JPH0712720Y2 - Coanda fluid suction device - Google Patents

Coanda fluid suction device

Info

Publication number
JPH0712720Y2
JPH0712720Y2 JP1987191509U JP19150987U JPH0712720Y2 JP H0712720 Y2 JPH0712720 Y2 JP H0712720Y2 JP 1987191509 U JP1987191509 U JP 1987191509U JP 19150987 U JP19150987 U JP 19150987U JP H0712720 Y2 JPH0712720 Y2 JP H0712720Y2
Authority
JP
Japan
Prior art keywords
decompression chamber
flow
suction
fluid
external fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987191509U
Other languages
Japanese (ja)
Other versions
JPH0195600U (en
Inventor
逞詮 村田
勝一 水津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP1987191509U priority Critical patent/JPH0712720Y2/en
Publication of JPH0195600U publication Critical patent/JPH0195600U/ja
Application granted granted Critical
Publication of JPH0712720Y2 publication Critical patent/JPH0712720Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はコアンダ式流体吸引装置に係り、空調装置等の
室内側吸込部分などに利用でき、空気清浄器や掃除機等
の集塵濾過装置の吸込部分として利用できる。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a Coanda type fluid suction device, which can be used for an indoor suction part of an air conditioner or the like, and is a dust collecting filter device such as an air cleaner or a vacuum cleaner. It can be used as a suction part.

〔従来の技術〕[Conventional technology]

従来より、室内の換気を行う換気装置においては室内の
空気を吸い出す一方で外気を供給することがなされてい
る。また、室内の温度や湿度の調節を行う空調装置や室
内の空気を清浄化する空気清浄器等においては、室内か
ら空気を吸い込み、外部に排出する一方で外気を供給し
て換気を行ったり、あるいは吸い込んだ室内の空気を適
宜熱交換器や集塵フィルタを通過させたのち室内に戻し
て循環させ、これにより室内の温度や湿度の調節し、あ
るいは空気中の浮遊塵埃等を濾過して清浄化することが
なされている。
2. Description of the Related Art Conventionally, in a ventilator for ventilating a room, outside air is supplied while sucking out room air. Further, in an air conditioner that adjusts the temperature and humidity in the room, an air purifier that purifies the air in the room, etc., the air is sucked from the room and discharged to the outside while supplying the outside air to perform ventilation, Alternatively, the sucked indoor air may be passed through a heat exchanger or a dust collection filter as appropriate and then returned to the room for circulation to adjust the indoor temperature and humidity, or to filter airborne dust and other contaminants for cleaning. Is being made.

このような空気の吸い込みにあたっては、一般に、室内
の天井や壁面に吸込口を設け、このダクトに通風管を介
して接続されたポンプ等によって吸込口の開口面に負圧
を発生させることにより周辺の雰囲気を吸い込むことが
なされている。
In sucking such air, generally, a suction port is provided on the ceiling or wall surface in the room, and a negative pressure is generated on the opening surface of the suction port by a pump connected to this duct through a ventilation pipe. The atmosphere of is being sucked.

また、このような空気を吸入する装置は、例えば、家庭
用掃除機の吸込部分などにも利用されており、このよう
な掃除機においては本体内のポンプ等によって吸込口か
ら吸気し、この吸込口を床等に接近させることにより周
辺の空気を吸い込むことにより床上の塵埃等をも吸い上
げ、集塵フィルタで捕獲している。
Further, such a device for sucking air is also used, for example, in a suction part of a household vacuum cleaner, and in such a vacuum cleaner, a pump or the like in the main body sucks air from a suction port, The air on the floor is sucked up by bringing the mouth close to the floor, and the dust on the floor is also sucked up and captured by the dust collecting filter.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、前述のようにポンプ等の排気動作を直接利用し
て減圧吸引する吸込部分等においては、その吸込流量は
専らポンプ自体の機械的な容量に依存するものであり、
ポンプ自体の動作効率が高められない限り吸込時の動作
効率を向上することは困難である。
However, as described above, in the suction portion or the like that directly uses the exhaust operation of the pump or the like to decompress and suction, the suction flow rate depends exclusively on the mechanical capacity of the pump itself,
It is difficult to improve the operating efficiency during suction unless the operating efficiency of the pump itself is increased.

また、減圧用の駆動源としてのポンプ等が吸込口に直接
設けられることは少なく、一般に通気管等を介して連結
されるため、この部分で脈動を発生しやすく、かつ前記
ポンプ等として一般的な機械式ポンプにおいては、容積
型のものは言うに及ばず、タービン式等であっても乱流
による損失を生じ、円滑な流れが阻害されて吸込効率を
損なうという問題があった。
Further, a pump or the like as a drive source for decompression is rarely provided directly at the suction port, and since it is generally connected through a ventilation pipe or the like, pulsation is likely to occur at this portion, and it is generally used as the pump or the like. In addition to the positive displacement type mechanical pump, there is a problem in that even a turbine type pump or the like causes a loss due to turbulent flow, which hinders a smooth flow and impairs suction efficiency.

さらに、前述のように吸込口における負圧によって空気
を吸引しようとする場合、直接的に吸引力を発生する部
分は吸込口の開口面に限られ、離れた部分までは作用せ
ず、専ら吸込口近傍部分の吸込に伴う負圧の伝達による
吸引作用に依っていたため、高い吸込効率が得られない
という問題があった。
Further, as described above, when trying to suck air by negative pressure at the suction port, the part that directly generates the suction force is limited to the opening surface of the suction port, it does not work to the distant part, and the suction There is a problem that high suction efficiency cannot be obtained because it depends on the suction action due to the transmission of the negative pressure associated with the suction in the vicinity of the mouth.

本考案の目的は、外部流体の吸込効率が高く、かつ吸込
流れが安定するとともに、吸込力の作用範囲を大きくで
きるコアンダ式流体吸引装置を提供することにある。
An object of the present invention is to provide a Coanda type fluid suction device which has a high suction efficiency of an external fluid, a stable suction flow, and a large suction force action range.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、断面略円形の導流管の一端に周方向に略連続
して開口されて外部から供給される駆動流体を径方向内
向きに噴射可能な駆動流体供給口と、この駆動流体供給
口の導流管側の内壁面から連続して内向きに膨出されか
つ滑らかに湾曲されて導流管の内壁面に連続するように
形成された駆動流体偏向面と、前記駆動流体供給口の駆
動流体偏向面と反対側の同軸上に略筒状に形成された減
圧室と、この減圧室の周面に配列されて各々が減圧室の
内外を連通する複数の外部流体吸入口と、各外部流体吸
入口に形成されて各々から減圧室内の減圧に伴って流入
する外部流体の流れを誘導して減圧室の周方向に沿った
一定の旋回方向へ偏向可能な外部流体偏向手段とを設け
てコアンダ式流体吸引装置を構成したものである。
SUMMARY OF THE INVENTION The present invention is directed to a drive fluid supply port, which is opened substantially continuously in the circumferential direction at one end of a flow guide tube having a substantially circular cross-section, and which can inject a drive fluid supplied from the outside inward in a radial direction, and a drive fluid supply port. Drive fluid deflection surface formed so as to continuously bulge inward from the inner wall surface of the flow guide tube side and be smoothly curved to be continuous with the inner wall surface of the flow guide tube, and the drive fluid supply port. A decompression chamber formed in a substantially cylindrical shape on the opposite side of the driving fluid deflection surface, and a plurality of external fluid suction ports arranged on the peripheral surface of the decompression chamber and each communicating the inside and outside of the decompression chamber, External fluid deflecting means formed at each external fluid suction port and capable of inducing a flow of an external fluid flowing from each of the external fluid intake ports as the pressure in the depressurizing chamber is reduced and deflecting the fluid in a constant swirling direction along the circumferential direction of the depressurizing chamber. It is provided to configure a Coanda type fluid suction device.

〔作用〕[Action]

このように構成された本考案においては、圧縮空気等の
駆動流体を駆動流体供給口から噴射し、その噴流を駆動
流体偏向面におけるコアンダ効果(壁効果とも呼ばれ、
直線噴流の一側に壁面などがあると、その側が負圧とな
って噴流が偏向される現象をいう)により偏向させて導
流管内に送るとともに、この噴流に接触する減圧室内の
流体を吸引して導流管へ吸い出し、この減圧室内の吸い
出しに伴う減圧により各外部流体吸入口から駆動流体に
比べて多量の外気等の外部流体を吸入することにより吸
入効率を向上する。また、各外部流体吸入口の外部流体
偏向手段により、流入する外気の流れを一様に中心軸に
対して偏心した流れとして減圧室内に旋回流を発生さ
せ、この旋回流の定常的な流れにより減圧室内の流れを
安定させて吸込効率の低下を防止する。さらに、この旋
回流により減圧室内に中心軸に沿っていわゆるたつまき
状の負圧コアを形成し、負圧コアに面した広い領域に吸
引力を発生させて吸込力の作用範囲を拡張することを可
能とし、これにより前記目的を達成する。
In the present invention configured as described above, a driving fluid such as compressed air is jetted from the driving fluid supply port, and the jet flow is called a Coanda effect (also called a wall effect) on the driving fluid deflecting surface.
If there is a wall surface on one side of the straight jet, it is deflected by negative pressure on that side and the jet is deflected and sent into the guide pipe, and the fluid in the decompression chamber that comes into contact with this jet is sucked. Then, the suction efficiency is improved by sucking a large amount of external fluid such as outside air from each external fluid suction port through the external fluid suction port due to the reduced pressure caused by the suction inside the depressurization chamber. Further, the external fluid deflecting means of each external fluid suction port generates a swirling flow in the decompression chamber as a flow of the inflowing outside air uniformly eccentric with respect to the central axis. Stabilizes the flow in the decompression chamber and prevents a decrease in suction efficiency. Further, by this swirling flow, a so-called toppled negative pressure core is formed along the central axis in the decompression chamber, and the suction force is generated in a wide area facing the negative pressure core to expand the action range of the suction force. It is possible to achieve the above object.

〔実施例〕〔Example〕

以下、本考案の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図および第2図に示すように、本実施例は、本考案
のコアンダ式流体吸引装置10を居室1の天井2に設置さ
れた空気調和用の室内側吸込部分3に適用したものであ
り、加圧管4から駆動流体としての圧縮空気を供給され
て作動され、外部流体である居室1内の空気を吸気管5
へと吸い出すように構成されているとともに、下部に白
熱灯11を備えて照明装置を兼ねるように構成されてい
る。
As shown in FIG. 1 and FIG. 2, the present embodiment applies the Coanda type fluid suction device 10 of the present invention to the indoor side intake portion 3 for air conditioning installed on the ceiling 2 of the living room 1. There, compressed air as a driving fluid is supplied from the pressurizing pipe 4 to be operated, and the air in the living room 1 which is an external fluid is sucked into the intake pipe 5
The incandescent lamp 11 is provided in the lower part and also serves as a lighting device.

このコアンダ式流体吸引装置10は、概略形状を略円筒形
に形成され、居室1側から天井2に設けられた開口2Aに
挿入されたうえ周囲の支持体10Aを天井2にねじ止め固
定されているとともに、上部すなわち天井2に隠蔽され
る部分に導流管12を備え、この導流管12の上端は吸気管
5を介して図示しない空調設備本体に接続されている。
The Coanda type fluid suction device 10 is formed into a substantially cylindrical shape, and is inserted into the opening 2A provided in the ceiling 2 from the living room 1 side, and the surrounding support 10A is screwed and fixed to the ceiling 2. In addition, an upper portion, that is, a portion hidden by the ceiling 2 is provided with a flow guide pipe 12, and an upper end of the flow guide pipe 12 is connected to an air conditioning equipment body (not shown) via an intake pipe 5.

また、導流管12の下端の周囲には、周方向に連続しかつ
外周に向かって直線的に延長された略スリット状の駆動
流体供給口13が設けられ、外周側から供給される圧縮空
気を直線的なスリット形状部分の流抵抗によって圧力を
均一化し、かつ流れを内周側向きに均して噴射するよう
に構成されている。
Further, around the lower end of the flow guide pipe 12, a substantially slit-shaped drive fluid supply port 13 which is continuous in the circumferential direction and linearly extends toward the outer circumference is provided, and compressed air supplied from the outer circumference side is provided. The pressure is made uniform by the flow resistance of the linear slit-shaped portion, and the flow is evenly ejected toward the inner peripheral side.

この駆動流体供給口13の外周に設けられた略ドーナツ状
の蓄圧タンク14は、加圧管4を介して図示しない圧縮空
気供給源から供給される圧縮空気を均圧化したのち駆動
流体供給口13に供給するものであり、内部には駆動流体
供給口13に沿って所定間隔で均圧堰14Aを備え、供給さ
れた圧縮空気が均圧堰14Aと蓄圧タンク14内壁との間隔
における流抵抗により周方向の圧力分布を均一化された
うえで駆動流体供給口13に送られるように構成されてい
る。
The substantially donut-shaped accumulator tank 14 provided on the outer periphery of the drive fluid supply port 13 equalizes the pressure of the compressed air supplied from a compressed air supply source (not shown) via the pressurizing pipe 4, and then the drive fluid supply port 13 The pressure equalization weir 14A is provided inside the drive fluid supply port 13 at a predetermined interval, and the supplied compressed air is flow resistance due to the flow resistance in the interval between the pressure equalization weir 14A and the inner wall of the accumulator tank 14. The pressure distribution in the circumferential direction is made uniform, and then the pressure distribution is sent to the driving fluid supply port 13.

また、駆動流体供給口13の内周には導流管12に連なる駆
動流体偏向面15が設けられ、この駆動流体偏向面15は、
駆動流体供給口13の内壁面から連続して内向きに膨出さ
れ、断面が略円弧状となるように滑らかに湾曲されて導
流管12の下端側の内壁面に連続されており、駆動流体供
給口13からの圧縮空気の噴流がコアンダ効果により駆動
流体偏向面15に沿って導流管12方向へ偏向されるように
構成されている。
Further, a drive fluid deflecting surface 15 connected to the flow guide tube 12 is provided on the inner periphery of the drive fluid supply port 13, and the drive fluid deflecting surface 15 is
It is continuously bulged inward from the inner wall surface of the drive fluid supply port 13, is smoothly curved so that its cross section is substantially arcuate, and is continuously connected to the inner wall surface of the lower end side of the flow guide tube 12, The jet of compressed air from the fluid supply port 13 is configured to be deflected toward the flow guide tube 12 along the driving fluid deflection surface 15 by the Coanda effect.

さらに、駆動流体供給口13の導流管12と反対側の同一軸
線上には、いわゆるベル型に形成された連通管16を介し
て略円筒状の減圧室17が取付けられ、この連通管16から
は減圧室17内の空気が駆動流体偏向面15に沿って流れる
噴流に巻き込まれて吸引され、この噴流とともに導流管
12内へ導入されるように構成されている。
Further, a substantially cylindrical decompression chamber 17 is attached on the same axis of the drive fluid supply port 13 on the side opposite to the flow guide pipe 12 via a communication pipe 16 formed in a so-called bell shape. The air in the decompression chamber 17 is drawn into the jet flow flowing along the driving fluid deflection surface 15 and sucked, and the jet pipe is introduced together with the jet flow.
It is configured to be introduced within 12.

ここで、減圧室17の下端部は底板18により閉鎖され、こ
の底板18は熱伝達性の材料により略ベル状に形成され、
その下面の凹部内に配置された白熱灯11の発熱を減圧室
17内に伝達可能とされ、これら白熱灯11および底板18に
よって加熱手段が構成されているとともに、減圧室17の
周面17Aには周方向に略均等に配置された複数の外部流
体吸入口19が形成されている。
Here, the lower end of the decompression chamber 17 is closed by a bottom plate 18, and the bottom plate 18 is formed of a heat transfer material into a substantially bell shape.
The heat generated by the incandescent lamp 11 placed in the recess on the lower surface
The incandescent lamp 11 and the bottom plate 18 are configured to be capable of being transmitted to the inside of the decompression chamber 17, and constitute a heating means. Are formed.

この外部流体吸入口19は、減圧室17の周面に減圧室17の
周方向に凸型とされかつ中心軸方向に延長された略コの
字型の切込み19Aを形成し、この切込みに囲まれた凸部1
9Bを減圧室17の内側に折り曲げることにより開口された
ものであり、第3図に示すように、各々の凸部19Bの折
り曲げ角度および折り曲げ方向を周方向に沿った一定の
旋回方向に揃えられている。ここにおいて、傾斜形成さ
れた凸部19Bにより外部流体偏向手段が構成され、この
凸部19Bにより、各外部流体吸入口19を通過する外気の
流れが減圧室17の中心軸に対して一様に偏心するように
構成されている。
The external fluid suction port 19 forms a substantially U-shaped cut 19A that is convex in the circumferential direction of the decompression chamber 17 and extends in the central axis direction on the circumferential surface of the decompression chamber 17, and is surrounded by this cut. Convex part 1
9B is opened by bending the inside of the decompression chamber 17, and as shown in FIG. 3, the bending angle and the bending direction of each convex portion 19B are aligned in a constant turning direction along the circumferential direction. ing. Here, the external fluid deflecting means is constituted by the inclined convex portion 19B, and the external air flow passing through each external fluid suction port 19 is made uniform with respect to the central axis of the decompression chamber 17 by the convex portion 19B. It is configured to be eccentric.

このように構成された本実施例においては、駆動流体供
給口13から噴射される圧縮空気の噴流を駆動流体偏向面
15に沿って偏向させる。この駆動流体偏向面15に沿った
噴流は、導流管12に向かって送り出されるとともに偏向
に伴って断熱膨張されて減圧され、いわゆるプラントル
マイヤーフローとよばれる音速程度の高速噴流とされ
る。このため、この高速噴流の表面の吸引効果によって
連通管16側に負圧が生じ、減圧室17内および外部流体吸
入口19を介して外気すなわち居室1内の空気を吸い込
む。
In this embodiment having such a configuration, the jet of compressed air jetted from the driving fluid supply port 13
Bend along 15. The jet flow along the drive fluid deflection surface 15 is sent toward the flow guide tube 12 and is adiabatically expanded and decompressed in accordance with the deflection, so that the jet flow becomes a high-speed jet flow at a speed of sound called so-called Prandtl-Meyer flow. Therefore, a negative pressure is generated on the side of the communication pipe 16 by the suction effect of the surface of the high-speed jet, and the outside air, that is, the air in the living room 1 is sucked in through the decompression chamber 17 and the external fluid suction port 19.

一方、減圧室17においては、第3図に示すように、外部
流体吸入口19の凸部19Bは周方向に沿った一定の旋回方
向に形成されているため、外部流体吸入口19から減圧室
17内に噴出する外気の流れはそれぞれ一様に中心軸から
偏心したものとされ、減圧室17の内部には中心軸回りの
旋回流が形成される。ここで、減圧室17の内部の圧力は
旋回流の遠心力により中心付近が低圧とされ、上方は連
通管16へと空気を吸い出されるとともに、下方は底板18
によって閉じられ、かつ白熱灯11の発熱によるヒートサ
イフォン効果によって上昇気流を発生されるため、第2
図に示すように、いわゆるたつまき状に底板18表面から
たち昇る負圧コア20が形成され、この定常的な負圧コア
20により安定した吸引流れを発生する。
On the other hand, in the decompression chamber 17, as shown in FIG. 3, the convex portion 19B of the external fluid suction port 19 is formed in a constant swirling direction along the circumferential direction, so that the decompression chamber from the external fluid suction port 19 is
The flow of outside air ejected into the inside of the decompression chamber 17 is uniformly eccentric from the central axis, and a swirling flow around the central axis is formed inside the decompression chamber 17. Here, the pressure inside the decompression chamber 17 is low in the vicinity of the center due to the centrifugal force of the swirling flow, the air is sucked into the communication pipe 16 at the upper portion, and the bottom plate 18 at the lower portion.
And the rising airflow is generated by the heat siphon effect due to the heat generation of the incandescent lamp 11.
As shown in the figure, a negative pressure core 20 rising from the surface of the bottom plate 18 is formed in a so-called torch shape.
20 creates a stable suction flow.

このような本実施例によれば次に示すような効果があ
る。
According to this embodiment, the following effects can be obtained.

すなわち、駆動流体偏向面15に沿って流れる駆動流体供
給口12からの圧縮空気の噴流の巻き込み効果によって吸
引力を発生し、減圧室内17を減圧して外部流体吸入口19
から外気を吸い込むため、駆動流体供給口12へ供給する
圧縮空気に比べて多量の外気を吸入できる。
That is, a suction force is generated by the effect of entrainment of the jet of compressed air from the driving fluid supply port 12 flowing along the driving fluid deflecting surface 15, and the decompression chamber 17 is decompressed and the external fluid suction port 19 is generated.
Since the outside air is sucked from the outside, a large amount of outside air can be sucked in compared with the compressed air supplied to the driving fluid supply port 12.

また、吸引力を発生するにあたって、従来の機械式ポン
プのような機械的な動作部分を用いないため動作効率が
高く、かつ耐久性および保守性を向上できるとともに、
小型化あるいは構造の簡略化が可能であり、製造を容易
かつ安価にすることができる。
Further, when generating the suction force, since a mechanical operation part such as a conventional mechanical pump is not used, the operation efficiency is high, and the durability and maintainability can be improved, and
The size can be reduced or the structure can be simplified, and the manufacturing can be made easy and inexpensive.

さらに、吸引力を生じる駆動流体偏向面15に沿った流れ
を連続的な定常流とできるため、負圧により外気を導入
される連通管16ないし減圧室17内に脈動を生じることが
なく、吸込効率を高めることができる。
Furthermore, since the flow along the drive fluid deflecting surface 15 that generates the suction force can be made a continuous steady flow, pulsation does not occur in the communication pipe 16 or the decompression chamber 17 into which the outside air is introduced by the negative pressure, and the suction is performed. The efficiency can be increased.

また、外部流体吸入口19は凸部19Bの旋回方向の傾斜に
より、各々から減圧室17内に流入する外気の流れを一様
に中心軸に対して偏心した流れとし、減圧室17内に定常
的な中心軸回りの旋回流を発生させ、減圧室17内の吸い
込みに伴う流れを安定させて吸込効率を高めることがで
きる。
Further, the external fluid suction port 19 has a constant inclination in the depressurization chamber 17 due to the inclination of the convex portion 19B in the swirling direction so that the flow of the outside air flowing into the depressurization chamber 17 from each is uniformly eccentric with respect to the central axis. It is possible to generate a swirling flow around the central axis, stabilize the flow accompanying suction in the decompression chamber 17, and improve suction efficiency.

さらに、減圧室17内の旋回流によって、減圧室17内に中
心軸に沿ったたつまき状の負圧コア20を形成することが
でき、負圧コア20に面した広い領域に吸引力を発生させ
て外部流体吸入口19を通して外部に及ぶ吸込力の作用範
囲を拡張することができる。
Further, the swirling flow in the decompression chamber 17 can form a negative-pressure core 20 in the shape of a spiral along the central axis in the decompression chamber 17, and generate a suction force in a wide area facing the negative-pressure core 20. By doing so, the working range of the suction force that extends to the outside through the external fluid suction port 19 can be expanded.

また、この負圧コア20は、白熱灯11の発熱による底板18
からのヒートサイフォン効果による上昇気流によって補
助されるとともに、源動力となる前記コアンダ効果によ
る吸い込み流れが安定したものであるため、容易かつ確
実に形成されて強力な吸引力を発生することができる。
Further, the negative pressure core 20 has a bottom plate 18 generated by the heat generated by the incandescent lamp 11.
Since it is assisted by the ascending air current due to the heat siphon effect and the suction flow due to the Coanda effect that is the source power is stable, it can be easily and surely formed and a strong suction force can be generated.

なお、本考案は前記実施例に限定されるものではなく、
以下に示すような変形をも含むものである。
The present invention is not limited to the above embodiment,
The following modifications are also included.

すなわち、駆動流体偏向面15に続く導流管12の開口半径
は任意の値に変更してよいが、この開口半径をR、駆動
流体偏向面15の断面曲率半径をrとして、開口半径Rが
0.1rより小さい場合、駆動流体偏向面15に沿って流れる
噴流が中心付近で合流するためにチョークし、中心付近
への外気の巻き込みが行われにくくなって連通管16から
の外部流体の吸込効率が低下する。また、開口半径Rが
10rより大きい場合、駆動流体偏向面15に沿った噴流の
中心付近の流速低下を招き、やはり連通管16からの吸込
効率が低下する。従って、開口半径Rは0.1r<R<10r
となる範囲内であることが望ましい。
That is, the opening radius of the flow guiding tube 12 following the driving fluid deflecting surface 15 may be changed to an arbitrary value, but this opening radius is R, the cross-sectional curvature radius of the driving fluid deflecting surface 15 is r, and the opening radius R is
If it is smaller than 0.1r, the jets flowing along the driving fluid deflecting surface 15 join together near the center and are choked, so that it is difficult for the outside air to be drawn into the vicinity of the center, and the suction efficiency of the external fluid from the communication pipe 16 Is reduced. Also, the opening radius R is
When it is larger than 10r, the flow velocity near the center of the jet flow along the driving fluid deflection surface 15 is reduced, and the suction efficiency from the communication pipe 16 is also reduced. Therefore, the opening radius R is 0.1r <R <10r
It is desirable to be within the range.

また、駆動流体偏向面15の形状は断面略円弧状の曲面に
限らず、他の形状の曲面であってもよく、要するに駆動
流体供給口13の内壁面から連続的に膨出して導流管12の
内壁面に連続する曲面であればコアンダ効果を生じて駆
動流体の偏向が可能であり、例えば、超音速3次元ノズ
ル等に利用されている拡散曲面を用いることにより導流
効果および加速が得られるが、前記実施例のように略円
弧状断面とすれば製造が容易である。
Further, the shape of the driving fluid deflecting surface 15 is not limited to a curved surface having a substantially arcuate cross section, and may be a curved surface having another shape. In short, the driving fluid deflecting surface 15 continuously bulges from the inner wall surface of the driving fluid supply port 13 and forms a flow guiding tube. If the curved surface is continuous with the inner wall surface of 12, the Coanda effect can be generated and the driving fluid can be deflected. For example, by using a diffusion curved surface used for a supersonic three-dimensional nozzle or the like, the flow guiding effect and the acceleration can be achieved. Although it can be obtained, it is easy to manufacture if it has a substantially arc-shaped cross section as in the above embodiment.

さらに、駆動流体供給口12の外周に蓄圧タンク14および
均圧堰14Aを設けることは本考案に必須ではなく適宜省
略可能であるが、吸引力を発生する駆動流体偏向面15に
沿った流れの周方向のバランスを取るために、前記実施
例のように駆動流体供給口12に供給する圧縮空気等の周
方向の圧力を均一化しておくことが望ましい。
Further, providing the pressure accumulating tank 14 and the pressure equalizing weir 14A on the outer periphery of the driving fluid supply port 12 is not essential to the present invention and can be omitted as appropriate, but the flow along the driving fluid deflecting surface 15 that generates the suction force is In order to keep the balance in the circumferential direction, it is desirable to make the circumferential pressure of the compressed air or the like supplied to the drive fluid supply port 12 uniform as in the above embodiment.

一方、減圧室17は円筒状に限らず、断面が多角形の中空
筒体等であってもよいが、内部に形成される旋回流の安
定性を考慮すると、第4図に示すように、断面形状は正
多角形あるいは円形といった点対称図形であることが望
ましい。
On the other hand, the decompression chamber 17 is not limited to a cylindrical shape, and may be a hollow cylindrical body having a polygonal cross section, but considering the stability of the swirling flow formed inside, as shown in FIG. The cross-sectional shape is preferably a point symmetric figure such as a regular polygon or a circle.

第4図において、減圧室17の断面を多角形とする場合、
略コの字型の外部流体吸入口19を各周面17A上の前記多
角形の頂点部分近傍すなわち稜線17B近傍に形成すれ
ば、開口面が外部に突出するため吸入する外気を効率よ
く導入できるとともに、外部流体偏向手段として前記略
コの字型の凸部19Bを隣り合う周面17Aに沿うように形成
すれば流入する流れの方向を効果的に規制して減圧室17
内に確実な旋回流を形成できる。
In FIG. 4, when the decompression chamber 17 has a polygonal cross section,
If the substantially U-shaped external fluid suction port 19 is formed in the vicinity of the apex portion of the polygon on each peripheral surface 17A, that is, in the vicinity of the ridge line 17B, the open surface protrudes to the outside, so that the outside air to be sucked in can be introduced efficiently. At the same time, if the substantially U-shaped convex portion 19B is formed along the adjacent circumferential surface 17A as the external fluid deflecting means, the depressurizing chamber 17 can be effectively regulated by controlling the inflowing flow direction.
A reliable swirl flow can be formed inside.

さらに、外部流体吸入口19および外部流体偏向手段は、
略コの字型の切込19Aにより減圧室17の周面17Aから一体
的に形成されるものに限らず、第5図に示すように、周
面17Aに長方形の開口19Cを形成しておき、この開口19C
に裏側あるいは表側から別体の導流部材19D等を取付け
て外部流体偏向手段を形成してもよい。
Further, the external fluid suction port 19 and the external fluid deflecting means are
The rectangular opening 19C is formed not only on the peripheral surface 17A of the decompression chamber 17 by the substantially U-shaped cut 19A but also on the peripheral surface 17A as shown in FIG. , This opening 19C
The external fluid deflecting means may be formed by attaching a separate flow guide member 19D or the like from the back side or the front side.

また、外部流体吸入口19は減圧室17の中心軸方向に連続
的な開口するものに限らず、第6図に示すように、小孔
19Eを中心軸方向に並べたものであってもよく、あるい
はこのような小孔19Eを周面17Aに均等に分布させてもよ
く、実施にあたって適宜選択してよい。この場合、各小
孔19Eの貫通軸線を一定の旋回方向に沿うように傾斜さ
せることにより、各々に外部流体偏向手段を構成するこ
とができる。
Further, the external fluid suction port 19 is not limited to one that continuously opens in the central axis direction of the decompression chamber 17, but as shown in FIG.
19E may be arranged in the central axis direction, or such small holes 19E may be evenly distributed on the peripheral surface 17A, and may be appropriately selected for implementation. In this case, the external fluid deflecting means can be configured for each of the small holes 19E by inclining the penetrating axis of the small holes 19E so as to be along a certain turning direction.

さらに、減圧室17の底部に白熱灯11を設けてコアンダ式
流体吸引装置10を照明としても利用することは本考案に
必須のことではなく、白熱灯11は適宜省略してよいが、
前記実施例のように構成すれば、別個に照明を設ける必
要がなく居室1の天井2部分の施工が容易にできるほ
か、ヒートサイフォン効果により負圧コア20の形成が容
易である。
Further, it is not essential for the present invention to provide the incandescent lamp 11 at the bottom of the decompression chamber 17 and use the Coanda type fluid suction device 10 as illumination, and the incandescent lamp 11 may be omitted as appropriate.
According to the above-mentioned embodiment, it is possible to easily construct the ceiling 2 portion of the living room 1 without separately providing illumination, and to easily form the negative pressure core 20 by the heat siphon effect.

また、ヒートサイフォン効果を得るための加熱手段とし
ては、白熱灯11に限らず他の熱源を利用してもよく、例
えば底板18の内側表面にパネルヒータ等を張りつけても
よいが、このとき、減圧室17内の旋回流を妨害しないよ
うに減圧室17内に凹凸をもたない表面が平坦なものであ
ることが望ましい。
Further, the heating means for obtaining the heat siphon effect is not limited to the incandescent lamp 11, and other heat sources may be used, for example, a panel heater or the like may be attached to the inner surface of the bottom plate 18, but at this time, It is desirable that the depressurization chamber 17 has a flat surface without irregularities so as not to disturb the swirling flow in the decompression chamber 17.

さらに、底板18を略ベル状に形成することも必須ではな
く、白熱灯11を用いない場合など通常の平板状であって
もよく、要するに減圧室17内を閉鎖して減圧室17内の減
圧を維持しうるものであればよい。
Further, it is not essential to form the bottom plate 18 into a substantially bell shape, and it may have a normal flat plate shape when the incandescent lamp 11 is not used. In short, the decompression chamber 17 is closed to reduce the pressure inside the decompression chamber 17. As long as it can maintain.

また、底板18は本考案に必須ではなく、例えば、第7図
に示すように、コアンダ式流体吸引装置10を居室1の床
面6上の塵埃等を周囲の空気とともに吸い込む掃除器の
吸込部分7として用いる場合などは、減圧室17の底面側
を開放しておき、この底面側の開口17Dを居室1の床面
3等で塞ぐことによって減圧室17を閉空間として負圧コ
ア20を発生させてもよく、要するに、使用にあたって閉
鎖されて内部を減圧可能な減圧室17を構成するというこ
とである。
Further, the bottom plate 18 is not essential to the present invention. For example, as shown in FIG. 7, the suction portion of the cleaner for sucking dust and the like on the floor surface 6 of the living room 1 by the Coanda type fluid suction device 10 together with the ambient air. When used as 7, the bottom side of the decompression chamber 17 is left open, and the opening 17D on the bottom side is closed by the floor surface 3 of the living room 1 or the like to generate the negative pressure core 20 with the decompression chamber 17 as a closed space. It is also possible to configure the decompression chamber 17 which is closed for use and whose inside can be decompressed.

さらに、本考案のコアンダ式流体吸引装置10は、前記実
施例のように空調装置の吸込部分として居室1の天井2
に取付けられるものに限らず、壁面から横向きに突出さ
せてもよく、前記実施例で述べた上下の別は任意であ
り、細部の形状あるいは支持構造等も実施にあたって適
宜選択すればよい。
Further, the Coanda type fluid suction device 10 of the present invention is the ceiling 2 of the living room 1 as the suction part of the air conditioner as in the above embodiment.
However, the upper and lower sides described in the above embodiments are arbitrary, and the shape of the details or the support structure may be appropriately selected for implementation.

また、駆動流体および外部流体を適宜選択することによ
り空調装置や掃除機以外にも様々な用途に適用すること
ができる。さらに、減圧室17の大きさも任意であり、例
えば、居室1の四隅等に縦長スリット状の外部流体吸入
口を設けて居室1自体を減圧室としてもよく、内部の空
気を効率よく排気できることから、喫煙室あるいはクリ
ーンルーム等への応用が可能である。
Further, by appropriately selecting the driving fluid and the external fluid, it can be applied to various applications other than the air conditioner and the vacuum cleaner. Furthermore, the size of the decompression chamber 17 is also arbitrary, and for example, the longitudinally slit-shaped external fluid suction ports may be provided in the four corners of the living room 1 to make the living room 1 itself a decompressing chamber, and the internal air can be efficiently exhausted. It can be applied to smoking rooms or clean rooms.

〔考案の効果〕[Effect of device]

以上に述べたように、本考案のコアンダ式流体吸引装置
によれば、外部流体の吸込効率を高めることができ、か
つ吸込流れを安定させることができるとともに、吸込力
の作用範囲を大きくでき、以上により優れた吸込動作を
実現することができる。
As described above, according to the Coanda type fluid suction device of the present invention, the suction efficiency of the external fluid can be increased, the suction flow can be stabilized, and the action range of the suction force can be increased. As described above, an excellent suction operation can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す斜視図、第2図は前記
実施例を示す断面図、第2図は前記実施例を示す断面
図、第3図は前記第2図のIII-III線を示す断面図、第
4図は本考案の変形例を示す第3図相当の断面図、第5
図および第6図は本考案の各々異なる変形例を示す斜視
図、第7図は本考案のさらに異なる変形例を示す側面図
である。 1…空調装置の吸込部分、7…掃除器の吸込部分、10…
コアンダ式流体吸引装置、11…加熱手段を兼ねる白熱
灯、12…導流管、13…駆動流体供給口、15…駆動流体偏
向面、16…連通管、17…減圧室、18…底板、19…外部流
体吸入口、19B,19D…外部流体偏向手段である凸部およ
び導流部材、20…負圧コア。
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a sectional view showing the embodiment, FIG. 2 is a sectional view showing the embodiment, and FIG. 3 is III- of FIG. Sectional view showing line III, FIG. 4 is a sectional view corresponding to FIG. 3 showing a modification of the present invention, and FIG.
FIG. 6 and FIG. 6 are perspective views showing different modifications of the present invention, and FIG. 7 is a side view showing still another modification of the present invention. 1 ... Suction part of air conditioner, 7 ... Suction part of cleaner, 10 ...
Coanda type fluid suction device, 11 ... Incandescent lamp also serving as heating means, 12 ... Flow pipe, 13 ... Drive fluid supply port, 15 ... Drive fluid deflecting surface, 16 ... Communication pipe, 17 ... Decompression chamber, 18 ... Bottom plate, 19 ... External fluid suction port, 19B, 19D ... Projection and flow guide member that are external fluid deflection means, 20 ... Negative pressure core.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】断面略円形の導流管の一端に周方向に略連
続して開口されて外部から供給される駆動流体を径方向
内向きに噴射可能な駆動流体供給口と、この駆動流他供
給口の導流管側の内壁面から連続して内向きに膨出され
かつ滑らかに湾曲されて導流管の内壁面に連続するよう
に形成された駆動流体偏向面と、前記駆動流体供給口の
駆動流体偏向面と反対側の同軸上に略筒状に形成された
減圧室と、この減圧室の周面に配列されて各々が減圧室
の内外を連通する複数の外部流体吸入口と、各外部流体
吸入口に形成されて各々から減圧室内の減圧に伴って流
入する外部流体の流れを誘導して減圧室の周方向に沿っ
た一定の旋回方向へ偏向可能な外部流体偏向手段とを備
えて構成されたことを特徴とするコアンダ式流体吸引装
置。
1. A drive fluid supply port, which is opened substantially continuously in the circumferential direction at one end of a flow guide tube having a substantially circular cross section and which is capable of injecting a drive fluid supplied from the outside inward in a radial direction, and the drive flow. A drive fluid deflecting surface that is formed so as to continuously bulge inward from the inner wall surface of the other supply port on the side of the flow guide tube and be smoothly curved so as to be continuous with the inner wall surface of the flow guide tube; A decompression chamber formed in a substantially cylindrical shape on the opposite side of the drive fluid deflection surface of the supply port, and a plurality of external fluid suction ports arranged on the peripheral surface of the decompression chamber and each communicating between the inside and outside of the decompression chamber. And an external fluid deflecting means that is formed at each external fluid suction port and that guides a flow of external fluid that flows from each of the external fluid intake ports as the pressure in the decompression chamber is reduced and that can be deflected in a constant swirling direction along the circumferential direction of the decompression chamber. And a Coanda type fluid suction device.
JP1987191509U 1987-12-16 1987-12-16 Coanda fluid suction device Expired - Lifetime JPH0712720Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987191509U JPH0712720Y2 (en) 1987-12-16 1987-12-16 Coanda fluid suction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987191509U JPH0712720Y2 (en) 1987-12-16 1987-12-16 Coanda fluid suction device

Publications (2)

Publication Number Publication Date
JPH0195600U JPH0195600U (en) 1989-06-23
JPH0712720Y2 true JPH0712720Y2 (en) 1995-03-29

Family

ID=31482416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987191509U Expired - Lifetime JPH0712720Y2 (en) 1987-12-16 1987-12-16 Coanda fluid suction device

Country Status (1)

Country Link
JP (1) JPH0712720Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309197A4 (en) * 2008-04-23 2015-04-01 Japan Tobacco Inc Smoking room

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929799A (en) * 1982-08-12 1984-02-17 Matsushita Electric Ind Co Ltd Fan
JPH0660640B2 (en) * 1985-09-09 1994-08-10 清之 堀井 Device for generating a spiral fluid flow in a pipeline

Also Published As

Publication number Publication date
JPH0195600U (en) 1989-06-23

Similar Documents

Publication Publication Date Title
US10145388B2 (en) Fan with a filter
KR101320980B1 (en) A fan
JPH07190443A (en) Blower equipment
CN108489057A (en) Air compensation device and air conditioner indoor unit for air conditioner indoor unit
JPS6421300U (en)
CN108489058A (en) Air compensation device and air conditioner indoor unit for air conditioner indoor unit
JPH06280800A (en) Induced blast device
JP5234152B2 (en) Blower
JP2007255848A (en) Air conditioner and air conditioning system using the same
JPH0712720Y2 (en) Coanda fluid suction device
JP2018003596A (en) Blower module
JP2009018221A (en) Air cleaner
CN212284545U (en) Spray gun
JP2614503B2 (en) Artificial tornado hood
JPH07190441A (en) Ventilator
CN208296227U (en) Air compensation device and air conditioner indoor unit for air conditioner indoor unit
JP2820606B2 (en) Induced ventilation
JPH07190445A (en) Induced draft ventilator
CN218852606U (en) Wind path structure for floor brush module of cleaning machine and cleaning machine
JP2874085B2 (en) Induced ventilation
CN212719910U (en) New fan and air-out structure thereof
JP6755725B2 (en) Blower and air purifier with ventilation function
JP2753186B2 (en) Ventilation equipment
WO2023164996A1 (en) Air outlet assembly and air-conditioning apparatus
JPH1144444A (en) Indoor smoke and air discharging device