JPH07128259A - Method for x-ray mapping analysis - Google Patents

Method for x-ray mapping analysis

Info

Publication number
JPH07128259A
JPH07128259A JP5272607A JP27260793A JPH07128259A JP H07128259 A JPH07128259 A JP H07128259A JP 5272607 A JP5272607 A JP 5272607A JP 27260793 A JP27260793 A JP 27260793A JP H07128259 A JPH07128259 A JP H07128259A
Authority
JP
Japan
Prior art keywords
ray
mapping data
primary beam
mapping
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5272607A
Other languages
Japanese (ja)
Other versions
JP3278012B2 (en
Inventor
Kiyoshi Hasegawa
清 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP27260793A priority Critical patent/JP3278012B2/en
Publication of JPH07128259A publication Critical patent/JPH07128259A/en
Application granted granted Critical
Publication of JP3278012B2 publication Critical patent/JP3278012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To detect an element boundary with the resolution finer than the dimension of a primary beam. CONSTITUTION:A sample stage is scanned in lattice at a feed finer than the width of primary beams 3-6 for exciting an X-ray to form first and second mapping data having X-ray intensities in each point as values. The form and dimension of the primary beam is converted into the dimension of the mapping data, and a beam template in which the part receiving the beam emission is set to a value of 1 and the part receiving no beam emission to a value of 0 is formed. From the intensity distribution 8, the background intensity 9 is taken as a threshold, and the second mapping data is superposed on the beam template in the place where the value of the first mapping data is lower than the threshold. The second mapping data in the part where the value of the beam template is 1 is rewritten to 0. This is performed in all measuring points, whereby the data near a natural boundary 1 is provided in the second mapping data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料に電子線やX線等
を照射し、試料から励起されるX線を検出して元素の分
布状態を調査する、X線マッピング分析方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray mapping analysis method for irradiating a sample with an electron beam or X-ray and detecting the X-ray excited by the sample to investigate the distribution state of elements. is there.

【0002】[0002]

【従来の技術】従来は、測定試料に照射する電子線やX
線等の1次ビームの寸法に対し、より細かい分解能で元
素の境界を検出することはできず、検出した結果をその
ままマッピングデータとし、X線強度のしきい値を設定
し、その強度以下のデータを単純に削除することで、マ
ッピングデータを出力していた。
2. Description of the Related Art Conventionally, an electron beam or X-ray irradiating a measurement sample
With respect to the dimensions of the primary beam such as a line, it is not possible to detect the boundaries of elements with a finer resolution, and the detected results are directly used as mapping data, and the X-ray intensity threshold value is set. Mapping data was output by simply deleting the data.

【0003】[0003]

【発明の解決しようとする課題】しかし、従来の方法で
は、図1の断面7でのX線強度分布8に示すように、本
来の元素境界である1を検出するようなしきい値は得る
ことができず、状況によっては試料の境界1の中にも境
界線が発生してしまうような問題を有していた。
However, according to the conventional method, as shown in the X-ray intensity distribution 8 at the cross section 7 in FIG. 1, a threshold value for detecting 1 which is the original element boundary can be obtained. However, there is a problem that a boundary line is generated in the boundary 1 of the sample depending on the situation.

【0004】[0004]

【課題を解決するための手段】本発明は、X線を励起さ
せる1次ビームの、形状と寸法を認識できるX線マッピ
ング装置において、 1.1次ビームの寸法よりも細かい送りで、試料ステー
ジを格子状にスキャンさせ、各位置において着目元素の
X線強度を検出する。
SUMMARY OF THE INVENTION The present invention provides an X-ray mapping apparatus capable of recognizing the shape and size of a primary beam for exciting X-rays: 1. Sample stage with a finer feed than the size of the primary beam Are scanned in a grid pattern, and the X-ray intensity of the element of interest is detected at each position.

【0005】2.X線強度を値とし、測定位置を行列に
配置した同じ2次元配列データを2つ作成し、第1・第
2のマッピングデータとする。 3.1次ビームの形状と寸法を、マッピングデータの寸
法に換算し、1次ビームを内包する矩形での、2次元配
列のビームテンプレートを作成する。ビームテンプレー
トの中は、1次ビームが照射される部分を1、照射され
ない部分を0とする。
2. Using the X-ray intensity as a value, two identical two-dimensional array data in which the measurement positions are arranged in a matrix are created and used as the first and second mapping data. 3. Convert the shape and size of the primary beam into the size of the mapping data, and create a beam template of a two-dimensional array in a rectangle containing the primary beam. In the beam template, the part irradiated with the primary beam is 1, and the part not irradiated is 0.

【0006】4.第1マッピングデータでの強度分布か
ら、着目元素のバックグラウンド強度を認識し、その値
を着目元素検出のしきい値とする。 5.第1マッピングデータのX線強度がしきい値を下回
った場所で、第1マッピングデータとビームテンプレー
トとを重ね合わせ、ビームテンプレートの値が1の部分
と重なった第2マッピングデータを0に書き換え、これ
を全測定点で行う。
4. The background intensity of the element of interest is recognized from the intensity distribution in the first mapping data, and the value is used as the threshold value for detecting the element of interest. 5. When the X-ray intensity of the first mapping data is below the threshold value, the first mapping data and the beam template are superposed, and the second mapping data in which the value of the beam template overlaps with 1 is rewritten to 0, This is done at all measuring points.

【0007】以上の手順によって、第2マッピングデー
タには、1次ビームの寸法より細かい分解能で着目元素
の境界を検出できる。
By the above procedure, the boundary of the element of interest can be detected in the second mapping data with a resolution finer than the size of the primary beam.

【0008】[0008]

【作用】上記のような動作を行うX線マッピング装置に
おいては、1次ビームの寸法よりも細かく試料ステージ
を動作させ、1次ビームが着目元素の境界の外側から境
界内に移動した場合、1次ビームの端と境界線が重なっ
た時点で、わずかながらでも着目元素のX線を検出でき
る。この時、1次ビームの中心はまだ境界内には達して
おらず、1次ビームの中心は、ビーム幅の約2分の1だ
け外側にあると言える。この時、1次ビームの形状と寸
法がわかっていれば、本来の境界がどこにあるのかを認
識することができる。1次ビームの形状と寸法を、マッ
ピングデータの寸法に換算し、1次ビームが照射される
範囲を定義するためのビームテンプレートを作成する。
ビームテンプレートは、1次ビーム照射範囲内には1の
値、それ以外は0の値を設定する。0を設定した部分は
1次ビームが照射されず、その位置の情報がないという
ことを現す。着目元素のX線を検出できなかった計測場
所では、ビームテンプレート内の1の領域に着目元素が
存在しないことになり、この領域とマッピングデータが
重なる場所のマッピングデータを0に置き換えることが
できる。
In the X-ray mapping apparatus which operates as described above, when the sample stage is moved finer than the size of the primary beam and the primary beam moves from outside the boundary of the element of interest to within the boundary, When the edge of the next beam and the boundary line overlap with each other, the X-ray of the element of interest can be detected even if only slightly. At this time, the center of the primary beam has not reached the boundary yet, and it can be said that the center of the primary beam is outside by about ½ of the beam width. At this time, if the shape and size of the primary beam are known, it is possible to recognize where the original boundary is. The shape and size of the primary beam are converted into the size of the mapping data, and a beam template for defining the range irradiated with the primary beam is created.
For the beam template, a value of 1 is set within the primary beam irradiation range, and a value of 0 is set otherwise. The portion where 0 is set indicates that the primary beam is not emitted and there is no information on the position. At the measurement location where the X-ray of the element of interest could not be detected, the element of interest does not exist in the area 1 in the beam template, and the mapping data at the location where this area and the mapping data overlap can be replaced with 0.

【0009】以上の手順によって、着目元素の境界検出
において、分解能を1次ビームの寸法より小さくするこ
とができる。
By the above procedure, the resolution can be made smaller than the size of the primary beam in the boundary detection of the element of interest.

【0010】[0010]

【実施例】以下に、この発明の実施例を図に基づいて説
明する。 実施例1 図3に本願発明に用いられるX線マッピング装置の一例
を示す。装置制御部にコントロールされる1次ビーム発
生部から1次ビームを試料25に照射し試料ステージ2
4を前後左右にスキャンする。図1において、着目元素
1を含む領域で、1次ビーム3〜6にX線を使用し、1
次X線ビームの幅よりも細かい送りで、試料ステージを
格子状にスキャンさせ、各位置において着目元素のX線
強度を検出する。格子状にスキャンさせるとは、左上隅
から右へ移動し、端まで到達したら、一段下がり再度左
から右へスキャンし、これを繰り返すといったふうにす
る。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 3 shows an example of an X-ray mapping apparatus used in the present invention. The sample 25 is irradiated with the primary beam from the primary beam generator controlled by the apparatus controller.
Scan 4 forward, backward, left and right. In FIG. 1, X-rays are used for the primary beams 3 to 6 in the region containing the element of interest 1 and
The sample stage is scanned in a grid pattern with a feed smaller than the width of the next X-ray beam, and the X-ray intensity of the element of interest is detected at each position. To scan in a grid pattern means to move from the upper left corner to the right, and when it reaches the end, move down one step and scan again from the left to the right, and so on.

【0011】X線強度を値とし、測定位置を行列に配置
した同じ2次元配列データを2つ作成し第1・第2のマ
ッピングデータとする。2次元配列データとは、位置情
報を行・列に配置し、各測定位置の強度データを値とす
る情報群のことである。例えば以下のようなデータであ
る。
Using the X-ray intensity as a value, two identical two-dimensional array data in which the measurement positions are arranged in a matrix are created and used as the first and second mapping data. The two-dimensional array data is an information group in which position information is arranged in rows and columns and intensity data at each measurement position is used as a value. For example, the data is as follows.

【0012】 Data [0] [0] : 左から1 番目、上から1 番目の強度 Data [0] [1] : 左から2 番目、上から1 番目の強度 ・ ・ Data [0] [1] : 左から1 番目、上から2 番目の強度 一方、感光フィルムなどを使用して得た、1次ビームの
形状と寸法を、マッピングデータの寸法に換算する。こ
のために図2に示すように、1次ビームを内包する矩形
での、2次元配列のビームテンプレート10を作成す
る。ビームテンプレート10の中は、1次ビームが照射
される部分12を1の値とし、照射されない部分11を
0の値とする。ビームテンプレートの詳細を図4に示
す。1次ビームが照射される部分を1(黒)、照射され
ない部分を0(白)とした、ビーム形状と寸法が表され
ている。ビーム形状が、真円で直径100μmであった
すると、マッピングデータが、水平垂直共に10μmの
送りで計測を行った場合、10×10の格子(100μ
mの円を内包する矩形)を作成し、1/0のデータを埋
め込む。その結果をビームテンプレートとする。感光フ
ィルムを使用してのビームテンプレートの作成は以下の
ようにする。
Data [0] [0]: 1st intensity from the left, 1st intensity from the top Data [0] [1]: 2nd intensity from the left, 1st intensity from the top ... Data [0] [1] : 1st intensity from the left and 2nd intensity from the top On the other hand, convert the shape and dimensions of the primary beam obtained using a photosensitive film into the dimensions of the mapping data. For this purpose, as shown in FIG. 2, a beam template 10 having a rectangular two-dimensional array including the primary beam is created. In the beam template 10, a portion 12 irradiated with the primary beam has a value of 1, and a portion 11 not irradiated with the beam has a value of 0. The details of the beam template are shown in FIG. The beam shape and dimensions are shown in which the part irradiated with the primary beam is 1 (black) and the part not irradiated is 0 (white). If the beam shape is a perfect circle and the diameter is 100 μm, the mapping data shows 10 × 10 grids (100 μm) when the measurement is performed with a horizontal and vertical feed of 10 μm.
A rectangle including a circle of m) is created and 1/0 data is embedded. The result is used as a beam template. The beam template is formed using the photosensitive film as follows.

【0013】1次ビームを感光フィルムに照射し、感
光させる。 感光フィルムに、格子の線を引き1/0を認識する。 格子の数と各格子の寸法を認識する。 図1における第1マッピングデータでの強度分布8か
ら、着目元素を検出するX線強度のしきい値を決定す
る。通常は、バックグラウンド強度9をしきい値とす
る。
The photosensitive film is irradiated with the primary beam to expose it to light. Draw a grid line on the photosensitive film and recognize 1/0. Recognize the number of grids and the size of each grid. From the intensity distribution 8 in the first mapping data in FIG. 1, the X-ray intensity threshold value for detecting the element of interest is determined. Normally, the background intensity 9 is used as the threshold value.

【0014】第1マッピングデータのX線強度がしきい
値を下回った場所で、第2マッピングデータとビームテ
ンプレートとを重ね合わせ、ビームテンプレートの値が
1の部分と重なった第2マッピングデータを0に書き換
え、これを全測定点で行う。以上の事を図5を用いて説
明する。1次元のデータで、本処理を行う例を述べる。
ビームは、真円と仮定する。図5において母材50上に
置かれた着目元素1を左から右方向へスキャンして測定
を行った場合、ビーム中心位置と検出X線強度の関係
は、以下のようになる。1次ビームは点ではないので、
1次マッピングデータの検出X線強度が図に示されるよ
うに着目元素1と母材50との境界において、離散的に
値がきりかわらないので明確に着目元素の境界を認識で
きない。
At a place where the X-ray intensity of the first mapping data is below the threshold value, the second mapping data and the beam template are superposed, and the second mapping data in which the value of the beam template is 1 is overlapped with 0. , And do this at all measurement points. The above will be described with reference to FIG. An example of performing this processing with one-dimensional data will be described.
The beam is assumed to be a perfect circle. When the element of interest 1 placed on the base material 50 in FIG. 5 is scanned and measured from left to right, the relationship between the beam center position and the detected X-ray intensity is as follows. Since the primary beam is not a point,
As shown in the figure, the detected X-ray intensity of the primary mapping data cannot discriminate clearly the boundary between the target element 1 and the base material 50 because the values do not change discretely.

【0015】ところで、図5におけるように1次ビーム
が着目元素にかかる直前の状態においては、検出X線強
度はバックグラウンド強度(母材に1次ビームを照射し
た時の検出X線強度)と一致する。この時1次ビームは
まだ着目元素にかかっていないのだから1次ビーム幅す
なわちビームテンプレート幅に一致する部分をバックグ
ラウンド(母材)と見なすことができる。従って、ビー
ムテンプレートと一致する2次マッピングデータを0デ
ータとし、図5における最終的な2次マッピングデータ
を得る。 以上の手順によって、第2マッピングデータ
には、本来の着目元素1の境界線に近い、データを得る
ことができる。
By the way, in the state immediately before the primary beam impinges on the element of interest as shown in FIG. 5, the detected X-ray intensity is the background intensity (the detected X-ray intensity when the primary beam is irradiated on the base material). Match. At this time, since the primary beam has not yet been applied to the element of interest, the portion corresponding to the primary beam width, that is, the beam template width can be regarded as the background (base material). Therefore, the secondary mapping data that matches the beam template is set to 0 data, and the final secondary mapping data in FIG. 5 is obtained. By the procedure described above, data close to the original boundary line of the target element 1 can be obtained as the second mapping data.

【0016】実施例2 前記実施例1の1次ビームに電子線を使用し、試料から
のX線を検出する場合にも、実施例1と同じ手順で電子
線ビームの寸法よりも細かい分解能で、試料境界を認識
することができる。
Example 2 Even when an electron beam is used as the primary beam in Example 1 to detect X-rays from a sample, the same procedure as in Example 1 is used with a resolution finer than the size of the electron beam. , The sample boundary can be recognized.

【0017】[0017]

【発明の効果】本発明は、近年微細化が進む電子部品等
を対象とした、X線マッピング分析において、微小欠陥
の大きさの調査や、寸法計測に対し、多大な効果をもた
らす。特に1次ビームにX線を使用する場合、50ミク
ロン以下に1次X線を絞るには多大なコストがかかり、
それ以上のマッピング分解能を得ることは非常に困難で
あったが、本発明を利用することで、安価に高分解能の
マッピング像が得られる。
INDUSTRIAL APPLICABILITY The present invention brings a great effect to the investigation of the size of a minute defect and the dimension measurement in the X-ray mapping analysis targeted for electronic parts which have been miniaturized in recent years. Especially when X-rays are used for the primary beam, it is very costly to focus the primary X-rays to 50 microns or less,
It was very difficult to obtain a higher mapping resolution, but by using the present invention, a high resolution mapping image can be obtained at low cost.

【0018】本発明によって、微小異物検査や材料偏析
分析などの微小部分析において、安価に用意できるビー
ムサイズで、それより細かい分布が確認でき、ビームを
必要以上にコリメートする必要がないことから、適当な
検出強度が得られるため、測定時間の短縮が可能とな
り、更に安価なシステムが実現できるなど多数の効果が
得られる。
According to the present invention, in a minute portion analysis such as a minute foreign matter inspection or a material segregation analysis, a beam size that can be prepared at a low cost, a finer distribution can be confirmed, and it is not necessary to collimate the beam more than necessary. Since a suitable detection intensity can be obtained, the measurement time can be shortened, and a number of effects such as a more inexpensive system can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるマッピングデータの水平分解能を
向上する方法の説明図である。
FIG. 1 is an explanatory diagram of a method for improving the horizontal resolution of mapping data according to the present invention.

【図2】ビームテンプレートの概略図である。FIG. 2 is a schematic diagram of a beam template.

【図3】本発明に用いられるX線マッピング装置の概略
図である。
FIG. 3 is a schematic diagram of an X-ray mapping apparatus used in the present invention.

【図4】ビームテンプレートの詳細図である。FIG. 4 is a detailed view of a beam template.

【図5】試料を1次元方向にスキャンした時のマッピン
グデータ図である。
FIG. 5 is a mapping data diagram when a sample is scanned in a one-dimensional direction.

【符号の説明】[Explanation of symbols]

1 着目元素 2 X線強度がバックグラウンド強度と一致するとき
の、1次ビームの中心点の軌跡 3 X線を励起させる1次ビーム 4 X線を励起させる1次ビーム 5 X線を励起させる1次ビーム 6 X線を励起させる1次ビーム 7 X線強度8、9を検出したときの位置 8 X線強度 9 X線バックグラウンド強度 10 ビームテンプレート
1 element of interest 2 locus of center point of primary beam when X-ray intensity matches background intensity 3 primary beam for exciting X-ray 4 primary beam for exciting X-ray 5 primary beam for exciting X-ray 1 Next beam 6 Primary beam that excites X-rays 7 X-ray intensities Positions when 8 and 9 are detected 8 X-ray intensity 9 X-ray background intensity 10 Beam template

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料に1次ビームを照射しX線を励起さ
せる励起線源と、制御可能で少なくとも前後左右に動作
可能な試料ステージと、前記試料からの前記X線を検出
するX線検出部と、データ処理を行うデータ処理部とを
持つX線マッピング装置において、 1.前記1次ビームの寸法よりも細かい送りで、前記試
料ステージを格子状にスキャンさせ、各位置において着
目元素のX線強度を検出する。 2.前記X線強度を値とし、測定位置を行列に配置した
同じ2次元配列データを2つ作成し、第1・第2のマッ
ピングデータとする。 3.前記1次ビームの形状と寸法を、マッピングデータ
の寸法に換算し、前記1次ビームを内包する矩形での、
2次元配列のビームテンプレートを作成する。前記ビー
ムテンプレートの中は、1次ビームが照射される部分を
1、照射されない部分を0とする。 4.前記第1マッピングデータでの強度分布から、前記
着目元素のバックグラウンド強度を認識し、その値を前
記着目元素検出のしきい値とする。 5.前記第1マッピングデータのX線強度がしきい値を
下回った場所で、前記第1マッピングデータと前記ビー
ムテンプレートとを重ね合わせ、前記ビームテンプレー
トの値が1の部分と重なった前記第2マッピングデータ
を0に書き換え、これを全測定点で行う。 以上の手順よりなる、第2マッピングデータ上に1次ビ
ームの寸法より細かい分解能で着目元素の境界を検出で
きるX線マッピング分析方法。
1. An excitation radiation source for irradiating a sample with a primary beam to excite X-rays, a controllable sample stage operable at least in front, back, left and right directions, and X-ray detection for detecting the X-rays from the sample. In an X-ray mapping apparatus having a unit and a data processing unit that performs data processing, The sample stage is scanned in a grid pattern with a feed smaller than the size of the primary beam, and the X-ray intensity of the element of interest is detected at each position. 2. Using the X-ray intensity as a value, two identical two-dimensional array data in which the measurement positions are arranged in a matrix are created and used as the first and second mapping data. 3. The shape and dimensions of the primary beam are converted into the dimensions of the mapping data, and in the rectangle containing the primary beam,
Create a two-dimensional array of beam templates. In the beam template, a portion irradiated with the primary beam is 1, and a portion not irradiated is 0. 4. The background intensity of the element of interest is recognized from the intensity distribution in the first mapping data, and the value is used as the threshold value for detecting the element of interest. 5. The second mapping data in which the first mapping data and the beam template are overlapped with each other at a position where the X-ray intensity of the first mapping data is below a threshold value, and the value of the beam template overlaps with 1. Is rewritten to 0 and this is performed at all measurement points. An X-ray mapping analysis method that can detect the boundary of the element of interest on the second mapping data with a resolution finer than the dimension of the primary beam, which is formed by the above procedure.
【請求項2】 前記1次ビームがX線ビームであること
を特徴とする請求項1記載のX線マッピング分析方法。
2. The X-ray mapping analysis method according to claim 1, wherein the primary beam is an X-ray beam.
JP27260793A 1993-10-29 1993-10-29 X-ray mapping analysis method Expired - Lifetime JP3278012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27260793A JP3278012B2 (en) 1993-10-29 1993-10-29 X-ray mapping analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27260793A JP3278012B2 (en) 1993-10-29 1993-10-29 X-ray mapping analysis method

Publications (2)

Publication Number Publication Date
JPH07128259A true JPH07128259A (en) 1995-05-19
JP3278012B2 JP3278012B2 (en) 2002-04-30

Family

ID=17516290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27260793A Expired - Lifetime JP3278012B2 (en) 1993-10-29 1993-10-29 X-ray mapping analysis method

Country Status (1)

Country Link
JP (1) JP3278012B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836884C1 (en) * 1998-08-14 2000-06-21 Helmut Fischer Gmbh & Co Determination of the measurement spot in the X-ray fluorescence analysis
JP2006292756A (en) * 2005-04-11 2006-10-26 Jordan Valley Semiconductors Ltd Detection of dishing and tilting using fluorescent x-rays
JP2014038034A (en) * 2012-08-16 2014-02-27 Horiba Ltd X-ray analyzing apparatus
DE102014102684A1 (en) * 2014-02-28 2015-09-03 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Method for measuring a measurement object by means of X-ray fluorescence
US9632043B2 (en) 2014-05-13 2017-04-25 Bruker Jv Israel Ltd. Method for accurately determining the thickness and/or elemental composition of small features on thin-substrates using micro-XRF
US9829448B2 (en) 2014-10-30 2017-11-28 Bruker Jv Israel Ltd. Measurement of small features using XRF

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836884C1 (en) * 1998-08-14 2000-06-21 Helmut Fischer Gmbh & Co Determination of the measurement spot in the X-ray fluorescence analysis
JP2006292756A (en) * 2005-04-11 2006-10-26 Jordan Valley Semiconductors Ltd Detection of dishing and tilting using fluorescent x-rays
JP2014038034A (en) * 2012-08-16 2014-02-27 Horiba Ltd X-ray analyzing apparatus
DE102014102684A1 (en) * 2014-02-28 2015-09-03 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Method for measuring a measurement object by means of X-ray fluorescence
KR20150102682A (en) * 2014-02-28 2015-09-07 헬무트 휘셔 게엠베하 인스티투트 휘어 엘렉트로닉 운트 메쓰테크닉 Method for the measurement of a measurement object by means of X-ray fluorescence
JP2015165228A (en) * 2014-02-28 2015-09-17 ヘルムート・フィッシャー・ゲーエムベーハー・インスティテュート・フューア・エレクトロニク・ウント・メステクニク Method for measurement of measurement object by means of x-ray fluorescence
US9885676B2 (en) 2014-02-28 2018-02-06 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Method for the measurement of a measurement object by means of X-ray fluorescence
US9632043B2 (en) 2014-05-13 2017-04-25 Bruker Jv Israel Ltd. Method for accurately determining the thickness and/or elemental composition of small features on thin-substrates using micro-XRF
US9829448B2 (en) 2014-10-30 2017-11-28 Bruker Jv Israel Ltd. Measurement of small features using XRF

Also Published As

Publication number Publication date
JP3278012B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
US5511103A (en) Method of X-ray mapping analysis
KR100669846B1 (en) Scanning method and system for inspecting anomalies on surface
WO2010125911A1 (en) Defect inspection device and defect inspection method
US20080174772A1 (en) Circuit-pattern inspection apparatus
US6157451A (en) Sample CD measurement system
JP7352447B2 (en) Pattern inspection device and pattern inspection method
JP2013200182A (en) Defect inspection device and defect inspection method
US9110384B2 (en) Scanning electron microscope
JP3278012B2 (en) X-ray mapping analysis method
CN1298203A (en) Mask detecting apparatus and method
JPH10300450A (en) Method for inspection of hole using charged particle beam
JPH057579A (en) Irradiation area extractor for radiation image
US20160054226A1 (en) An image forming method of a fluorescent sample
JP3094199B2 (en) Micropart analysis method
JP2018151202A (en) Electron beam inspection apparatus and electron beam inspection method
JP2020183928A (en) Electron beam inspection method and electron beam inspection device
JP2021044461A (en) Method of detecting alignment mark position and device for detecting alignment mark position
JP3142991B2 (en) Laser scanning device and image forming method
JP2006172919A (en) Scanning electron microscope having three-dimensional shape analysis function
JPH0712755A (en) Adjustment method and device for electron beam device
JP2502050B2 (en) Electron beam micro analyzer
US20090014650A1 (en) Detector for electron column and method for detecting electrons for electron column
WO2021024648A1 (en) Electron beam inspection device and electron beam inspection method
JP3303441B2 (en) Electron beam analyzer
JP2867664B2 (en) Position reproduction device for electron beam micro analyzer

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term