JPH07128392A - Nondestructive insulation tester - Google Patents

Nondestructive insulation tester

Info

Publication number
JPH07128392A
JPH07128392A JP5289872A JP28987293A JPH07128392A JP H07128392 A JPH07128392 A JP H07128392A JP 5289872 A JP5289872 A JP 5289872A JP 28987293 A JP28987293 A JP 28987293A JP H07128392 A JPH07128392 A JP H07128392A
Authority
JP
Japan
Prior art keywords
corona
subject
corona discharge
enamel wire
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5289872A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
田中  滋
Takashi Kikuchi
孝史 菊地
Shiyunichi Sakae
俊一 坂惠
Yoshimaro Kurokawa
良磨 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Mitsubishi Cable Industries Ltd
Original Assignee
Daikin Industries Ltd
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Mitsubishi Cable Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP5289872A priority Critical patent/JPH07128392A/en
Publication of JPH07128392A publication Critical patent/JPH07128392A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to nondestructively detect defective insulation of a motor caused by contact of conductors, i.e. layer short, by detecting insulation of an enamel wire, i.e. a flaw thereon, being employed in the stator or rotor of a motor. CONSTITUTION:A specimen 1, i.e., a stator or a rotor employing an enamel wire, is placed in a pressure reducing vessel 2. Pressure in the vessel 2 is then reduced and a constant AC voltage is applied to the specimen 1. A vacuum corona measuring unit 9 detects corona discharge at a detection sensitivity equal to a predetermined amount of discharged charges. A pulse counting circuit 10 counts the generation frequency and decides pass/fail of the specimen 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、モータやトランス等の
製造工程等において発生するエナメル線の絶縁異常を減
圧状態で検知するための非破壊絶縁試験装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive insulation tester for detecting an abnormal enameled wire insulation occurring in a manufacturing process of a motor, a transformer or the like in a reduced pressure state.

【0002】[0002]

【従来の技術】(1) 家電製品等に使用されるモータの製
造においては、鉄心にエナメル線等を巻装し、ステータ
やロータに装着する工程がロボット等により自動化され
て行われている。この工程中にエナメル線に絶縁異常が
発生することがあり、品質管理上大きな問題となってい
る。
2. Description of the Related Art (1) In the manufacture of a motor used for home electric appliances and the like, the process of winding an enamel wire or the like around an iron core and mounting it on a stator or a rotor is automated by a robot or the like. During this process, the enamel wire may have abnormal insulation, which is a serious problem in quality control.

【0003】このような絶縁不良には2つの現象が考え
られている。即ち、一方はエナメル線の乱れやこぼれ又
はスペーサのずれ等により、乱れたエナメル線が鉄心に
直接触れたり又は非常に接近した場合であり、この部分
で絶縁不良が発生し易い。また、他方はエナメル線自身
の傷やエナメル層の剥れ等であり、経時変化によってエ
ナメル線間に導体接触即ちレアショートが発生し、これ
が絶縁不良の原因となる。
Two phenomena have been considered for such insulation failure. That is, one is the case where the disturbed enamel wire directly touches or comes very close to the iron core due to turbulence of the enamel wire, spillage, misalignment of the spacers, etc., and insulation failure is likely to occur at this portion. On the other hand, the other is scratches of the enamel wire itself, peeling of the enamel layer, and the like, and a conductor contact, that is, a rare short circuit occurs between the enamel wires due to changes over time, which causes insulation failure.

【0004】これらの不良を検出するために、目視検査
や交流耐電圧試験等の検査方法が実施されているが、こ
れらの試験ではエナメル線の乱れ等により生ずるエナメ
ル線と鉄心との接触による不良を正確に検知することは
できない。
In order to detect these defects, inspection methods such as visual inspection and AC withstand voltage test are carried out. In these tests, defects due to contact between the enamel wire and the iron core caused by disturbance of the enamel wire, etc. Cannot be detected accurately.

【0005】この問題を解決するために、例えば特開平
3−246472号公報には、コロナ放電を使用して1
mm程度以下の電線と鉄心の接近の状態を検知する装置
が開示されている。これは、エナメル線等を鉄心に巻装
したモータの部材であるステータやロータにおいて、エ
ナメル線と鉄心との間に800V〜1200Vの交流電
圧を印加し、このとき発生するコロナ放電電荷量をコロ
ナ測定器により測定し、放電電荷量が急激に増大するも
のを不良品と判定して検査ライン上での選別を行う装置
であり、エナメル線の乱れやこぼれ等の原因により、エ
ナメル線と鉄心が接触したり、非常に接近したりする状
態の検出には、ほぼ満足すべき効果を発揮している。
In order to solve this problem, for example, in Japanese Patent Laid-Open No. 3-246472, a corona discharge is used.
An apparatus for detecting a state where an electric wire and an iron core approaching each other of about mm or less is disclosed. This is because a stator or rotor, which is a member of a motor in which an enamel wire or the like is wound around an iron core, an AC voltage of 800 V to 1200 V is applied between the enamel wire and the iron core, and the corona discharge charge amount generated at this time is measured by the corona discharge charge amount. This is a device that measures with a measuring instrument and judges that the discharge charge amount increases rapidly as a defective product and sorts it on the inspection line.The enamel wire and the iron core are It has a substantially satisfactory effect for detecting the state of contact or very close contact.

【0006】(2) 一方、実際にステータやロータの鉄心
に捲装したエナメル線自体の傷による電線間における導
体接触即ちレアショートが発生し、例えばモータが完成
しエアコンディショナや冷蔵庫等に組み込まれ製品とし
て使用されている間に、徐々に絶縁劣化が促進されて絶
縁破壊に至りモータが焼損することがある。従って、こ
れはメインテナンス上重大な問題となり、製品の品質の
信頼性を左右することになる。
(2) On the other hand, a conductor contact, that is, a rare short circuit occurs between the electric wires due to a scratch on the enameled wire itself wound around the iron core of the stator or rotor, and the motor is completed and installed in an air conditioner or a refrigerator, for example. During use as a product, insulation deterioration may be gradually promoted, resulting in insulation breakdown and motor burnout. Therefore, this becomes a serious problem in terms of maintenance and affects the reliability of product quality.

【0007】そこで、火花放電電圧が周囲の気圧の低下
と共に低くなるという、所謂パッシェンの原理を利用し
た非破壊検査方法が特公平5−49065号公報に開示
されている。これは真空容器内に揮発性ガスを導入し、
ステータやロータに用いたエナメル線と網目状電極間に
電圧を印加して発生するアーク放電を検出する方法であ
り、真空中において比較的低い印加電圧によりエナメル
線の傷部から発生するアーク放電が、揮発性ガスにより
着色され目視により傷の検出を行うものである。
Therefore, Japanese Patent Publication No. 5-49065 discloses a non-destructive inspection method utilizing the so-called Paschen's principle that the spark discharge voltage decreases as the atmospheric pressure decreases. This introduces volatile gas into the vacuum container,
This is a method to detect the arc discharge generated by applying a voltage between the enamel wire used in the stator and rotor and the mesh electrode, and the arc discharge generated from the scratched part of the enamel wire by a relatively low applied voltage in vacuum. , Which is colored with a volatile gas and visually detects scratches.

【0008】[0008]

【発明が解決しようとする課題】(イ) しかしながら、
(1) の第1の従来例においては、エナメル線がこぼれ等
により鉄心と極く接近している場合の検出には有効であ
るが、エナメル線の傷によるエナメル線間の導体接触即
ちレアショートが存在する場合とか、エナメル線の傷部
と鉄心とが数mm以上離れている場合の傷の検出はでき
ない。このため、インパルス試験やレアショート試験が
行われているが、この場合は一部の不良しか検出でき
ず、試験に時間も掛かり実用的には有効な方法とは云え
ない。
[Problems to be Solved by the Invention] (a) However,
The first conventional example of (1) is effective for detecting when the enamel wire is very close to the iron core due to spillage or the like, but conductor contact between the enamel wires due to damage to the enamel wire, that is, a rare short circuit It is not possible to detect a flaw when there is a crack or when the flaw of the enamel wire and the iron core are separated by several mm or more. For this reason, an impulse test or a rare short test has been performed, but in this case, only some defects can be detected, and the test takes time, which is not a practically effective method.

【0009】(ロ) また、上述の第2の従来例では、アー
ク放電を目視により検知しているので、比較的小さい傷
の検出には不利であり、表面に現れない隠れた部分の傷
の検出が困難である。更に、目視による判定には人手を
要し個人差も生じ、また真空度が0.5Torrと高いので
真空度到達時間が掛かり、容量の大きい真空ポンプを必
要とする。また、容器等に真空漏れを防ぐための高い密
閉性が要求され、機械加工等備品の製作に費用が掛か
る。従って、この方法を全数チェックの自動検査ライン
に組み込むことは極めて困難である。
(B) Further, in the above-mentioned second conventional example, since the arc discharge is visually detected, it is disadvantageous in detecting relatively small scratches, and scratches in hidden portions that do not appear on the surface. Difficult to detect. Further, the visual determination requires manpower and individual differences occur, and since the degree of vacuum is as high as 0.5 Torr, it takes time to reach the degree of vacuum, and a large capacity vacuum pump is required. In addition, containers and the like are required to have high airtightness to prevent vacuum leaks, which makes it expensive to manufacture equipment such as machining. Therefore, it is extremely difficult to incorporate this method into an automatic inspection line for 100% check.

【0010】本発明の目的は、上述の問題点を解決し、
エナメル線間の導体接触即ちレアショートによる不良の
問題を解決し、自動検査が可能な非破壊絶縁試験装置を
提供することにある。
The object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a non-destructive insulation test apparatus capable of automatic inspection by solving the problem of defective conductor contact between enameled wires, that is, a short circuit.

【0011】[0011]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る非破壊絶縁試験装置は、エナメル線を
用いた部材を被検体とし、該被検体の周辺を密封して減
圧するための減圧手段と、該減圧手段による減圧状態に
おいて前記エナメル線に定電圧を印加して発生する所定
量以上の放電電荷量を有するコロナ放電を検知するコロ
ナ検出手段と、該コロナ検出手段から得られるコロナ放
電の発生頻度を計数するパルス計数手段と、該パルス計
数手段により求めたコロナ発生頻度に基づいて、前記被
検体の絶縁状態の良否の判別を行う判別手段とを備えた
ことを特徴とする。
A nondestructive insulation test apparatus according to the present invention for achieving the above object uses a member using an enameled wire as a subject, and seals the periphery of the subject to reduce the pressure. And a corona detecting means for detecting a corona discharge having a discharge charge amount of a predetermined amount or more generated by applying a constant voltage to the enamel wire in a depressurized state by the pressure reducing means, and the corona detecting means. Pulse counting means for counting the frequency of occurrence of corona discharge, and determination means for determining whether the insulation state of the subject is good or bad, based on the frequency of corona generation obtained by the pulse counting means. To do.

【0012】[0012]

【作用】上述の構成を有する非破壊絶縁試験装置は、エ
ナメル線を用いた部材である被検体を容器内に密封し、
減圧手段により容器内を減圧した状態でエナメル線に定
電圧を印加し、このときに発生する所定放電電荷量以上
のコロナ放電の発生頻度を計数することによって非破壊
的に被検体の絶縁良否の判別を行う。
The non-destructive insulation test device having the above-mentioned structure seals the subject, which is a member using the enamel wire, in the container,
A constant voltage is applied to the enamel wire in a state where the container is depressurized by the depressurizing means, and the frequency of corona discharge of a predetermined discharge charge amount or more generated at this time is counted to non-destructively check the insulation quality of the subject. Make a distinction.

【0013】[0013]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1は本実施例の構成を示すブロック図であり、
小型モータに使用されているエナメル線の傷を検出する
ための試験装置を示している。モータのステータ又はロ
ータを成すエナメル線等を鉄心に巻装した被検体1は、
減圧容器2内に密封し得るようにされ、この減圧容器2
には減圧弁3を介して真空ポンプ4と、真空計5、及び
真空を解除するための吸気管6が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiments. FIG. 1 is a block diagram showing the configuration of this embodiment,
1 shows a test device for detecting scratches on an enameled wire used in a small motor. The subject 1 in which an enameled wire or the like forming a motor stator or rotor is wound around an iron core is
The decompression container 2 is designed to be hermetically sealed.
A vacuum pump 4, a vacuum gauge 5, and an intake pipe 6 for releasing the vacuum are provided through the pressure reducing valve 3.

【0014】また、被検体1のエナメル線には、試験端
7、ブロッキングコイルLを介して気中コロナ測定器を
含む一般電気試験器8を接続し得るようにされ、ブロッ
キングコイルLと並列な結合コンデンサCkを介して真空
コロナ測定器9が接続されている。真空コロナ測定器9
にはパルス計数回路10、良否判別回路11が順次に接
続されている。そして、装置全体は図示しないシーケン
サ等の制御機構により自動制御されるようになってい
る。
A general electric tester 8 including an air corona measuring instrument can be connected to the enamel wire of the subject 1 through a test end 7 and a blocking coil L, which is in parallel with the blocking coil L. The vacuum corona measuring instrument 9 is connected via the coupling capacitor Ck. Vacuum corona measuring instrument 9
A pulse counting circuit 10 and a pass / fail judgment circuit 11 are sequentially connected to. The entire apparatus is automatically controlled by a control mechanism such as a sequencer (not shown).

【0015】なお一般電気試験器8には、気中コロナ
測定器の他に、抵抗測定器、絶縁試験器、回転試
験器、交流耐圧試験器、波形測定器等が含まれてい
る。
The general electric tester 8 includes, in addition to the air corona measuring device, a resistance measuring device, an insulation testing device, a rotation testing device, an AC withstanding voltage testing device, a waveform measuring device and the like.

【0016】測定に際しては、被検体1は検査ラインに
沿って移動し、自動又は手動により減圧容器2内の所定
検査位置に取り付けられる。ここで、被検体1のエナメ
ル線に試験端7を接続する。測定開始スイッチが入力さ
れると、減圧容器2のカバーが閉止して被検体1を密封
し、同時に真空ポンプ4が駆動する。数秒で減圧容器2
内が所定圧力、例えば約20Torrに減圧されると、真空
コロナ測定器9の電圧印加回路により被検体1に500
V〜800Vの交流定電圧が印加される。
At the time of measurement, the subject 1 is moved along the inspection line and attached to a predetermined inspection position in the decompression container 2 automatically or manually. Here, the test end 7 is connected to the enamel wire of the subject 1. When the measurement start switch is input, the cover of the decompression container 2 is closed to seal the subject 1, and at the same time, the vacuum pump 4 is driven. Decompression container 2 in a few seconds
When the inside pressure is reduced to a predetermined pressure, for example, about 20 Torr, the voltage application circuit of the vacuum corona measuring device 9 applies 500 to the subject 1.
An alternating constant voltage of V to 800 V is applied.

【0017】このとき、エナメル線の傷部より発生する
コロナ放電を真空コロナ測定器9により検出し、所定放
電電荷量、例えば1回のコロナ放電の検出感度を100
0×103 pCに設定し、これ以上の放電電荷量を示す
コロナ放電の発生頻度をパルス計数回路10により計数
し、この発生頻度の所定値、例えば20ppSを被検体1
の良否の判別基準として良否判別回路11で判別が行わ
れる。
At this time, the corona discharge generated from the scratched portion of the enameled wire is detected by the vacuum corona measuring device 9, and the predetermined discharge charge amount, for example, the detection sensitivity of one corona discharge is 100.
The pulse counting circuit 10 counts the frequency of occurrence of corona discharge indicating a discharge charge amount of 0 × 10 3 pC or more, and a predetermined value of this frequency of occurrence, for example, 20 ppS, is measured by the subject 1
The quality determination circuit 11 performs determination as a quality determination criterion.

【0018】真空コロナ測定器9の測定が終了すると、
減圧容器2内の気密が解除され、上述の一般電気試験器
〜による試験が順次に実施される。これらの試験結
果の情報により最終的な良否の判定が良否判別回路11
により行われ、被検体1は次工程へ搬送される。
When the measurement of the vacuum corona measuring device 9 is completed,
The airtightness inside the decompression container 2 is released, and the tests by the above-described general electric tester are sequentially performed. Based on the information on these test results, the final pass / fail determination is pass / fail determination circuit 11
The test object 1 is transported to the next step.

【0019】被検体1が例えば小型モータのステータや
ロータの場合には、エナメル線の傷は主に鉄心にエナメ
ル線を装着する際に発生する場合が多く、図2に示すよ
うに鉄心14の上端部を中心Oとしてエナメル線13の
±10mmの部分、即ち上側約10mmの個所Aと、下
側約10mmの鉄心14の内側に隠れる個所Bとの間に
多く発生している。
When the subject 1 is, for example, a stator or rotor of a small motor, scratches on the enameled wire often occur mainly when the enameled wire is attached to the iron core, and as shown in FIG. With the upper end as the center O, a large amount occurs between the ± 10 mm portion of the enamel wire 13, that is, the portion A at the upper side of about 10 mm and the portion B hidden at the inside of the iron core 14 at the lower side of about 10 mm.

【0020】また、減圧下の10Torr、20Torr、30
Torr、40Torrにおいて、良品のエナメル線を使用した
真空コロナ測定を行ったところ、表1のような結果を得
た。
Further, under reduced pressure, 10 Torr, 20 Torr, 30
When vacuum corona measurement was performed using a good quality enameled wire at Torr and 40 Torr, the results shown in Table 1 were obtained.

【0021】 表1 コロナ放電発生頻度 減 圧 度 試料NO. 40Torr 30Torr 20Torr 10Torr 12345 12345 12345 12345 ppS ppS ppS ppS 1 00000 00000 00000 00000 2 00000 00000 00000 01000 3 00000 00000 00000 00000 4 00000 00000 00100 00000 5 00000 00000 00000 00000 6 00000 00000 00000 00010 7 00000 00000 00000 00000 8 00000 00000 00000 00000 9 00000 00000 00000 00000[0021] Table 1 corona discharge occurrence frequency down pressure of the sample NO. 40Torr 30Torr 20Torr 10Torr 12345 12345 12345 12345 ppS ppS ppS ppS 1 00000 00000 00000 00000 2 00000 00000 00000 01000 3 00000 00000 00000 00000 4 00000 00000 00100 00000 5 00000 00000 0000 00000 6 0000 0000 0000 0000 010 7 0000 0000 0000 00000 00000 8 0000 00000 00000 00000 00000 9 0000 0000 0000 0000 0000

【0022】ここで、試料NO. 1〜9は良品のエナメル
線の試料番号を示し、この時の印加電圧は800Vで、
1000×103 pCの検出感度に設定している。更
に、各減圧度の下の1〜5の数字はその減圧度において
5回のコロナ測定を行ったことを示し、「0」はコロナ
放電が全く発生しなかったことを表し、「1」は1ppS
のコロナ放電が発生したことを表している。この結果か
ら何れの減圧下においても2ppS 以上の頻度のコロナ放
電は発生していないことが分かる。
Here, sample Nos. 1 to 9 show sample numbers of non-defective enamel wires, and the applied voltage at this time is 800V,
The detection sensitivity is set to 1000 × 10 3 pC. Furthermore, the numbers 1 to 5 under each pressure reduction degree indicate that corona measurement was performed 5 times at that pressure reduction degree, "0" indicates that no corona discharge occurred, and "1" indicates 1 ppS
Indicates that a corona discharge has occurred. From these results, it can be seen that no corona discharge with a frequency of 2 ppS or higher is generated under any pressure reduction.

【0023】従って、良品のエナメル線の場合は、減圧
下においても800V以下の印加電圧では、検出感度1
000×103 pC以上のコロナ放電は殆ど発生するこ
とはない。
Therefore, in the case of a non-defective enameled wire, the detection sensitivity is 1 at an applied voltage of 800 V or less even under reduced pressure.
Almost no corona discharge of 000 × 10 3 pC or more is generated.

【0024】次に、傷を有するエナメル線の場合は、図
3のエナメル線13の傷部15と鉄心14との距離をギ
ャップGとして、このギャップGが数mm以上離れてい
る場合は、大気中においては検出感度1000×103
pCのコロナ放電は良品の場合と同様に検出されないの
で、大気中での傷の判別を行うことはできない。即ち、
気中コロナ測定はエナメル線13が鉄心14と殆ど接触
している場合の検出には有効であるが、ギャップGが数
mm以上離れている場合には傷の検出は難しい。
Next, in the case of an enameled wire having a flaw, the distance between the flaw 15 of the enameled wire 13 of FIG. 3 and the iron core 14 is defined as a gap G. When the gap G is several mm or more, the atmosphere Inside, the detection sensitivity is 1000 × 10 3.
Since the corona discharge of pC is not detected as in the case of the non-defective product, it is not possible to discriminate the scratch in the atmosphere. That is,
The air corona measurement is effective for detection when the enamel wire 13 is almost in contact with the iron core 14, but it is difficult to detect scratches when the gap G is several mm or more.

【0025】そこで、周囲を減圧し真空コロナ測定によ
りコロナ放電発生頻度を測定したところ、表2のような
結果を得た。
Then, when the frequency of corona discharge occurrence was measured by decompressing the surroundings and measuring the vacuum corona, the results shown in Table 2 were obtained.

【0026】 表2 コロナ放電発生頻度 減 圧 度 試料N0. 印加電圧 10Torr 20Torr 30Torr 40Torr 300V 0ppS 0ppS 0ppS 0ppS 400V 16 0 0 0 500V 70 21 0 0 10 600V 157 53 0 0 700V 667 124 0 0 800V 970 298 14 0 900V 1184 1114 52 10 300V 0 0 0 0 400V 11 0 0 0 500V 52 20 0 0 11 600V 98 47 0 0 700V 980 1000 5 0 800V 1200 1218 18 0 900V 2300 2411 150 23 300V 0 0 0 0 400V 8 0 0 0 500V 50 25 0 0 12 600V 220 153 0 0 700V 1280 1383 0 0 800V 1500 1513 15 0 900V − − 絶縁破壊 32Table 2 Corona Discharge Occurrence Frequency Reduction Pressure Sample N0. Applied Voltage 10Torr 20Torr 30Torr 40Torr 300V 0ppS 0ppS 0ppS 0ppS 400V 16 0 0 0 500V 70 70 21 0 0 0 10 600V 157 V 9 70 6 70 0 14 0 900V 1184 1114 52 10 300V 0 0 0 0 400V 11 0 0 0 500V 52 20 20 0 0 11 600V 98 47 47 0 0 700V 980 1000 5 0 0 800V 1200 300 1218 18 0 900 900 0 2300 2411 0 0 0 500V 50 25 25 0 0 12 600V 220 153 300 0 0 700V 1280 1383 0 0 800V 1500 1500 13 15 0 900V − − Dielectric breakdown 32

【0027】ここで、試料NO.10〜12は傷を有する
エナメル線の試料番号を示し、ギャップGは10mm、
検出感度は1000×103 pCとし、減圧度10Torr
〜40Torrにおいて、300Vから900Vに順次に定
電圧を印加し、このとき発生する1000×103 pC
以上のコロナ放電の発生頻度をパルス計数回路10によ
り積算した。
Here, sample Nos. 10 to 12 show sample numbers of enameled wires having scratches, and the gap G is 10 mm,
Detection sensitivity is 1000 × 10 3 pC, and decompression degree is 10 Torr
1000 × 10 3 pC generated at this time by applying a constant voltage from 300 V to 900 V in sequence at ˜40 Torr
The above frequency of corona discharge was integrated by the pulse counting circuit 10.

【0028】発生頻度が「0」以外はコロナ放電が発生
していることを表しているが、計器類や測定操作上の若
干の誤差を考慮に入れると、20ppSを良否判定の境界
値と決めることが経験的にも実際的にも妥当であると結
論される。
The occurrence frequency other than "0" indicates that corona discharge is occurring. However, considering some errors in measuring instruments and measuring operations, 20 ppS is determined as the boundary value for pass / fail judgment. It is concluded that is empirically and practically valid.

【0029】また、上記の表2から、減圧度30Torr、
40Torrにおいては印加電圧が700V〜900Vでな
いと有意差が認められず、No.12のエナメル線のよう
に900Vでブレークダウンを生ずるものもあり、非破
壊検査の観点からもこの減圧度は適当でない。一方、1
0Torr、20Torrの減圧下では、400V、500Vに
おいて有意差が認められるので、20Torr以下の減圧下
が判別に適切であることが分かる。
Further, from Table 2 above, the pressure reduction degree is 30 Torr,
At 40 Torr, no significant difference is observed unless the applied voltage is 700 V to 900 V, and there are some that cause breakdown at 900 V like the enamel wire of No. 12, and this decompression degree is not appropriate from the viewpoint of nondestructive inspection. . On the other hand, 1
Under a reduced pressure of 0 Torr and 20 Torr, a significant difference is observed at 400 V and 500 V, so it can be seen that a reduced pressure of 20 Torr or less is appropriate for the discrimination.

【0030】また、真空コロナ測定器9を検査ラインに
組み込んで使用することを考慮すると、あまり低い減圧
度が要求されると、減圧容器の気密性、真空ポンプの容
量、減圧度到達時間等に問題が生じ、余分な費用が掛か
り実用上不利となる。従って、20Torr程度の減圧下で
の試験が最も検査効率が良い。
Further, considering that the vacuum corona measuring instrument 9 is used by incorporating it in the inspection line, if a too low pressure reduction degree is required, the airtightness of the pressure reducing container, the capacity of the vacuum pump, the time required for reaching the pressure reduction degree, etc. Problems arise, which results in extra costs and practical disadvantages. Therefore, the test under the reduced pressure of about 20 Torr has the highest inspection efficiency.

【0031】先に述べたように、大気中においては傷の
ない良品のエナメル線にコロナ放電を発生させるには比
較的高い電圧を必要とし、微小な傷を有するエナメル線
でも或いは傷のない良品のエナメル線でもコロナ発生開
始電圧はあまり変わることはない。一方、減圧下におい
ては、良品の場合は1000V以上で検出感度1000
×103 pCのコロナ放電が発生するのに対し、傷を有
するエナメル線の場合は表2に示すように、10Torrに
おいては400Vから、また20Torrにおいては500
Vから検出感度1000×103 pCのコロナ放電が発
生している。従って、500V〜800Vの印加電圧を
コロナ測定の試験電圧とすることにより、確実に傷の検
出が可能であることが結論できる。更に、精度良くエナ
メル線の傷による不良を判別するには、この範囲のうち
なるべく高い電圧750V〜800Vを試験電圧として
使用するほうが効率が良い。
As described above, a relatively high voltage is required to generate corona discharge in a good-quality enamel wire that is not damaged in the air, and even a enamel wire that has minute damage or a good product that is not damaged. Even with the enamel wire, the corona generation start voltage does not change much. On the other hand, under reduced pressure, the detection sensitivity is 1000 V or more for good products with a detection sensitivity of 1000
While a corona discharge of × 10 3 pC occurs, as shown in Table 2 in the case of a scratched enameled wire, it is from 400 V at 10 Torr to 500 at 20 Torr.
Corona discharge with a detection sensitivity of 1000 × 10 3 pC is generated from V. Therefore, it can be concluded that scratches can be reliably detected by setting the applied voltage of 500 V to 800 V as the test voltage for corona measurement. Further, in order to accurately determine a defect due to a scratch on the enamel wire, it is more efficient to use a voltage as high as possible within the range of 750 V to 800 V as a test voltage.

【0032】以上の結果から、20Torrの減圧度におい
て、800Vの電圧を印加し、このとき検出されるコロ
ナ放電電荷量1000×103 pCを検出感度に設定
し、これ以上のコロナ放電電荷量を示す発生頻度が20
ppS以上を不良品として判別することにより、エナメル
線の傷不良を検出し、モータ等を非破壊的に検査するこ
とが可能となる。
From the above results, at a reduced pressure of 20 Torr, a voltage of 800 V was applied, and the corona discharge charge amount of 1000 × 10 3 pC detected at this time was set as the detection sensitivity. Frequency of occurrence is 20
By discriminating ppS or more as a defective product, it becomes possible to detect a flaw defect of the enamel wire and inspect the motor and the like nondestructively.

【0033】[0033]

【発明の効果】以上説明したように本発明に係る非破壊
絶縁試験装置は、減圧された容器中で、エナメル線を用
いた部材に定電圧を印加し、コロナ放電測定器により所
定放電電荷量以上のコロナ放電の発生頻度を計数するこ
とにより、エナメル線の傷を非破壊で検出し、製品とし
て完成後の経時変化によって生ずる導体接触即ちレアシ
ョートによる不良品の発生を未然に防止することができ
る。
As described above, the non-destructive insulation test apparatus according to the present invention applies a constant voltage to a member using an enameled wire in a depressurized container to measure a predetermined discharge charge amount by a corona discharge measuring instrument. By counting the frequency of occurrence of corona discharge above, non-destructive detection of scratches on the enameled wire can be performed to prevent the occurrence of defective products due to conductor contact, that is, a rare short circuit, which occurs due to changes over time after the product is completed. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のブロック回路構成図である。FIG. 1 is a block circuit configuration diagram of an embodiment.

【図2】電線と鉄心との接合部の斜視図である。FIG. 2 is a perspective view of a joint portion between an electric wire and an iron core.

【図3】傷部と鉄心との間のギャップの説明図である。FIG. 3 is an explanatory diagram of a gap between a scratched portion and an iron core.

【符号の説明】[Explanation of symbols]

1 被検体 2 減圧容器 4 真空ポンプ 5 真空計 8 一般電気試験器 9 真空コロナ測定器 10 パルス計数回路 11 良否判別回路 DESCRIPTION OF SYMBOLS 1 Test object 2 Decompression container 4 Vacuum pump 5 Vacuum gauge 8 General electrical tester 9 Vacuum corona measuring instrument 10 Pulse counting circuit 11 Pass / fail judgment circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊地 孝史 東京都千代田区丸の内三丁目4番1号 三 菱電線工業株式会社東京事務所内 (72)発明者 坂惠 俊一 滋賀県草津市岡本町字大谷1000番地の2 ダイキン工業株式会社滋賀製作所内 (72)発明者 黒川 良磨 滋賀県草津市岡本町字大谷1000番地の2 ダイキン工業株式会社滋賀製作所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Takashi Kikuchi, Inventor Takashi Kikuchi 3-4-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Cable Co., Ltd. Tokyo Office (72) Inventor Shunichi Sakae Otani, Okamoto-cho, Kusatsu, Shiga Prefecture No. 2 at 1000 Daikin Industries, Ltd. Shiga Works (72) Inventor Ryoma Kurokawa Otani, Okamoto-cho, Kusatsu City, Shiga Prefecture No. 2 at Daikin Industries Co., Ltd. Shiga Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エナメル線を用いた部材を被検体とし、
該被検体の周辺を密封して減圧するための減圧手段と、
該減圧手段による減圧状態において前記エナメル線に定
電圧を印加して発生する所定量以上の放電電荷量を有す
るコロナ放電を検知するコロナ検出手段と、該コロナ検
出手段から得られるコロナ放電の発生頻度を計数するパ
ルス計数手段と、該パルス計数手段により求めたコロナ
発生頻度に基づいて、前記被検体の絶縁状態の良否の判
別を行う判別手段とを備えたことを特徴とする非破壊絶
縁試験装置。
1. A subject using an enameled wire as a subject,
Decompression means for decompressing by sealing the periphery of the subject,
Corona detecting means for detecting a corona discharge having a discharge charge amount of a predetermined amount or more generated by applying a constant voltage to the enamel wire in a depressurized state by the depressurizing means, and a frequency of occurrence of corona discharge obtained from the corona detecting means. A non-destructive insulation test apparatus comprising: a pulse counting unit that counts the number of pulses, and a determination unit that determines whether the insulation state of the subject is good or bad based on the frequency of corona generation obtained by the pulse counting unit. .
【請求項2】 前記減圧手段による減圧範囲を約20To
rr以下とし、コロナ検出手段により前記印加電圧範囲を
500V〜800Vに設定し、約1000×103 pC
(ピコクーロン)以上のコロナ放電電荷量の放電を検出
し、前記パルス計数手段によりコロナ放電の発生頻度が
約20ppS(1秒間のパルス数)以上を、前記判別手段
により前記被検体を不良品として判別する請求項1に記
載の非破壊絶縁試験装置。
2. The decompression range of the decompression means is about 20 To.
rr or less, the applied voltage range is set to 500 V to 800 V by the corona detecting means, and about 1000 × 10 3 pC
A discharge with a corona discharge charge amount of (pico coulomb) or more is detected, and the occurrence frequency of corona discharge is determined by the pulse counting means to be about 20 ppS (the number of pulses per second) or more and the determination means to determine the subject as a defective product. The nondestructive insulation test apparatus according to claim 1.
JP5289872A 1993-10-26 1993-10-26 Nondestructive insulation tester Pending JPH07128392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5289872A JPH07128392A (en) 1993-10-26 1993-10-26 Nondestructive insulation tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5289872A JPH07128392A (en) 1993-10-26 1993-10-26 Nondestructive insulation tester

Publications (1)

Publication Number Publication Date
JPH07128392A true JPH07128392A (en) 1995-05-19

Family

ID=17748862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5289872A Pending JPH07128392A (en) 1993-10-26 1993-10-26 Nondestructive insulation tester

Country Status (1)

Country Link
JP (1) JPH07128392A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039128A1 (en) * 2000-11-10 2002-05-16 Matsushita Electric Industrial Co., Ltd. Method and apparatus of nondestructive insulation test for small electric machine
WO2009157255A1 (en) * 2008-06-25 2009-12-30 アイシン・エィ・ダブリュ株式会社 Insulation coated conductor testing method and apparatus
WO2014162959A1 (en) * 2013-04-02 2014-10-09 日立金属株式会社 Coil for low-voltage inverter drive motor
JP2016070859A (en) * 2014-10-01 2016-05-09 株式会社デンソー Insulation inspection device
WO2022085358A1 (en) * 2020-10-19 2022-04-28 三菱電機株式会社 Inspection device for magnet wire coating, inspection method for magnet wire coating, and manufacturing method for electrical machine
CN115128505A (en) * 2022-08-29 2022-09-30 山东华武电工有限公司 Damage electric leakage detection device of enameled wire

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039128A1 (en) * 2000-11-10 2002-05-16 Matsushita Electric Industrial Co., Ltd. Method and apparatus of nondestructive insulation test for small electric machine
KR100705121B1 (en) * 2000-11-10 2007-04-10 마츠시타 덴끼 산교 가부시키가이샤 Method and apparatus of nondestructive insulation test for small electric machine
DE112009000074B4 (en) * 2008-06-25 2014-05-15 Aisin Aw Co., Ltd. Inspection method and inspection device for an insulation-coated conductor
CN101910853A (en) * 2008-06-25 2010-12-08 爱信艾达株式会社 Insulation coated conductor testing method and apparatus
DE112009000074T5 (en) 2008-06-25 2011-01-13 Aisin AW Co., Ltd., Anjo-shi Inspection method and inspection device for an insulation-coated conductor
US8115496B2 (en) 2008-06-25 2012-02-14 Aisin Aw Co., Ltd. Insulation coated conductor inspection method and inspection apparatus
WO2009157255A1 (en) * 2008-06-25 2009-12-30 アイシン・エィ・ダブリュ株式会社 Insulation coated conductor testing method and apparatus
WO2014162959A1 (en) * 2013-04-02 2014-10-09 日立金属株式会社 Coil for low-voltage inverter drive motor
CN105122603A (en) * 2013-04-02 2015-12-02 日立金属株式会社 Coil for low-voltage inverter drive motor
JPWO2014162959A1 (en) * 2013-04-02 2017-02-16 日立金属株式会社 Coil for low voltage inverter drive motor
JP2016070859A (en) * 2014-10-01 2016-05-09 株式会社デンソー Insulation inspection device
WO2022085358A1 (en) * 2020-10-19 2022-04-28 三菱電機株式会社 Inspection device for magnet wire coating, inspection method for magnet wire coating, and manufacturing method for electrical machine
CN115128505A (en) * 2022-08-29 2022-09-30 山东华武电工有限公司 Damage electric leakage detection device of enameled wire
CN115128505B (en) * 2022-08-29 2022-12-13 山东华武电工有限公司 Damage electric leakage detection device of enameled wire

Similar Documents

Publication Publication Date Title
JP5315814B2 (en) Insulation coated conductor inspection method and apparatus
Baumgartner et al. Partial discharge. X. PD in gas-insulated substations-measurement and practical considerations
JPH07128392A (en) Nondestructive insulation tester
JP3261935B2 (en) Non-destructive insulation test method and apparatus for small electric machine
KR100705121B1 (en) Method and apparatus of nondestructive insulation test for small electric machine
Rux et al. Assessing the condition of hydrogenerator stator winding insulation using the ramped high direct-voltage test method
JP2008032595A (en) Partial discharge part locating method of three-phase batch gas insulation equipment
JP2975039B2 (en) Detecting device for abnormal winding of winding coil for motor
JP3176335B2 (en) Partial discharge measurement device
JP2002372509A (en) Method and device for inspecting leakage of sealed vessel
JP2010066012A (en) Method for inspecting leakage of sealed vessel and apparatus for the same
JPS60203866A (en) Diagnozing method of void defect of electric apparatus on the basis of partial discharging phase characteristics
JP4244775B2 (en) Coil insulation inspection device
JP3808914B2 (en) Non-destructive insulation test method and equipment for small electrical machines
CN104865510B (en) The method of inspection of air reactor inner conductor Abnormal Insulation and mass defect
Stone et al. Comparison of Low and High Frequency Partial Discharge Measurements on Stator Windings
JPS6050461A (en) Method of non-destructive insulation test
Ju et al. An Analysis of Partial Discharge Characteristics due to Transformer Bushing Failure
JP2001108660A (en) Method and apparatus for inspecting film
JP2002260533A (en) Inspection method of breakdown voltage between stempins
JP2023147406A (en) Vacuum discharge testing method
Hudon et al. Aging of stator bars exposed to end arm discharges
SU1177778A1 (en) Method of determining coordinates of flaws in electric insulation materials
CN115219857A (en) Coil micro-damage detection method based on pulse waveform comparison
JPH02159580A (en) Detecting method of abnormality of gas-insulated device