JPH07128374A - Method for detecting rail-earth voltage and rail leak current for dc electric railway - Google Patents

Method for detecting rail-earth voltage and rail leak current for dc electric railway

Info

Publication number
JPH07128374A
JPH07128374A JP27722093A JP27722093A JPH07128374A JP H07128374 A JPH07128374 A JP H07128374A JP 27722093 A JP27722093 A JP 27722093A JP 27722093 A JP27722093 A JP 27722093A JP H07128374 A JPH07128374 A JP H07128374A
Authority
JP
Japan
Prior art keywords
rail
equivalent
node
current
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27722093A
Other languages
Japanese (ja)
Inventor
Kunio Nadatomo
國男 灘友
Hitomi Otoguro
ひとみ 乙黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP27722093A priority Critical patent/JPH07128374A/en
Publication of JPH07128374A publication Critical patent/JPH07128374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To make it possible to the rail-earth voltage and the rail leak current of a DC electric railway comprising a single conducting section or a plurality of transforming stations and electric railcars through simulation. CONSTITUTION:A position where an electric railcar or a transforming station is present is represented by a node 1 to n+1. The rail-earth voltage Vk+1 at each node is determined from an equivalent circuit of equivalent ground conductances bk, bk+1. of right and left half-conducting sections, a conduction current Ik+1, and rail resistance (r). The rail leak current is then determined for the right and left half-conducting sections based on the rail-earth voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レールを帰線として使
用する直流き電システムのレール大地間電圧とレール漏
れ電流の検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a rail ground voltage and a rail leakage current in a DC feeding system using a rail as a return line.

【0002】[0002]

【従来の技術】架空単線式電気鉄道では、帰線として走
行用レールを用いるが、このレールの接地抵抗(漏れ抵
抗)は0.1〜100Ω/Kmのため、レールを流れる
電流の一部は大地にも分流する。この漏れ電流がレール
から流出する部分でレールや犬クギなどに電食が起き
る。
2. Description of the Related Art In an aerial single-track electric railway, a traveling rail is used as a return line. Since the ground resistance (leakage resistance) of this rail is 0.1 to 100 Ω / Km, part of the current flowing through the rail is It diverts to the earth. Electrolytic corrosion occurs on rails and dog nails at the part where this leakage current flows out from the rails.

【0003】この電食量の把握は、き電システムの計画
やレールの保守点検計画等で重要な課題となる。また、
電食に関係するレール漏れ電流は、地磁気観測に対する
地磁気じょう乱への影響があり、レール漏れ電流の検出
が要望される。
[0003] Grasping the amount of electrolytic corrosion is an important issue in the planning of the feeding system and the rail maintenance and inspection plan. Also,
The rail leakage current related to electrolytic corrosion has an influence on the geomagnetic disturbance for the geomagnetic observation, and it is required to detect the rail leakage current.

【0004】一方、レール漏れ電流は、レール大地間電
圧と関連し、レール大地間電圧の検出も必要条件とな
る。
On the other hand, the rail leakage current is related to the rail-to-ground voltage, and the detection of the rail-to-ground voltage is also a necessary condition.

【0005】従来、複数の変電所と複数の電車(回生車
も含む)との間でレールを帰線として電力授受を行うき
電システムにおいて、変電所及び電車をノード点とする
ときの各ノード点の電圧、電流分布を計算、解析する方
法は、例えば電気学会技術報告(第二部)第296号
「回生車を含むき電システムの現状とあり方」、第18
頁〜20頁に詳細に記載されている。
Conventionally, in a feeder system for exchanging electric power between a plurality of substations and a plurality of electric trains (including regenerative vehicles) with a rail as a return line, each node when the substation and electric trains are node points The method of calculating and analyzing the voltage and current distributions at points is described in, for example, Technical Report of the Institute of Electrical Engineers of Japan (Part 2) No. 296, “Current State and Ideal State of Feeding System Including Regenerative Vehicle”, No. 18
See pages 20 to 20 in detail.

【0006】一方、レール大地間電圧及びレール漏れ電
流の検出、解析方法については、単一通電区間及び二変
電所の中間に単一の電車が存在する特定条件で求める方
法、例えば新版、電食・土壌腐食ハンドブック、P61
〜P75に開示される。
On the other hand, with respect to the method for detecting and analyzing the rail earth-to-ground voltage and the rail leakage current, a method for obtaining under a specific condition that a single train exists between a single energization section and two substations, for example, new edition, electrolytic corrosion・ Soil Corrosion Handbook, P61
~ P75.

【0007】この解析方法を図5を参照して説明する。
同図は、単一通電区間でのレール大地間電圧Vの勾配図
であり、通電区間長をL(Km)、電圧零点からの任意
のレール地点までの距離をx(Km)、レール通電電流
をI(A)、レール漏れ抵抗をω(Ω・Km)、レール
抵抗をr(Ω)とすると、単一通電区間でのレール大地
間電圧Vの絶対値は次の(1)式で表される。
This analysis method will be described with reference to FIG.
This figure is a gradient diagram of the rail-to-ground voltage V in a single conduction section, where the conduction section length is L (Km), the distance from the voltage zero point to any rail point is x (Km), and the rail conduction current is Where I (A) is the rail leakage resistance is ω (Ω · Km) and the rail resistance is r (Ω), the absolute value of the rail-to-ground voltage V in a single conduction section is expressed by the following equation (1). To be done.

【0008】[0008]

【数5】|V|=r・I・L/2 …(1) また、微小区間dxでの微小漏れ電流をdILとする
と、単一通電区間全体の漏れ電流ILは、次の(2)式
で表される。
[Equation 5] | V | = r · I · L / 2 (1) If the minute leakage current in the minute section dx is dI L , the leakage current I L of the entire single conduction section is It is represented by the formula 2).

【0009】[0009]

【数6】 [Equation 6]

【0010】[0010]

【発明が解決しようとする課題】従来、レールを帰線と
して使用する直流き電システムにおいて、複数の変電所
と複数の電車(回生車も含む)との間で電力授受を行っ
ているとき、対応する位置におけるき電側の電圧、電流
分布を求める方法は確立している。
Conventionally, in a DC feeding system using a rail as a return line, when electric power is exchanged between a plurality of substations and a plurality of trains (including regenerative vehicles), A method for obtaining the voltage and current distribution on the feeder side at the corresponding position has been established.

【0011】しかし、レール側については、上記運用条
件では全く研究されておらず、1変電所と1電車の運用
状態又は2変電所の中間に1電車が存在するときのレー
ル大地間電圧、レール漏れ電流が解析されているに過ぎ
ない。
However, the rail side has not been studied at all under the above operating conditions, and the rail-to-ground voltage when one substation and one substation are operating or one substation exists between two substations The leakage current is only being analyzed.

【0012】このため、実際のき電システムになる複数
の変電所と複数の電車が存在する場合のレール大地間電
圧、レール漏れ電流の検出には実測によるしか方法がな
く、多くの人手と時間を必要とする。また、き電システ
ムの計画には、実測のしようがなく、過去のデータを利
用するのでは正確なデータが得られない。
Therefore, in the case where there are a plurality of substations and a plurality of trains that are the actual feeding system, the method for detecting the rail-ground voltage and the rail leakage current is only by actual measurement, which requires a lot of manpower and time. Need. In addition, there is no way to actually measure the plan of the feeder system, and accurate data cannot be obtained by using past data.

【0013】本発明の目的は、単一通電区間又は複数の
変電所と複数の電車が存在する直流電気鉄道のレール大
地間電圧及びレール漏れ電流をシミュレーションにより
検出できるようにする検出方法を提供することにある。
An object of the present invention is to provide a detection method for enabling a simulation to detect rail-to-ground voltage and rail leakage current of a DC electric railway having a single energizing section or a plurality of substations and a plurality of trains. Especially.

【0014】[0014]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、レールを帰線とし、1つの変電所又は1
台の回生電車と1台の電車との間で電力授受を行い、通
電区間以外にもレールが存在する単一区間通電時の直流
き電システムにおいて、前記変電所及び電車の存在する
レール上の位置にそれぞれノード点を設定し、電流を供
給するノード点N1及び電流を供給されるノード点N2
無限遠大地間にそれぞれき電回路解析により求めた既知
のき電線供給電流I1及び負荷流入電流−I2の逆向きの
負の電流源−I1及び正の電流源I2と、前記ノード点N
1,N2間の各半通電区間レール長L/2の等価レール漏
れ抵抗ωに基づく等価接地コンダクタンスb=L/2ω
と、各ノード点N1,N2の通電区間外レール長L1,L2
の等価レール漏れ抵抗ωに基づく等価接地コンダクタン
スc1=L1/ω,c2=L2/ωと、両ノード点N1,N2
間の等価抵抗rに基づくレール抵抗a=rLとを回路要
素とする等価回路を設定し、前記等価回路の特性を表す
行列式
In order to solve the above-mentioned problems, the present invention uses a rail as a return line and one substation or one substation.
In a DC feeding system for exchanging power between a single regenerative train and a single train, and having a rail other than the energized section during single section energization, on the rail where the substation and the train exist A node point is set to each position, and a node point N 1 for supplying current and a node point N 2 for supplying current and a known feeder current I 1 obtained by feeder circuit analysis between the infinite ground and respectively. A negative current source −I 1 and a positive current source I 2 opposite to the load inflow current −I 2 , and the node point N
Equivalent ground conductance b = L / 2ω based on equivalent rail leakage resistance ω of rail length L / 2 for each half-energized section between 1 and N 2.
When energization interval outside rail length of each node point N 1, N 2 L 1, L 2
Equivalent ground conductance c 1 = L 1 / ω, c 2 = L 2 / ω based on the equivalent rail leakage resistance ω of both node points N 1 and N 2
A determinant expressing an equivalent circuit having a rail resistance a = rL based on the equivalent resistance r between the circuit elements and expressing the characteristics of the equivalent circuit.

【0015】[0015]

【数7】 [Equation 7]

【0016】Y11:ノードN1に接続されるアドミッタ
ンス成分の和 Y12:ノードN1とN2間に接続されるアドミッタンス成
分の負値 Y21:ノードN2とN1間に接続されるアドミッタンス成
分の負値 Y22:ノードN2に接続されるアドミッタンス成分の和 から各ノード点N1,N2のレール大地間電圧V1,V2
求め、該レール大地間電圧と前記等価接地コンダクタン
スから次式
Y 11 : Sum of admittance components connected to node N 1 Y 12 : Negative value of admittance component connected between nodes N 1 and N 2 Y 21 : Connected between nodes N 2 and N 1. Negative value of admittance component Y 22 : Rail-to-ground voltages V 1 and V 2 at the node points N 1 and N 2 are calculated from the sum of admittance components connected to the node N 2 , and the rail-to-ground voltage and the above-mentioned equivalent ground. From the conductance

【0017】[0017]

【数8】 [Equation 8]

【0018】にしたがって各半通電区間でのレール漏れ
電流ILL,ILRを求めることを特徴とする。
According to the above, the rail leakage currents I LL and I LR in each half-energized section are obtained.

【0019】また、本発明は、前記レール大地間電圧V
1,V2の正負及び大小に応じてレール全漏れ電流又は全
流入電流Aとその区間長Sを求めることを特徴とする。
Further, according to the present invention, the rail-to-ground voltage V
It is characterized in that the rail total leakage current or the total inflow current A and the section length S thereof are obtained according to the positive / negative and the magnitude of 1 and V 2 .

【0020】また、本発明は、レールを帰線とし、複数
の変電所と回生電車を含む複数の電車との間で電力授受
を行い、通電区間以外にもレールが存在する複数区間通
電時の直流き電システムにおいて、前記変電所及び電車
の存在するレール上の位置にそれぞれノード点N1〜Nn
を設定し、前記各ノード点と無限遠大地間にそれぞれき
電回路解析により求めた既知のき電線供給電流と逆向き
の電流源I1〜In+1と、前記各ノード点N1〜Nnの左右
それぞれの半通電区間内の等価レール漏れ抵抗に基づく
等価接地コンダクタンスb1〜bnと、両端ノード点
1,Nnの通電区間外レールの等価レール漏れ抵抗ωに
基づく等価接地コンダクタンスc1,c2と、各ノード点
1〜Nnのノード間の等価抵抗rに基づくレール抵抗a
1〜anとを回路要素とする等価回路を設定し、前記等価
回路の特性を表す行列式
Further, according to the present invention, a rail is used as a return line, power is exchanged between a plurality of substations and a plurality of trains including a regenerative train, and a plurality of sections other than the current-carrying section are energized during energization. In the DC feeding system, the node points N 1 to N n are respectively provided at the positions on the rail where the substation and the train exist.
For each of the node points and the ground at infinity, and current sources I 1 to I n + 1 in the opposite direction to the known feeder currents obtained by feeder circuit analysis and the node points N 1 to equivalent ground conductance b 1 ~b n based on the left and right equivalent rails leakage resistance in each half energization interval of n n, equivalent ground-based equivalent rail leakage resistance ω across node point n 1, n n-conducting time zone outside rails The rail resistance a based on the conductances c 1 and c 2 and the equivalent resistance r between the nodes at the node points N 1 to N n.
And 1 ~a n set an equivalent circuit of the circuit elements, a matrix equation representing the characteristic of the equivalent circuit

【0021】[0021]

【数9】 [Equation 9]

【0022】Yjk(j≠k):ノードjとノードkとに
接続されるアドミッタンス成分の負値 Yjk(j=k):ノードjに接続される全てのアドミッ
タンス成分の和 から各ノード点N1〜Nnのレール大地間電圧V1〜Vn
それぞれ求め、該レール大地間電圧V1〜Vnと該ノード
点の等価接地コンダクタンスから各ノード点Nk,Nk+1
(k=1〜n)からみた左右半通電区間でのレール漏れ
電流ILLk,ILRkを次式
Y jk (j ≠ k): Negative value of the admittance component connected to the nodes j and k Y jk (j = k): Each node point from the sum of all the admittance components connected to the node j The rail-to-ground voltages V 1 to V n of N 1 to N n are obtained, and the node points N k and N k + 1 are calculated from the rail-to-ground voltages V 1 to V n and the equivalent ground conductance of the node points.
The rail leakage currents I LLk and I LRk in the left and right half-energized section viewed from (k = 1 to n) are calculated by the following equations.

【0023】[0023]

【数10】 [Equation 10]

【0024】から求めることを特徴とする。It is characterized by being obtained from

【0025】また、本発明は、前記レール大地間電圧V
1〜Vnの正負及び大小に応じてレール全漏れ電流又は全
流入電流Aとその区間長Sを求めることを特徴とする。
Further, according to the present invention, the rail ground voltage V
It is characterized in that the rail total leakage current or the total inflow current A and the section length S thereof are obtained according to the positive / negative and the magnitude of 1 to V n .

【0026】[0026]

【作用】図1は、単一通電区間のレール大地間電圧を求
めるための実回路(a)とその等価回路(b)を示す。
き電実回路では同図の(a)に示すように、変電所又は
回生車になるA点の電流源からフィーダを通してB点の
電車に電流Iを供給し、この帰線になるランニングレー
ルに電流Iが図示の方向に流れるとする。
FIG. 1 shows an actual circuit (a) and its equivalent circuit (b) for obtaining the rail-ground voltage in a single energizing section.
In the feeder circuit, as shown in (a) of the figure, current I is supplied from the current source at point A, which is a substation or regenerative vehicle, to the train at point B through the feeder, and the running rail to be retraced is fed to this rail. It is assumed that the current I flows in the direction shown.

【0027】このときの等価回路は、(b)に示すよう
に、距離Lになる始端Aと終端Bのレール大地間電圧V
1,V2は、ランニングレールに流れる電流方向を合わせ
るように電流源の電流方向を逆にし、レールと無限遠大
地との間の接地コンダクタンスb、c1、c2とレールの
通電電流Iに基づいて求められる。
The equivalent circuit at this time is, as shown in (b), the rail-to-ground voltage V between the starting point A and the ending point B at which the distance L is reached.
1 , V 2 reverse the current direction of the current source so as to match the direction of the current flowing in the running rail, and make the ground conductance b, c 1 , c 2 between the rail and the infinite ground and the current I of the rail. Required based on

【0028】ここで、接地コンダクタンスb、c1、c2
は、以下のレール区間と大地との間のものを表す。
Here, the ground conductances b, c 1 , c 2
Represents the area between the following rail sections and ground.

【0029】b:半通電区間内の等価接地コンダクタン
スL/2ω(Ω) c1:通電区間外の左側等価接地コンダクタンスL1/2
ω(Ω) c2:通電区間外の右側等価接地コンダクタンスL2/2
ω(Ω) L1:通電区間外の左側レール長(Km) L2:通電区間外の右側レール長(Km) ω:等価レール漏れ抵抗(Ω・Km) また、始端Aと終端B間のレールが持つ抵抗値aは、等
価レール抵抗r(Ω/Km)と距離Lの積r・Lとして
表される。なお、等価レール抵抗は、レール電流が線路
の右レールと左レールに半分ずつ流れており、これを合
成して等価的に1本のレールとみなしたときの抵抗を意
味する。
B: Equivalent ground conductance L / 2ω (Ω) in the half-energized section c 1 : Left equivalent ground conductance L 1/2 outside the energized section
ω (Ω) c 2: the right equivalent outside the energization period ground conductance L 2/2
ω (Ω) L 1 : Left rail length outside energization section (Km) L 2 : Right rail length outside energization section (Km) ω: Equivalent rail leakage resistance (Ω · Km) Also, between start end A and end B The resistance value a of the rail is expressed as a product r · L of the equivalent rail resistance r (Ω / Km) and the distance L. The equivalent rail resistance means the resistance when the rail current flows through the right rail and the left rail of the rail in half, and is regarded as one rail equivalently by combining them.

【0030】上記等価回路から、始端Aと終端Bのレー
ル大地間電圧V1、V2は前記行列式になる(3)式を解
くと次式になる。
From the above equivalent circuit, the rail-to-ground voltages V 1 and V 2 at the starting point A and the ending point B can be expressed by the following equations by solving the equation (3).

【0031】[0031]

【数11】 [Equation 11]

【0032】上式で区間外の距離L1、L2を零とおく
と、レール大地間電圧V1、V2はそれぞれ以下の値とし
て求められる。
When the distances L 1 and L 2 outside the section are set to zero in the above equation, the rail-to-ground voltages V 1 and V 2 are obtained as the following values, respectively.

【0033】[0033]

【数12】 [Equation 12]

【0034】このレール大地間電圧V1、V2は、従来の
単一通電区間での解析結果(1)式と一致する。また、
1=∞、L2=0ではV1=0、V2≒r・L・Iとな
り、従来と同じものを得ることができる。
The rail-to-ground voltages V 1 and V 2 coincide with the analysis result (1) in the conventional single energization section. Also,
When L 1 = ∞ and L 2 = 0, V 1 = 0 and V 2 ≉rLI, which is the same as the conventional one.

【0035】次に、単一通電区間のレール漏れ電流につ
いて説明する。図2は、単一通電区間のレール漏れ電流
を求めるためのグラフを示す。同図は、横軸を距離Lに
対応づけたコンダクタンスで示し、縦軸をレール大地間
電圧Vで示す。
Next, the rail leakage current in the single energizing section will be described. FIG. 2 shows a graph for obtaining the rail leakage current in a single energization section. In the same figure, the horizontal axis is shown by the conductance corresponding to the distance L, and the vertical axis is shown by the rail ground voltage V.

【0036】同図において、半通電区間のレール漏れ抵
抗ω(Ω・Km)による等価接地コンダクタンス
(Ω-1)は、それぞれL/2ωになり、左半区間でのレ
ールから大地への漏れ電流は領域Aの面積に相当し、右
半区間での漏れ電流は領域Bの面積に相当する。
In the figure, the equivalent ground conductance (Ω −1 ) due to the rail leakage resistance ω (Ω · Km) in the semi-energized section becomes L / 2ω, and the leakage current from the rail to the ground in the left half section. Corresponds to the area of the region A, and the leakage current in the right half section corresponds to the area of the region B.

【0037】従って、左半区間のレール漏れ電流ILL
び右半区間のレール漏れ電流ILRは、それぞれの区間に
ついてレール大地間電圧勾配を持つ一次関数
Therefore, the rail leakage current I LL in the left half section and the rail leakage current I LR in the right half section are linear functions having a rail-to-ground voltage gradient for each section.

【0038】[0038]

【数13】 [Equation 13]

【0039】y:レール大地間電圧 x:距離 を各半通電区間にわたり積分して以下のように求められ
る。
Y: Rail-to-ground voltage x: distance is integrated over each half-energized section to obtain the following.

【0040】[0040]

【数14】 [Equation 14]

【0041】また、レール大地間電圧V1、V2の正負及
び大小に応じて流入区間長、漏れ区間長及び全流入電
流、全漏れ電流は下記表に示すようになる。
The inflow section length, the leakage section length, the total inflow current, and the total leakage current are shown in the following table according to the positive / negative and the magnitude of the rail-to-ground voltages V 1 , V 2 .

【0042】[0042]

【表1】 [Table 1]

【0043】次に、複数の変電所と複数の電車(回生車
も含む)との電力授受を行うシステムでの等価回路は、
図1の等価回路を発展させた図3に示す回路になる。
Next, an equivalent circuit in a system for exchanging electric power between a plurality of substations and a plurality of trains (including regenerative cars) is as follows:
The circuit shown in FIG. 3 is a development of the equivalent circuit of FIG.

【0044】同図においては、変電所及び電車をノード
点1〜n+1とし、各ノード点間の距離L1〜Ln(K
m)、各ノード点間の半区間の等価接地コンダクタンス
1〜bn(=Lk/2ωk)、各ノード点に既知の電流源
1〜In+1、通電区間外の左側及び右側の等価接地コン
ダクタンスc1,c2が存在する。
In the figure, substations and trains are designated as node points 1 to n + 1, and distances L 1 to L n (K
m), an equivalent ground conductance b 1 to b n (= L k / 2ω k ) in a half section between each node point, a known current source I 1 to In n + 1 at each node point, a left side outside the energization section, and There are equivalent ground conductances c 1 and c 2 on the right side.

【0045】なお、線路から分岐した車両基地等の接地
物がある場合は、その接地抵抗に想到する等価接地コン
ダクタンスを含めたものとして表す。
If there is a grounding object such as a vehicle depot that branches off from the line, the grounding resistance is expressed as including the equivalent grounding conductance.

【0046】図3の等価回路において、各ノード点での
レール大地間電圧V1〜Vn+1は、図1の単一区間通電で
のレール大地間電圧V1、V2の求め方と同様に、各区間
毎に求めることができる。
In the equivalent circuit of FIG. 3, the rail-to-ground voltages V 1 to V n + 1 at the respective node points are the same as the method for obtaining the rail-to-ground voltages V 1 and V 2 in the single section energization of FIG. Similarly, it can be obtained for each section.

【0047】ここで、通電電流I1〜In+1は、もともと
複数の変電所と電車間又は電車と電車間で電流の授受を
行っているものが合成されたものであるから、値が等し
くかつ符号が反対の一対の電流源となり、図1の単一通
電区間と等価な回路に分解できる。
Here, since the energizing currents I 1 to I n + 1 are originally synthesized by exchanging currents between a plurality of substations and trains or between trains and trains, the values are It becomes a pair of current sources having the same and opposite signs, and can be decomposed into a circuit equivalent to the single conduction section in FIG.

【0048】従って、「重ねの理」より各ノード点の電
圧V1〜Vn+1は単一通電区間で得られた各ノード点の電
圧の合成と同じになる。これは、前記の(5)式の行列
式になり、その解としてノードでのレール大地間電圧と
して求められる。
Therefore, from the "superposition principle", the voltages V 1 to V n + 1 at the respective node points are the same as the combination of the voltages at the respective node points obtained in the single conduction section. This becomes the determinant of the above equation (5), and the solution is obtained as the rail ground voltage at the node.

【0049】次に、図3の等価回路におけるレール漏れ
電流は、図2に示すグラフから求める単一通電区間での
レール漏れ電流と同様に求められる。
Next, the rail leakage current in the equivalent circuit of FIG. 3 is obtained in the same manner as the rail leakage current in the single conduction section obtained from the graph shown in FIG.

【0050】このレール漏れ電流を求めるのに、ノード
点kとノード点k+1間の距離Lk、その間のレール漏
れ抵抗ωk、ノード点k,k+1の電圧Vk、Vk+1とす
ると、ノード点kとk+1間の左半区間のレール漏れ電
流ILLk及び右半区間のレール漏れ電流ILRkはそれぞれ
下記式になる。
To obtain the rail leakage current, if the distance L k between the node point k and the node point k + 1, the rail leakage resistance ω k between them, and the voltages V k and V k + 1 at the node points k and k + 1 are given, The rail leakage current I LLk in the left half section and the rail leakage current I LRk in the right half section between the node points k and k + 1 are respectively expressed by the following equations.

【0051】[0051]

【数15】 [Equation 15]

【0052】また、レール大地間電圧Vk、Vk+1の正負
及び大小に応じて流入区間長、漏れ区間長及び全流入電
流、全漏れ電流は、下記表に示すようになる。
Further, the inflow section length, the leak section length, the total inflow current, and the total leakage current are shown in the following table according to the positive / negative and the magnitude of the rail-ground voltages V k , V k + 1 .

【0053】[0053]

【表2】 [Table 2]

【0054】以上までのことから、本発明では、変電所
又は電車が存在する位置をノード点とし、各ノード点と
無限遠大地との間に左右それぞれの半通電区間のレール
の等価接地コンダクタンスと通電電流とノード間のレー
ル抵抗が存在する等価回路とし、通電区間距離や等価レ
ール漏れ抵抗等の既知回路定数を設定することにより単
一通電区間及び複数通電区間でのレール大地間電圧及び
レール漏れ電流又は流入電流を各ノード点毎に検出す
る。
From the above, according to the present invention, the position where the substation or train exists is taken as the node point, and the equivalent ground conductance of the rails in the left and right half-energized sections is provided between each node point and the ground at infinity. An equivalent circuit in which there is a conducting current and rail resistance between nodes, and by setting known circuit constants such as conducting section distance and equivalent rail leakage resistance, rail-to-ground voltage and rail leakage in a single conducting section and multiple conducting sections. The current or inflow current is detected for each node point.

【0055】[0055]

【実施例】図4は、本発明の一実施例を示す複数通電区
間でのレール大地間電圧とレール漏れ電流又は流入電流
を求めるためのフローチャートである。既知回路定数の
設定又は読み込み(S1)は、対象線路の等価レール抵
抗r(Ω・Km)及び等価レール漏れ抵抗ω(Ω・K
m)を設定又はデータとして読み込む。
FIG. 4 is a flow chart for obtaining a rail ground voltage and a rail leakage current or an inflow current in a plurality of conducting sections according to an embodiment of the present invention. The setting or reading (S1) of the known circuit constant is performed by the equivalent rail resistance r (Ω · Km) and the equivalent rail leakage resistance ω (Ω · K) of the target line.
m) is read as setting or data.

【0056】電車位置検出(S2)は、システム運用に
おける列車ダイヤにしたがって各時刻毎の各電車位置を
求め、この電車位置と既知の変電所位置をそれぞれノー
ド点とし、各ノード点間(通電区間)の距離L1〜L
n(Km)の算定と通電区間の左右半区間のレール長と
等価レール漏れ抵抗ωから等価接地コンダクタンスb1
〜bn(Ω-1)を求める。
In the train position detection (S2), each train position is obtained at each time in accordance with the train schedule in the system operation, and the train position and the known substation position are set as node points, and between each node point (energized section ) Distance L 1 to L
Calculation of n (Km) and the rail length of the left and right half sections of the energization section and the equivalent rail leakage resistance ω to the equivalent ground conductance b 1
˜b n−1 ) is calculated.

【0057】通電電流設定(S3)は、各ノード点の電
車位置における運転条件(坂路走行、回生走行)から各
電車に既知の通電電流I1〜In+1(A)を各ノード点に
電流源として設定する。
The energizing current setting (S3) is carried out by applying the energizing currents I 1 to I n + 1 (A) known to each train to each node point based on the driving conditions (slope traveling, regenerative traveling) at the train position of each node point. Set as a current source.

【0058】回路定数の設定(S4)は、各ノード点及
びノード点間の定数c1,c2,b1〜bn,rL1〜rL
nを設定する。
[0058] Setting of circuit constants (S4), the constant c 1 between the node points and node points, c 2, b 1 ~bn, rL 1 ~rL
Set n .

【0059】レール大地間電圧演算(S5)は、ステッ
プS1〜S4で求められた値から前記(5)式にしたが
って各ノード点毎にレール大地間電圧V1〜Vn+1(V)
を求める。
[0059] Rail ground voltage operation (S5), said from the value obtained in step S1 to S4 (5) rail across ground voltages V 1 for each node point in accordance with formula ~V n + 1 (V)
Ask for.

【0060】レール漏れ電流演算(S6)は、ステップ
S5で求めたレール大地間電圧から前記(6)式からノ
ード点毎のレール漏れ電流ILLk,ILRkとして求め、さ
らには表2に従った全漏れ(流入)電流Aとその区間長
Sを求める。
The rail leakage current calculation (S6) is performed as the rail leakage currents I LLk and I LRk for each node point from the equation (6) from the rail ground voltage obtained in step S5, and further according to Table 2. The total leakage (inflow) current A and its section length S are obtained.

【0061】演算結果出力(S7)は、前記レール大地
間電圧及びレール漏れ電流までの演算を各時刻別に求
め、また1日単位の集計結果を検出値として出力する。
In the calculation result output (S7), the calculation up to the rail ground voltage and the rail leakage current is obtained for each time, and the totalized result for each day is output as a detected value.

【0062】[0062]

【発明の効果】以上のとおり、本発明によれば、電車又
は変電所が存在する位置をノード点とし、ノード点間の
半通電区間のレール等価接地コンダクタンスと通電電流
とレール抵抗とを持つ等価回路から各ノード点のレール
大地間電圧とレール漏れ電流又は流入電流を求めるよう
にしたため、コンピュータ等の処理装置を利用して電車
位置(ノード点)によるレール大地間電圧、レール漏れ
電流又は流入電流をシミュレーションによって容易に求
めることができる。
As described above, according to the present invention, a position where a train or a substation exists is a node point, and an equivalent rail equivalent ground conductance, a conducting current and a rail resistance in a half-energized section between the node points. Since the rail ground voltage and the rail leakage current or inflow current at each node point are obtained from the circuit, the rail ground voltage, rail leakage current or inflow current depending on the train position (node point) is calculated using a processing device such as a computer. Can be easily obtained by simulation.

【0063】特に、複数の電車及び複数の変電所を持つ
システムにおける各レール位置でのレール大地間電圧、
レール漏れ電流又は流入電流の検出に適用してその算出
を容易にする。
In particular, the rail-to-ground voltage at each rail position in a system having a plurality of trains and a plurality of substations,
It is applied to the detection of rail leakage current or inflow current to facilitate its calculation.

【0064】このレール大地間電圧、レール漏れ電流又
は流入電流の検出により、システムの計画段階での定量
的検討や既設システムのレールの年間の電食量算定を容
易にする。
The detection of the rail earth voltage, the rail leakage current or the inflow current facilitates the quantitative examination at the planning stage of the system and the calculation of the annual electric erosion amount of the rail of the existing system.

【図面の簡単な説明】[Brief description of drawings]

【図1】単一通電区間の実回路とレール大地間電圧等価
回路。
FIG. 1 is an actual circuit in a single conduction section and a rail-to-ground voltage equivalent circuit.

【図2】単一通電区間のレール漏れ電流グラフ。FIG. 2 is a rail leakage current graph in a single energized section.

【図3】複数通電区間のレール大地間電圧等価回路。FIG. 3 is a rail-to-ground voltage equivalent circuit for a plurality of conducting sections.

【図4】実施例のフローチャート。FIG. 4 is a flowchart of an embodiment.

【図5】単一通電区間でのレール大地間電圧勾配。FIG. 5 is a rail-to-ground voltage gradient in a single conduction section.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 レールを帰線とし、1つの変電所又は1
台の回生電車と1台の電車との間で電力授受を行い、通
電区間以外にもレールが存在する単一区間通電時の直流
き電システムにおいて、 前記変電所及び電車の存在するレール上の位置にそれぞ
れノード点を設定し、 電流を供給するノード点N1及び電流を供給されるノー
ド点N2と無限遠大地間にそれぞれき電回路解析により
求めた既知のき電線供給電流I1及び負荷流入電流−I2
の逆向きの負の電流源−I1及び正の電流源I2と、前記
ノード点N1,N2間の各半通電区間レール長L/2の等
価レール漏れ抵抗ωに基づく等価接地コンダクタンスb
=L/2ωと、各ノード点N1,N2の通電区間外レール
長L1,L2の等価レール漏れ抵抗ωに基づく等価接地コ
ンダクタンスc1=L1/ω,c2=L2/ωと、両ノード
点N1,N2間の等価抵抗rに基づくレール抵抗a=rL
とを回路要素とする等価回路を設定し、 前記等価回路の特性を表す行列式 【数1】 11:ノードN1に接続されるアドミッタンス成分の和 Y12:ノードN1とN2間に接続されるアドミッタンス成
分の負値 Y21:ノードN2とN1間に接続されるアドミッタンス成
分の負値 Y22:ノードN2に接続されるアドミッタンス成分の和 から各ノード点N1,N2のレール大地間電圧V1,V2
求め、該レール大地間電圧と前記等価接地コンダクタン
スから次式 【数2】 にしたがって各半通電区間でのレール漏れ電流ILL,I
LRを求めることを特徴とする直流き電システムの単一通
電区間におけるレール大地間電圧・レール漏れ電流検出
方法。
1. A substation or 1 with a rail as a return line
In a DC feeding system for exchanging electric power between one regenerative train and one train, and having a rail other than the energized section during energization of a single section, on the rail where the substation and the train exist Positions are set to node points, respectively, and a known feeder current I 1 and a feeder current I 1 obtained by feeder circuit analysis between a node point N 1 supplying current and a node point N 2 supplying current Load inflow current-I 2
Of the opposite negative current source −I 1 and positive current source I 2 and the equivalent rail conductance based on the equivalent rail leakage resistance ω of each half-conduction section rail length L / 2 between the node points N 1 and N 2. b
= L / 2ω and the equivalent ground conductance c 1 = L 1 / ω, c 2 = L 2 / based on the equivalent rail leakage resistance ω of the outer rail lengths L 1 and L 2 at the node points N 1 and N 2 and the rail resistance a = rL based on the equivalent resistance r between both node points N 1 and N 2.
An equivalent circuit having circuit elements of and is set, and a determinant representing the characteristics of the equivalent circuit Y 11 : Sum of admittance components connected to node N 1 Y 12 : Negative value of admittance component connected between nodes N 1 and N 2 Y 21 : Of admittance component connected between nodes N 2 and N 1 Negative value Y 22 : Rail-to-ground voltages V 1 and V 2 at the node points N 1 and N 2 are calculated from the sum of admittance components connected to the node N 2 , and the following is calculated from the rail-to-ground voltage and the equivalent ground conductance. Expression [2] Rail leakage currents I LL and I LL in each semi-energized section
A method for detecting rail-to-ground voltage / rail leakage current in a single energizing section of a DC feeding system, which is characterized by obtaining LR .
【請求項2】 前記レール大地間電圧V1,V2の正負及
び大小に応じてレール全漏れ電流又は全流入電流Aとそ
の区間長Sを求めることを特徴とする請求項1記載のレ
ール大地間電圧・レール漏れ電流検出方法。
2. The rail earth according to claim 1, wherein the rail total leakage current or the total inflow current A and the section length S thereof are determined according to the positive / negative and the magnitude of the rail earth-to-earth voltages V 1 , V 2. Inter-voltage / rail leakage current detection method.
【請求項3】 レールを帰線とし、複数の変電所と回生
電車を含む複数の電車との間で電力授受を行い、通電区
間以外にもレールが存在する複数区間通電時の直流き電
システムにおいて、 前記変電所及び電車の存在するレール上の位置にそれぞ
れノード点N1〜Nnを設定し、 前記各ノード点と無限遠大地間にそれぞれき電回路解析
により求めた既知のき電線供給電流と逆向きの電流源I
1〜In+1と、前記各ノード点N1〜Nnの左右それぞれの
半通電区間内の等価レール漏れ抵抗に基づく等価接地コ
ンダクタンスb1〜bnと、両端ノード点N1,Nnの通電
区間外レールの等価レール漏れ抵抗ωに基づく等価接地
コンダクタンスc1,c2と、各ノード点N1〜Nnのノー
ド間の等価抵抗rに基づくレール抵抗a1〜anとを回路
要素とする等価回路を設定し、 前記等価回路の特性を表す行列式 【数3】 jk(j≠k):ノードjとノードkとに接続されるア
ドミッタンス成分の負値 Yjk(j=k):ノードjに接続される全てのアドミッ
タンス成分の和から各ノード点N1〜Nnのレール大地間
電圧V1〜Vnをそれぞれ求め、 該レール大地間電圧V1〜Vnと該ノード点の等価接地コ
ンダクタンスから各ノード点Nk,Nk+1(k=1〜n)
からみた左右半通電区間でのレール漏れ電流ILLk,I
LRkを次式 【数4】 から求めることを特徴とする直流き電システムの複数通
電区間におけるレール大地間電圧・レール漏れ電流検出
方法。
3. A DC feeding system for energizing a plurality of sections in which a rail is used as a return line, electric power is transferred between a plurality of substations and a plurality of trains including a regenerative train, and rails exist in addition to the energizing section. In the above, a known feeder line is obtained by setting node points N 1 to N n at positions on the rail where the substation and the train exist, respectively, and calculating by feeder circuit analysis between each node point and the ground at infinity. Current source I in the opposite direction to the current
1 ~I n + 1 and the respective equivalent ground conductance b 1 ~b n based on the equivalent rail leakage resistance in the semi-conducting time zone left of each node point N 1 to N n, across the node point N 1, N n The equivalent ground conductances c 1 and c 2 based on the equivalent rail leakage resistance ω of the rail outside the energization section and the rail resistances a 1 to a n based on the equivalent resistance r between the nodes at the node points N 1 to N n are circuited. An equivalent circuit as an element is set, and a determinant expressing the characteristics of the equivalent circuit Y jk (j ≠ k): Negative value of admittance component connected to node j and node Y Y jk (j = k): Each node point N 1 ~ from the sum of all admittance components connected to node j The rail-to-ground voltages V 1 to V n of N n are obtained, and the node points N k and N k + 1 (k = 1 to 1 ) are calculated from the rail-to-ground voltages V 1 to V n and the equivalent ground conductance of the node points. n)
Rail leakage currents I LLk , I in the left and right half-energized sections
LRk is given by the following equation [4] A method for detecting rail-to-ground voltage / rail leakage current in multiple energizing sections of a DC feeding system, which is obtained from
【請求項4】 前記レール大地間電圧V1〜Vnの正負及
び大小に応じてレール全漏れ電流又は全流入電流Aとそ
の区間長Sを求めることを特徴とする請求項3記載のレ
ール大地間電圧・レール漏れ電流検出方法。
4. The rail ground according to claim 3, wherein the rail total leakage current or the total inflow current A and the section length S thereof are determined according to the positive / negative and the magnitude of the rail ground voltage V 1 to V n. Inter-voltage / rail leakage current detection method.
JP27722093A 1993-11-08 1993-11-08 Method for detecting rail-earth voltage and rail leak current for dc electric railway Pending JPH07128374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27722093A JPH07128374A (en) 1993-11-08 1993-11-08 Method for detecting rail-earth voltage and rail leak current for dc electric railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27722093A JPH07128374A (en) 1993-11-08 1993-11-08 Method for detecting rail-earth voltage and rail leak current for dc electric railway

Publications (1)

Publication Number Publication Date
JPH07128374A true JPH07128374A (en) 1995-05-19

Family

ID=17580493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27722093A Pending JPH07128374A (en) 1993-11-08 1993-11-08 Method for detecting rail-earth voltage and rail leak current for dc electric railway

Country Status (1)

Country Link
JP (1) JPH07128374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2082248A1 (en) * 2006-09-21 2009-07-29 Jeon, Myung-soo Apparatus for measuring impedance of trolley line and method of locating fault using the same
KR100921981B1 (en) * 2008-04-18 2009-10-14 한국철도기술연구원 Method and system for measuring resistance of electric car line and rail of DC rail system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2082248A1 (en) * 2006-09-21 2009-07-29 Jeon, Myung-soo Apparatus for measuring impedance of trolley line and method of locating fault using the same
EP2082248A4 (en) * 2006-09-21 2012-03-14 Myung-Soo Jeon Apparatus for measuring impedance of trolley line and method of locating fault using the same
KR100921981B1 (en) * 2008-04-18 2009-10-14 한국철도기술연구원 Method and system for measuring resistance of electric car line and rail of DC rail system

Similar Documents

Publication Publication Date Title
CN109470927A (en) Rail traffic rail transition resistance detection system and method
Polus Modeling and measurements of bus service reliability
CN103869171A (en) Zero-sequence parameter measuring method for ultrahigh-voltage transmission line with four-circuit alternating current on one tower and double-circuit double-electrode direct current
CN106771636A (en) Rail transition resistance detecting system and method
EP2799850A1 (en) Pipeline ac corrosion risk measurement and evaluation method and measurement and evaluation device
Kolář et al. Measurement of ground currents leaking from DC electric traction
CN107247215B (en) Distribution Network Failure population location algorithm based on Multipoint synchronous measurement data
Isaicheva et al. Estimation of electrical energy losses in a DC traction rail network during heavy traffic
Kortazar et al. Dataset for the life cycle assessment of the high speed rail network in Spain
JPH07128374A (en) Method for detecting rail-earth voltage and rail leak current for dc electric railway
CN209387743U (en) Rail traffic rail transition resistance detection system
JPH08314987A (en) Calculating device of substation capacity of electric railroad
CN110516287A (en) It is a kind of meter and ageing failure power supply system outage probability calculation method
WO2023052540A1 (en) Calculation of more accurately estimated location of ground fault short circuits in complex railway power supply arrangements
CN112329211B (en) Urban rail conductor section leakage current simulation measurement method based on CDEGS
Takeuchi et al. Development of a Train Operation Power Simulator Using the Interaction between the Power Supply Network, Rolling Stock Characteristics and Driving Patterns, as Conditions
Bhagat et al. Uncertainty of Standardized Track Insulation Measurement Methods for Stray Current Assessment
Sandidzadeh et al. Controlling and simulation of stray currents in DC railway by considering the effects of collection mats
CN107144772B (en) A kind of subway closed guard gate and rail are insulated method for testing performance
Ibrahem Leakage current detection and protection for electrical railway systems
Reimann et al. Multiphysics Simulation of a Battery Electric Train Operation
Garanin et al. Taking into account electrical connection between traction substations in calculation of electrified-railroad capacity
Powell et al. Determining system-wide energy use in an established metro network
Kandaev et al. Determination of Electrical Quantities in the Traction Rail Network and Buried Pipelines Located Under the Influence of Stray Currents from Electrified Railway Transport
Mariscotti Methods and instruments for stray current verification in DC rapid transit and railway systems