JPH07127887A - Ice heat accumulation system allowing use of pi-treated water - Google Patents

Ice heat accumulation system allowing use of pi-treated water

Info

Publication number
JPH07127887A
JPH07127887A JP27724193A JP27724193A JPH07127887A JP H07127887 A JPH07127887 A JP H07127887A JP 27724193 A JP27724193 A JP 27724193A JP 27724193 A JP27724193 A JP 27724193A JP H07127887 A JPH07127887 A JP H07127887A
Authority
JP
Japan
Prior art keywords
ice
water
heat storage
heat
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27724193A
Other languages
Japanese (ja)
Inventor
Yasushi Shimizu
康 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27724193A priority Critical patent/JPH07127887A/en
Publication of JPH07127887A publication Critical patent/JPH07127887A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an ice heat accumulation system for producing ice, which is not frozen into a block shape, by a simpler system constitution. CONSTITUTION:An ice heat accumulation system has a heat storage tank 1, a compressor 6, a condenser 7 and an expansion valve 5 provided along a path for constituting a closed loop. The heat storage tank 1 is filled with pi-treated water 20. When the pi-treated water 20 is cooled, sherbet-like ice is gradually produced after a temperature reaches a level below the freezing point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は氷蓄熱システムに関す
る。
FIELD OF THE INVENTION The present invention relates to an ice heat storage system.

【0002】[0002]

【従来の技術】空調装置需要の増大にともない、夏期の
日中の電力消費量が一時的に急激にピークを示し、電力
供給源の拡大が急がれている。ところが、電力消費量の
ピーク時に合わせて電力供給源の容量を増やすことは、
電力消費量の少ない時間帯に電力供給源の稼働率が低下
するので、好ましくない。そこで、電力消費量がピーク
に達する時間帯に空調装置で消費する電力量を抑える対
策が必要となっている。
2. Description of the Related Art As the demand for air conditioners increases, the power consumption during the daytime in summer temporarily peaks rapidly, and the expansion of power supply sources is rushed. However, increasing the capacity of the power supply source at the peak of power consumption
This is not preferable because the operating rate of the power supply source decreases during the time when the power consumption is low. Therefore, it is necessary to take measures to reduce the amount of power consumed by the air conditioner during the time when the power consumption reaches its peak.

【0003】そのひとつの方法として、電力消費量の少
ない時間帯に冷熱を蓄えておき、電力消費量が増大する
時間帯にその冷熱を使って空調装置を機能させる試みが
なされている。この冷熱は空調装置で使用されているの
で、極端な低温に保つ必要はなく、蓄熱材としては一般
に水が使われることが多い。水は熱容量が大きいこと、
および、取扱いが容易であることから、蓄熱材として適
しているが、さらに、氷の潜熱を利用して、蓄熱槽を小
さくすることが求められている。そのような理由から、
氷蓄熱システムの需要は高まりつつある。
As one of the methods, an attempt has been made to store cold heat during a time period when the power consumption is low and use the cold heat during the time period when the power consumption increases to function the air conditioner. Since this cold heat is used in the air conditioner, it is not necessary to keep it at an extremely low temperature, and water is generally used as the heat storage material in many cases. Water has a large heat capacity,
Also, since it is easy to handle, it is suitable as a heat storage material, but it is further required to make the heat storage tank smaller by utilizing latent heat of ice. For that reason
Demand for ice heat storage systems is increasing.

【0004】氷蓄熱システムは蓄熱槽に蓄えた水を冷熱
によって冷却し凍らせ、冷熱を必要とするときに、氷の
融解潜熱によって冷却システムとして働かせるものであ
る。図4にこの氷蓄熱システムの概念を示す。蓄熱槽1
には水2が蓄えられており、蓄熱槽1の中で水2は蓄冷
用熱交換器3によって冷媒4と熱交換できるようになっ
ている。冷媒4は膨張と圧縮を繰り返し熱の移動を担
う。蓄冷する際には、冷媒4は、図中、反時計廻りに循
環は、膨張弁5によって気化し、温度を下げられ、蓄熱
槽1を通過する際に水2から熱を奪い水の温度を下げ
る。
The ice heat storage system is for cooling the water stored in the heat storage tank with cold heat to freeze it, and when the cold heat is required, it works as a cooling system by the latent heat of melting of ice. Figure 4 shows the concept of this ice storage system. Heat storage tank 1
The water 2 is stored in the heat storage tank 1, and the water 2 can be exchanged with the refrigerant 4 by the heat storage heat exchanger 3 in the heat storage tank 1. The refrigerant 4 repeats expansion and compression and bears heat transfer. When the cold storage is performed, the refrigerant 4 is circulated counterclockwise in the figure, and the expansion valve 5 vaporizes the temperature of the refrigerant 4 to lower the temperature thereof. Lower.

【0005】次に、圧縮機6によって圧縮され、その
後、凝縮機7によって液化され温度を下げ、膨張弁5に
送られる。この循環を続けることにより、水2は凍り、
氷として冷熱を蓄えることができる。
Next, it is compressed by the compressor 6, then liquefied by the condenser 7 to lower the temperature, and sent to the expansion valve 5. By continuing this circulation, the water 2 freezes,
It can store cold heat as ice.

【0006】冷熱を用いて部屋9を冷却するときには、
蓄熱槽1の中の水2をポンプ10によって空調用熱交換器
11に導くように循環させる。このとき空調用熱交換器11
を通して部室9の空気は冷却される。
When the room 9 is cooled using cold heat,
The water 2 in the heat storage tank 1 is heated by the pump 10 for air conditioning heat exchanger.
Cycle to lead to 11. At this time, the heat exchanger for air conditioning 11
Through this, the air in the room 9 is cooled.

【0007】このように氷蓄熱システムは、余剰電力に
よって氷を蓄えておき、部室9の冷却を必要とするとき
に、わずかなポンプ動力で空調装置を働かせることがで
きる。
As described above, the ice heat storage system can store the ice by the surplus electric power and operate the air conditioner with a slight pump power when the room 9 needs to be cooled.

【0008】[0008]

【発明が解決しようとする課題】上記されたように蓄熱
槽1に蓄えられた水2は、凝固と溶融によって、蓄熱と
放熱を繰り返す。凝固する際には、冷媒4の通る蓄冷用
熱交換器3の表面に接した水から凝固が始まるために、
氷がその熱交換器を覆うように成長する。成長した氷
は、水2と冷媒4との間の伝熱抵抗になり、したがっ
て、凝固が進むにつれて、熱交換性能を劣化する。ま
た、フィンを設けたり、螺旋状にすることで熱交換器の
表面積を大きくして、熱流束を向上させることも、氷が
熱交換器本体を塊状に覆うことで、効果が上がらない。
氷が溶融する際にも、これらの欠点は同様である。
The water 2 stored in the heat storage tank 1 as described above repeats heat storage and heat dissipation due to solidification and melting. At the time of solidification, solidification starts from water in contact with the surface of the cold storage heat exchanger 3 through which the refrigerant 4 passes,
Ice grows over the heat exchanger. The grown ice becomes a heat transfer resistance between the water 2 and the refrigerant 4, and thus deteriorates the heat exchange performance as the solidification progresses. Moreover, the surface area of the heat exchanger is increased by providing fins or forming a spiral shape to improve the heat flux, and the effect is not improved because the ice covers the heat exchanger body in a lump.
These drawbacks are similar when the ice melts.

【0009】氷の成長に伴うこのような熱交換性能の劣
化を防ぐために、伝熱面の更新を図る試みもなされてい
る。例えば、ある種のフロンは水分子格子の核となり、
包接化合物を作るが、この包接化合物間の結合力が弱い
ので、この化合物はシャーベット状の氷を作る。したが
って、蓄熱槽にその種のフロンを共存させることで、生
成した氷はシャーベット状となり熱交換器3から離脱
し、伝熱面が更新される。しかしながら、フロンは水に
溶解し難いため、伝熱面に両者を共存させるのが難し
い。
In order to prevent such deterioration of heat exchange performance due to ice growth, attempts have been made to renew the heat transfer surface. For example, some freons form the core of the water molecule lattice,
A clathrate compound is produced, but since the binding force between the clathrate compounds is weak, the compound produces sherbet-like ice. Therefore, when such a CFC coexists in the heat storage tank, the generated ice becomes sherbet-like and is separated from the heat exchanger 3, and the heat transfer surface is updated. However, since CFCs are difficult to dissolve in water, it is difficult for them to coexist on the heat transfer surface.

【0010】また、水と冷媒を直接接触させることによ
り熱交換を行うことで、伝熱面積の向上を図るととも
に、氷が特定の伝熱面から生成するのを防ぐ方法も試み
られている。冷媒となるフロンを直接水中に噴き出すこ
とにより水と包接化合物を生成してシャーベッド状の氷
を形成することができる。しかしながら、包接化合物を
生成するには、圧力がある範囲内に限定されることか
ら、水中を通って循環する冷媒の圧力制御が難しい。さ
らに、水と冷媒との分離を果たすことも課題である。
Further, a method has been attempted in which heat is exchanged by bringing water and a refrigerant into direct contact with each other to improve a heat transfer area and prevent ice from being generated from a specific heat transfer surface. By directly ejecting CFC, which is a refrigerant, into water, an inclusion compound can be formed with water to form sheared ice. However, in order to generate the clathrate compound, the pressure is limited within a certain range, so that it is difficult to control the pressure of the refrigerant circulating through the water. Furthermore, achieving the separation of water and refrigerant is also an issue.

【0011】また、包接化合物を作らずとも、水中に噴
き出された冷媒の周りにわずかづつ氷を作り、シャーベ
ット状にすることも可能であるが、水面に浮上したシャ
ーベット状の氷が固い結晶になったり、水と冷媒との分
離が難しいなど、問題点も多い。そこで、本発明の目的
はより簡単なシステム構成により、塊状に凝固しない氷
を生成する氷蓄熱システムを提供するものである。
It is also possible to make a sherbet-like shape by making a small amount of ice around the refrigerant blown out into water without making an inclusion compound, but the sherbet-like ice floating on the water surface is hard. There are many problems such as crystallization and difficulty in separating water and refrigerant. Therefore, an object of the present invention is to provide an ice heat storage system that produces ice that does not solidify in a lump with a simpler system configuration.

【0012】[0012]

【課題を解決するための手段】本発明による氷蓄熱シス
テムは、水をπ化したことを特徴とするものである。
The ice heat storage system according to the present invention is characterized in that water is made into π.

【0013】[0013]

【作用】水をπ化したことにより氷蓄熱槽の水をシャー
ベット状に凍らせ、蓄熱媒体を水と氷からなるスラリー
状にすることができる。蓄熱槽内に生成したスラリー状
の氷は、蓄冷用熱交換器を覆うように凝固することがな
く、流動性をもつので、熱交換器から速やかに離脱し、
伝熱性能を向上させることができる。
By making the water π, the water in the ice heat storage tank can be frozen in a sherbet form and the heat storage medium can be made into a slurry form consisting of water and ice. Slurry ice generated in the heat storage tank does not solidify to cover the heat exchanger for cold storage and has fluidity, so it quickly separates from the heat exchanger,
The heat transfer performance can be improved.

【0014】[0014]

【実施例】水をπ化処理することにより、水の物性は変
化することが知られている(「驚異の水πウォーターの
秘密」飯野節夫著、現代書林、1991)。π化処理された
水は凍ると、シャーベット状になるという性質をもつ。
[Examples] It is known that the physical properties of water are changed by subjecting water to π treatment ("The Secret of Amazing Water π Water" by Setsuo Iino, Hyundai Shorin, 1991). The water that has been π-ized has the property of forming a sherbet when frozen.

【0015】本発明による氷蓄熱システムは、蓄熱槽の
水にπ化処理水を使ったことを特徴とする。図1(第1
項)に本発明に係る氷蓄熱システムを示す。蓄熱槽1内
にはπ化処理水20を満たす。他の構成は従来の氷蓄熱シ
ステムと同様である。π化処理水20を冷却していくと、
温度が氷点下に達した後に、徐々にシャーベット状の氷
が生成する。シャーベット状の氷は未氷結のπ化処理水
20を伴ってスラリー状となって、流動性を有する。
The ice heat storage system according to the present invention is characterized in that π-treated water is used as water in the heat storage tank. FIG. 1 (first
Item) shows an ice heat storage system according to the present invention. The heat storage tank 1 is filled with π-treated water 20. Other configurations are the same as those of the conventional ice heat storage system. When the π-treated water 20 is cooled,
After the temperature reaches below freezing, sherbet-like ice is gradually generated. Sherbet-shaped ice is unfrozen π-treated water
It becomes a slurry with 20 and has fluidity.

【0016】本発明(第2項)に係る実施例を図2に示
す。蓄熱槽1の中にπ化処理装置21を設ける。これによ
り、蓄熱槽1内の水2をπ化処理水に変えることができ
る。他の構成は図1と同様である。
An embodiment according to the present invention (section 2) is shown in FIG. The heat treatment tank 1 is provided with a π-ized processing device 21. As a result, the water 2 in the heat storage tank 1 can be changed to π-treated water. Other configurations are the same as those in FIG.

【0017】冷媒3の循環により冷却された水2はシャ
ーベット状の氷となり、未氷結の水とともにスラリー状
となって流動性を有するようになる。また、この構成に
おいては、π化処理による効果が薄れてきた際に、必要
に応じてπ化処理することができる。また、継続的に水
をπ化処理することもできるので、水のπ化の信頼性を
向上することができる。
The water 2 cooled by the circulation of the refrigerant 3 becomes sherbet-like ice and becomes fluid with the uniced water in the form of slurry. Further, in this configuration, when the effect of the π-ized processing is weakened, the π-ized processing can be performed if necessary. Further, since it is possible to continuously subject the water to π conversion, it is possible to improve the reliability of π conversion of water.

【0018】本発明(第3項)に係る実施例を図3に示
す。蓄熱槽1の外部にπ化処理装置21を設ける。蓄熱槽
1よりπ化処理装置21に水2を導き、π化処理をした
後、蓄熱槽1に水を戻す。これにより、蓄熱槽1内の水
2をπ化処理水に変えることができる。他の構成は図1
と同様である。冷媒3の循環により冷却された水2はシ
ャーベット状の氷となり、未氷結の水とともにスラリー
状となって流動性を有するようになる。また、この構成
においても、π化処理による効果が薄れてきた際に、必
要に応じてπ化処理することができる。また、継続的に
水をπ化処理することもできるので、水のπ化の信頼性
を向上することができる。さらに、π化処理装置の交換
が容易となる。
An embodiment according to the present invention (section 3) is shown in FIG. A π-ized processing device 21 is provided outside the heat storage tank 1. The water 2 is guided from the heat storage tank 1 to the π-ized processing device 21, and after the π-ized processing, the water is returned to the heat storage tank 1. As a result, the water 2 in the heat storage tank 1 can be changed to π-treated water. Other configurations are shown in FIG.
Is the same as. The water 2 cooled by the circulation of the refrigerant 3 becomes sherbet-like ice, and becomes slurry with the unfrozen water to become fluid. Also in this configuration, when the effect of the π-ized processing is weakened, the π-ized processing can be performed as necessary. Further, since it is possible to continuously subject the water to π conversion, it is possible to improve the reliability of π conversion of water. Furthermore, it becomes easy to replace the π-ized processing device.

【0019】このように蓄熱槽の水をπ化することによ
り、氷蓄熱システムの欠点であった塊状の氷生成を抑
え、熱交換表面を常に更新し、熱交換性能を向上するこ
とができる。
By making the water in the heat storage tank π in this way, it is possible to suppress the formation of lumpy ice, which was a drawback of the ice heat storage system, constantly update the heat exchange surface, and improve the heat exchange performance.

【0020】[0020]

【発明の効果】以上説明したように本発明は、水をπ化
したので、氷蓄熱槽内の水をスラリー状に凍らせること
ができ、蓄冷する際に蓄冷用熱交換器の表面に生成する
氷が熱交換器から離脱し易く、熱交換器表面を常に更新
することができる。したがって、氷蓄熱システムの熱交
換性能を向上させることができる。
As described above, according to the present invention, since the water is made into π, the water in the ice heat storage tank can be frozen in the form of slurry, and is formed on the surface of the heat exchanger for cold storage during cold storage. The ice that forms is easily separated from the heat exchanger, and the surface of the heat exchanger can be constantly updated. Therefore, the heat exchange performance of the ice heat storage system can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による氷蓄熱システムの実施例を示す構
成図。
FIG. 1 is a configuration diagram showing an embodiment of an ice heat storage system according to the present invention.

【図2】本発明による氷蓄熱システムの実施例を示す構
成図。
FIG. 2 is a configuration diagram showing an embodiment of an ice heat storage system according to the present invention.

【図3】本発明による氷蓄熱システムの実施例を示す構
成図。
FIG. 3 is a configuration diagram showing an embodiment of an ice heat storage system according to the present invention.

【図4】従来の氷蓄熱システムの一例を示す概念図。FIG. 4 is a conceptual diagram showing an example of a conventional ice heat storage system.

【符号の説明】[Explanation of symbols]

1…蓄熱槽 2…水(氷) 3…蓄熱用熱交換器 4…冷媒 5…膨張弁 6…圧縮機 7…凝縮機 9…部室 10…ポンプ 11…空調用熱交換器 20…π化処理水(氷) 21…π化処理装置 1 ... Heat storage tank 2 ... Water (ice) 3 ... Heat storage heat exchanger 4 ... Refrigerant 5 ... Expansion valve 6 ... Compressor 7 ... Condenser 9 ... Room 10 ... Pump 11 ... Air conditioning heat exchanger 20 ... Water (ice) 21… π-processing equipment

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水の凝固潜熱を利用して冷熱を蓄える氷
蓄熱システムにおいて、水をπ化したことを特徴とする
氷蓄熱システム。
1. An ice heat storage system for storing cold heat by utilizing latent heat of solidification of water, wherein the water is made into π.
【請求項2】 水の凝固潜熱を利用して冷熱を蓄える氷
蓄熱システムにおいて、氷蓄熱槽の中に水のπ化処理装
置を設けたことを特徴とする氷蓄熱システム。
2. An ice heat storage system for storing cold heat by utilizing latent heat of solidification of water, wherein an ice heat treatment system is provided in an ice heat storage tank.
【請求項3】 水の凝固潜熱を利用して冷熱を蓄える氷
蓄熱システムにおいて、氷蓄熱槽から導いた水をπ化処
理装置に通して氷蓄熱槽に戻す機構を備えたことを特徴
とする氷蓄熱システム。
3. An ice heat storage system for storing cold heat by utilizing latent heat of freezing of water, comprising a mechanism for returning water introduced from the ice heat storage tank to the ice heat storage tank through a π-ized processing device. Ice heat storage system.
JP27724193A 1993-11-08 1993-11-08 Ice heat accumulation system allowing use of pi-treated water Pending JPH07127887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27724193A JPH07127887A (en) 1993-11-08 1993-11-08 Ice heat accumulation system allowing use of pi-treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27724193A JPH07127887A (en) 1993-11-08 1993-11-08 Ice heat accumulation system allowing use of pi-treated water

Publications (1)

Publication Number Publication Date
JPH07127887A true JPH07127887A (en) 1995-05-16

Family

ID=17580791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27724193A Pending JPH07127887A (en) 1993-11-08 1993-11-08 Ice heat accumulation system allowing use of pi-treated water

Country Status (1)

Country Link
JP (1) JPH07127887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657485B2 (en) 2000-08-30 2003-12-02 Nec Electronics Corporation Linear voltage subtractor/adder circuit and MOS differential amplifier circuit therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657485B2 (en) 2000-08-30 2003-12-02 Nec Electronics Corporation Linear voltage subtractor/adder circuit and MOS differential amplifier circuit therefor
US6657486B2 (en) 2000-08-30 2003-12-02 Nec Electronics Corporation MOS differential amplifier circuit having a wide linear input voltage range
US6850109B2 (en) 2000-08-30 2005-02-01 Nec Corporation Linear voltage subtractor/adder circuit and MOS differential amplifier circuit therefor

Similar Documents

Publication Publication Date Title
US4091863A (en) Reversible latent heat storage method, and reversible latent heat accumulator
JPH01252838A (en) Latent heat accumulative cooling device
Tomlinson Heat pump cool storage in a clathrate of freon
JPH0539988A (en) Latent heat storage apparatus and latent heat storage material used for the same apparatus
JPH07127887A (en) Ice heat accumulation system allowing use of pi-treated water
JP3290765B2 (en) Heat pipe type super cooling ice making equipment
JPH0749301Y2 (en) Latent heat regenerator
JP3282643B2 (en) Ice storage system
JP2834722B2 (en) Vacuum cooling device with regenerator
JPH0942717A (en) Icemaking cool storage apparatus
JP2534002B2 (en) Vegetable vacuum cooling device with cold storage tank
JP2003021366A (en) Hydrate slurry cold using system
JPH0399177A (en) Ice heat accumulating device
JP2659567B2 (en) Thermal storage refrigeration system
JP3852801B2 (en) Internal / external melting double flow type ice heat storage system
JPS60196558A (en) Air-cooling and refrigerating device
JPH0147696B2 (en)
JP2666884B2 (en) Cold transport method and apparatus using anti-freeze protein
JP2883168B2 (en) Heat storage device
KR19990012203A (en) Latent heat storage cooling system
JP2000111283A (en) Manufacture of inclusion hydrate slurry
JPH02195166A (en) Method and apparatus for ice making of
JPS6136130Y2 (en)
JP3292941B2 (en) Air temperature control device and air temperature control method
JP2000046378A (en) Thermal storage device, thermal storage method, and thermal storage utilizing method