with respect to the polarization beam splitter is adjusted, and the light amounts of both separated components are made the same. The function to adjust the amount and the function to adjust the phase difference between the laser light components by adjusting the optical path difference of the measured laser light separated into in-phase and anti-phase by moving the photodetector. Is characterized in that it comprises a function of removing noise components by taking the difference between the two components of the separated measured amount of laser light is adjusted phase difference.

【0011】[0011]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0012】図1は本発明によるEOプローブの一実施
例を適用した光学系路を示す構成図、図2は図1のレー
ザ光源の光強度の変化と被測定信号によって変調される
レーザ光の光量変化の様子を分離された後の同相・逆相
の両成分について示した図である。
FIG. 1 is a block diagram showing an optical system path to which an embodiment of the EO probe according to the present invention is applied, and FIG. 2 shows a change in light intensity of the laser light source shown in FIG. 1 and a laser light modulated by a signal under measurement. FIG. 7 is a diagram showing both in-phase and anti-phase components after separation of the state of light intensity change.

【0013】図1において、EO素子101は、EO素
子101を被測定物102上の測定点110の電気信号
と導電性で光を通す透明薄膜電極111とで挟み込むこ
とにより電界を印加することで、EO素子101に入射
し反対側端面の誘電体多層反射膜112で反射されるレ
ーザ光108aの偏光状態を変調するものである。
In FIG. 1, the EO element 101 is applied with an electric field by sandwiching the EO element 101 with an electric signal at a measurement point 110 on the object to be measured 102 and a transparent thin film electrode 111 which is conductive and transmits light. , The polarization state of the laser light 108a that is incident on the EO element 101 and reflected by the dielectric multilayer reflective film 112 on the opposite end face is modulated.

【0014】EO素子としては、例えば、一軸性結晶で
あるニオブ酸リチウムを縦型動作で用いる。このEO素
子に電界を印加すると、ポッケルス効果により屈折率変
化を起こし、このEO素子を通過するレーザ光は偏光状
態が変化する。つまり、偏光面が印加された電界に比例
して回転することになる。
As the EO element, for example, uniaxial crystal lithium niobate is used in a vertical operation. When an electric field is applied to this EO element, the refractive index changes due to the Pockels effect, and the polarization state of the laser light passing through this EO element changes. That is, the polarization plane rotates in proportion to the applied electric field.

【0015】ミラー109はレーザ光108aをEO素
子101に導くためのものである。凸レンズ113は微
小測定点を測定するため平行光であるレーザ光108a
を集光し、また、反射され戻ってくるレーザ光を平行光
に戻すためのものである。
The mirror 109 is for guiding the laser beam 108a to the EO element 101. The convex lens 113 is a parallel laser beam 108a for measuring a minute measurement point.
Is for condensing the laser light and returning the laser light reflected and returned to parallel light.

【0016】この実施例のEOプローブは、偏光ビーム
スプリッタ103と、フォトディテクタ104及び10
5を、それぞれの位置関係が不変となるように固定し、
受光ユニット106とし、レーザ光108bを軸として
回転させる機能を備える。これにより、被被測定物10
2の測定点110に電気信号が印加されていない状態の
レーザ光108bの偏光面と偏光ビームスプリッタ10
3の位置関係が制御できるようになり、レーザ光108
bの偏光ビームスプリッタ103によるレーザ光108
c及び108dへの光量分離比を、受光ユニット106
の回転により制御することが可能となり、レーザ光10
8c及び108dの光量を同量に調整することができる
ようになる。つまり、初期状態のバイアスを調整し、よ
り検出感度が高く、被測定物102の測定点110の電
気信号に光検出器の出力が比例する状態にすることにな
る。
The EO probe of this embodiment comprises a polarization beam splitter 103 and photodetectors 104 and 10.
Fix 5 so that each positional relationship is unchanged,
The light receiving unit 106 has a function of rotating the laser beam 108b as an axis. As a result, the DUT 10
The polarization plane of the laser beam 108b and the polarization beam splitter 10 in the state where no electric signal is applied to the second measurement point 110.
3 can be controlled, and the laser beam 108 can be controlled.
laser light 108 by the polarization beam splitter 103 of FIG.
The light quantity separation ratio to c and 108d is determined by the light receiving unit 106.
Can be controlled by rotating the laser beam 10
The light amounts of 8c and 108d can be adjusted to the same amount. That is, the bias in the initial state is adjusted so that the detection sensitivity is higher and the output of the photodetector is proportional to the electric signal at the measurement point 110 of the DUT 102.

【0017】偏光ビームスプリッタ103はレーザ光1
08bを同相・逆相(P偏光、S偏光)に分離するため
のものである。フォトディテクタ104,105は分離
されたレーザ光108c,108dを電気信号に変換す
る光変換器であり、差動増幅器107は同相・逆相の電
気信号の差分を取ることにより信号成分を検出するため
のものである。
The polarization beam splitter 103 uses a laser beam 1
08b is for separating in-phase and anti-phase (P polarized light, S polarized light). The photodetectors 104 and 105 are optical converters that convert the separated laser beams 108c and 108d into electric signals, and the differential amplifier 107 detects the signal component by taking the difference between the in-phase and anti-phase electric signals. It is a thing.

【0018】EO素子101を透過し、反射され、被測
定物102上の測定点110の電気信号により変調され
たレーザ光108bは、受光ユニット106の回転によ
りその偏光面と偏光ビームスプリッタ103との関係が
調整され、偏光ビームスプリッタ103により同相・逆
相のレーザ光108c及び108dに分離され、フォト
ディテクタ104及び105にそれぞれ入射され、電気
信号に変換される。
The laser beam 108b transmitted through the EO element 101, reflected, and modulated by the electric signal at the measuring point 110 on the object 102 to be measured is rotated by the light receiving unit 106 so that its polarization plane and the polarization beam splitter 103 are separated. The relationship is adjusted, and the polarized beam splitter 103 separates the laser lights 108c and 108d of the same phase and opposite phases into the laser lights 108c and 108d, which are respectively incident on the photodetectors 104 and 105, and are converted into electric signals.

【0019】偏光ビームスプリッタ103は入射光に対
し分離される出力光量の分離比を、その入射光の偏光面
との位置関係により無段階に調整することができるもの
であり、また、図2の同相成分201、逆相成分202
に示すように入射光の光強度のドリフトは同相・逆相
共、同位相で現れ、測定点110の電気信号により変調
された信号成分は逆位相として現れる。
The polarization beam splitter 103 is capable of steplessly adjusting the separation ratio of the amount of output light separated from the incident light, depending on the positional relationship with the polarization plane of the incident light. In-phase component 201, anti-phase component 202
As shown in, the drift of the light intensity of the incident light appears in the same phase in both in-phase and anti-phase, and the signal component modulated by the electric signal at the measurement point 110 appears in anti-phase.

【0020】また、片方のフォトディテクタ105をレ
ーザ光108dの光軸に平行に移動させることにより光
路差を調整し、この光路差の調整により、偏光ビームス
プリッタ103でレーザ光108bを同相・逆相に分離
する際に生ずるレーザ光108c及び108dの光学的
な位相差と、フォトディテクタ104及び105で光電
気変換の際に生ずる電気信号の位相差との両方を調整す
る。
The optical path difference is adjusted by moving one of the photodetectors 105 in parallel with the optical axis of the laser beam 108d, and the polarization beam splitter 103 converts the laser beam 108b into the in-phase and anti-phase by adjusting the optical path difference. Both the optical phase difference between the laser beams 108c and 108d generated during the separation and the phase difference between the electric signals generated during the photoelectric conversion by the photodetectors 104 and 105 are adjusted.

【0021】上述のように分離され、被測定物102の
測定点110に電気信号が印加されていない状態のレー
ザ光の分離比が同量となるように調整され、位相差を調
整されたレーザ光108c及び108dを、フォトディ
テクタ104及び105により電気信号に変換し、それ
ぞれ正入力、負入力として作動増幅器107に入力して
おき、ここで測定点110に電気信号を印加すると、作
動増幅器107の出力はレーザ光源の光強度ドリフトが
除去され、偏光面のドリフト及びEO素子の自然複屈折
によるレーザ光偏光面の回転を補償したS/N比の良い
信号となる。
The lasers separated as described above and adjusted so that the separation ratios of the laser light in the state where no electric signal is applied to the measurement point 110 of the DUT 102 are the same and the phase difference is adjusted. The lights 108c and 108d are converted into electric signals by the photodetectors 104 and 105, and are input to the operational amplifier 107 as positive and negative inputs, respectively, and when an electric signal is applied to the measurement point 110, the output of the operational amplifier 107 is output. Is a signal with a good S / N ratio in which the light intensity drift of the laser light source is removed and the rotation of the polarization plane of the laser light due to the drift of the polarization plane and the natural birefringence of the EO element is compensated.

【0022】尚、上記においては、EO素子としてニオ
ブ酸リチウムを使用して説明したが、EO素子としてタ
ンタル酸リチウムを使用しても良い。この場合、素子の
違いは感度に影響するだけで動作は同様であり、また、
ニオブ酸リチウムとタンタル酸リチウムとは感度におい
てもさはど差はない。
In the above description, lithium niobate is used as the EO element, but lithium tantalate may be used as the EO element. In this case, the difference in the elements only affects the sensitivity and the operation is the same, and
There is no significant difference in sensitivity between lithium niobate and lithium tantalate.

【0023】[0023]

【発明の効果】以上説明したように、本発明のEOプロ
ーブは、被測定物に対する印加信号を参照信号として用
いることが無いため、被測定信号と同期を取る必要がな
くどのような信号でも測定でき、同期を取るための付加
回路も必要としないという効果がある。
As described above, since the EO probe of the present invention does not use the applied signal to the object to be measured as the reference signal, it is not necessary to synchronize with the signal to be measured and any signal can be measured. This is advantageous in that it does not require an additional circuit for synchronization.

【0024】また、本発明のEOプローブは、レーザ光
源の光強度ドリフトを除去し、レーザ光源の偏光面ドリ
フト及びEO素子の自然複屈折によるレーザ光偏光面の
回転の補償を行うため、被測定信号の検出感度及び検出
した信号のS/N比を向上できるという効果がある。
The EO probe of the present invention eliminates the light intensity drift of the laser light source and compensates for the polarization plane drift of the laser light source and the rotation of the laser light polarization plane due to natural birefringence of the EO element. There is an effect that the detection sensitivity of the signal and the S / N ratio of the detected signal can be improved.

【0025】また、本発明のEOプローブは、レーザ光
の偏光面と、レーザ光を同相・逆相の両成分に分離する
偏光ビームスプリッタとの位置関係を制御できるように
することによりレーザ光の同相・逆相両成分の分離比を
容易に制御、調整できるようにし、また、フォトディテ
クタを移動させることにより同相、逆相成分の位相差を
容易に制御、調整できるようにしたため、フォトディテ
クタによって電気信号に変換された同相・逆相両成分か
ら被測定物電気信号を取り出す際に作動増幅器の利得調
整、位相調整する必要がなくなり、そのための電気的な
付加回路が必要なくなるという効果がある。
In the EO probe of the present invention, the positional relationship between the plane of polarization of the laser light and the polarization beam splitter that separates the laser light into both in-phase and anti-phase components can be controlled to control the laser light. The separation ratio of both in-phase and anti-phase components can be easily controlled and adjusted, and the phase difference between in-phase and anti-phase components can be easily controlled and adjusted by moving the photo detector. There is no need to adjust the gain and phase of the operational amplifier when extracting the electrical signal to be measured from both the in-phase and anti-phase components converted to, and there is an effect that an electrical additional circuit for that is not required.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるEOプローブの一実施例を適用し
た光学系路を示す構成図である。
FIG. 1 is a configuration diagram showing an optical system path to which an embodiment of an EO probe according to the present invention is applied.

【図2】図1のレーザ光源の光強度の変化と被測定信号
によって変調されるレーザ光の光量変化の様子を分離さ
れた後の同相・逆相の両成分について示した図である。
FIG. 2 is a diagram showing changes in the light intensity of the laser light source in FIG. 1 and changes in the light amount of the laser light modulated by the signal under measurement for both in-phase and anti-phase components after separation.

【図3】従来のレーザ光を用いた非接触型電圧測定装置
の一例を示すブロック図である。
FIG. 3 is a block diagram showing an example of a conventional non-contact type voltage measuring device using laser light.

【符号の説明】[Explanation of symbols]

101 EO素子 102 被測定物 103 偏光ビームスプリッタ 104 フォトディテクタ 105 フォトディテクタ 106 受光ユニット 107 作動増幅器 108a〜d レーザ光 109 ミラー 110 測定点 111 透明薄膜電極 112 誘電体多層反射膜 113 凸レンズ 201 同相成分 202 逆相成分 301 レーザ光源 302 ミラー 303 ビームスプリッタ 304 凸レンズ 305 マイクロセル 306 IC 307 直流増幅器 308 発振器 309 移動ステージ 310 光検出器 311 ロックイン増幅器 101 EO Element 102 Object to be Measured 103 Polarizing Beam Splitter 104 Photodetector 105 Photodetector 106 Photoreceptor Unit 107 Operational Amplifier 108a-d Laser Light 109 Mirror 110 Measurement Point 111 Transparent Thin Film Electrode 112 Dielectric Multilayer Reflective Film 113 Convex Lens 201 In-Phase Component 202 Inverse Phase Component 301 Laser Light Source 302 Mirror 303 Beam Splitter 304 Convex Lens 305 Micro Cell 306 IC 307 DC Amplifier 308 Oscillator 309 Moving Stage 310 Photodetector 311 Lock-in Amplifier

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光と被測定物の電気信号により印
加され前記レーザ光の偏光状態に変調をかけるEO(電
気光学効果)素子とを用いて前記被測定物を測定する非
接触電気信号試験用EOプローブにおいて、 前記被測定物で反射され前記EO素子を通過した被測定
レーザ光を同相・逆相成分に分離する偏光ビームスプリ
ッタ及び前記分離された被測定レーザ光の両成分を電気
信号に変換する光検出器を一体化した構造を具備し、前
記一体化した構造を回転させることにより前記被測定レ
ーザ光の偏光面の前記偏光ビームスプリッタに対する入
射角を調整し前記分離された両成分の光量を同量に調整
する機能と、前記同相・逆相に分離した被測定レーザ光
の光路差を前記光検出器を移動させることにより調整し
前記レーザ光両成分の位相差を調整する機能と、前記同
相・逆相に分離し位相差を調整された被測定レーザ光量
の両成分の差分をとることで雑音成分を除去する機能と
を含むことを特徴とするEOプローブ。
1. A non-contact electrical signal test for measuring an object to be measured using a laser beam and an EO (electro-optical effect) element which is applied by an electrical signal of the object to be measured and modulates a polarization state of the laser beam. In the EO probe for use, a polarization beam splitter that separates the measured laser light reflected by the object to be measured and passed through the EO element into in-phase and anti-phase components, and both components of the separated measured laser light into electrical signals. The photodetector for conversion has an integrated structure, and the integrated structure is rotated to adjust the incident angle of the polarization plane of the laser beam to be measured with respect to the polarization beam splitter. The function to adjust the amount of light to the same amount, and the optical path difference of the measured laser light separated into the in-phase and anti-phase is adjusted by moving the photodetector to adjust the phase difference between both components of the laser light. A function of adjusting, EO probe characterized in that it comprises a function of removing noise components by taking the difference between the two components of the separated in-phase and negative-phase measured amount of laser light is adjusted phase difference.
【請求項2】 前記光検出器が、フォトディテクタまた
はフォトダイオードまたは光電管であることを特徴とす
る請求項1記載のEOプローブ。
2. The EO probe according to claim 1, wherein the photodetector is a photodetector, a photodiode, or a photoelectric tube.
【請求項3】 前記EO素子が、ニオブ酸リチウムまた
はタンタル酸リチウムであることを特徴とする請求項1
または2記載のEOプローブ。
3. The EO element is lithium niobate or lithium tantalate.
Alternatively, the EO probe described in 2.
JP5275326A 1993-11-04 1993-11-04 Eo probe Pending JPH07128408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5275326A JPH07128408A (en) 1993-11-04 1993-11-04 Eo probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5275326A JPH07128408A (en) 1993-11-04 1993-11-04 Eo probe

Publications (1)

Publication Number Publication Date
JPH07128408A true JPH07128408A (en) 1995-05-19

Family

ID=17553903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5275326A Pending JPH07128408A (en) 1993-11-04 1993-11-04 Eo probe

Country Status (1)

Country Link
JP (1) JPH07128408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510392A (en) * 2004-08-13 2008-04-03 シーエムウェア, インコーポレイテッド System and method for controlling computer applications from a remote site
CN110646956A (en) * 2019-09-27 2020-01-03 中国科学院上海高等研究院 Shear continuously adjustable birefringent beam splitter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164788A (en) * 1991-12-18 1993-06-29 Fujitsu Ltd Signal measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164788A (en) * 1991-12-18 1993-06-29 Fujitsu Ltd Signal measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510392A (en) * 2004-08-13 2008-04-03 シーエムウェア, インコーポレイテッド System and method for controlling computer applications from a remote site
CN110646956A (en) * 2019-09-27 2020-01-03 中国科学院上海高等研究院 Shear continuously adjustable birefringent beam splitter

Similar Documents

Publication Publication Date Title
JP2571385B2 (en) Voltage detector
US5619326A (en) Method of sample valuation based on the measurement of photothermal displacement
EP0819924A2 (en) Apparatus and method for measuring characteristics of optical pulses
JPH06102295A (en) Non-contact type probe and non-contact voltage measuring device
US5583643A (en) Methods of and apparatus for measurement using acousto-optic devices
JPH05249201A (en) Method and apparatus for sampling electric signal in electronic component
US5075793A (en) Apparatus for detecting intensity-modulated light signals
JPH07128408A (en) Eo probe
JPH08146066A (en) Electrical signal-measuring method and device
WO2020153322A1 (en) Electric field sensor
JPH0547883A (en) Method and apparatus for testing integrated circuit
JPH05256768A (en) Method and apparatus for measuring gas concentration
JPH0783965A (en) Noncontact-type measuring apparatus for voltage
JPH07181211A (en) Surface potential measuring apparatus
JP2020051871A (en) Electric field sensor
EP0579707B1 (en) Apparatus for measurement using an acousto-optic device
JP3130187B2 (en) Electric field detector
SU1034497A1 (en) Speed measuring device
JPH05264687A (en) Optical magnetic field sensor
Hirose et al. Measurement method of VHF elastic vibrations by optical fiber interferometric sensing
JP3369538B2 (en) Optical polarization characteristic measuring device and its measuring method
JPH06147985A (en) Method and instrument for measuring complex index of refraction
SU1103092A1 (en) Optical electronic device for measuring temperature
RU2006016C1 (en) Optoelectronic pressure transducer
JPH067100B2 (en) Gas concentration pressure detection method using tunable etalon

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960402