JPH07126973A - Production of fiber-formed cushioning material - Google Patents

Production of fiber-formed cushioning material

Info

Publication number
JPH07126973A
JPH07126973A JP5274269A JP27426993A JPH07126973A JP H07126973 A JPH07126973 A JP H07126973A JP 5274269 A JP5274269 A JP 5274269A JP 27426993 A JP27426993 A JP 27426993A JP H07126973 A JPH07126973 A JP H07126973A
Authority
JP
Japan
Prior art keywords
fiber
melting point
compression
polyester
cushioning material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5274269A
Other languages
Japanese (ja)
Inventor
Makoto Yoshida
吉田  誠
Shiro Kumakawa
四郎 熊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP5274269A priority Critical patent/JPH07126973A/en
Publication of JPH07126973A publication Critical patent/JPH07126973A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fiber-formed cushioning material hardly changing the touch feeling, hardness and thickness by hot-pressing a laminated web composed of partially fused and bonded fiber having different melting points, cooling the hot-pressed web and then carrying out the compression treatment at least once. CONSTITUTION:This method for producing a fiber-formed cushioning material is to hot-press a web composed of polyester-based staple fiber and low-melting staple fiber having a lower melting point than that of the former fiber by >=40 deg.C, e.g. a thermoplastic polyester-based elastomer to a temperature above the melting point of the low-melting fiber and below the melting point of the polyester-based staple fiber, fuse and bond at least a part of crossover points of the low-melting staple fiber, cool the hot-pressed web and then carry out the compression treatment at 40-95%, preferably 50-90% compression ratio at least once (as necessary, about three times). The resultant fiber-formed cushioning material has soft feeling and hardly changes the touch feeling, hardness and thickness when undergoing compression.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、乗物用座席、家具クッ
ション、寝具用マット等に利用する繊維成型クッション
材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-molded cushion material used for vehicle seats, furniture cushions, bedding mats and the like.

【0002】[0002]

【従来の技術】現在、乗物用座席、家具クッション、寝
具用マット等に用いられる繊維成型クッション材として
は、熱接着性繊維を含有する短繊維をウェッブ化し、つ
いで圧縮し熱成型する方法(たとえば、特公平1−18
183号公報、特開平4−126856号公報、特開平
3−220354号公報等)や非弾性繊維を熱可塑性エ
ラストマーで固着したクッショ構造体(PCT/JP9
1/00703)等が知られている。
2. Description of the Related Art At present, as a fiber-formed cushioning material used for vehicle seats, furniture cushions, bedding mats, etc., a method of web-forming short fibers containing heat-adhesive fibers, followed by compression and thermoforming (for example, , Tokkyo 1-18
183, JP-A-4-126856, JP-A-3-220354) and a cushion structure (PCT / JP9) in which inelastic fibers are fixed with a thermoplastic elastomer.
1/00703) and the like are known.

【0003】しかしながら、従来の繊維成型クッション
材は、風合が硬く、使用中の圧縮によって風合や硬さ、
厚みの変化が大きいという欠点があった。特に、風合や
ヘタリを改良するために、低融点ポリマーを変更した
り、低融点繊維の断面の形状を変更したりするもので
は、繊維化の際の紡糸性が悪くなったり、工程が複雑に
なる等の問題があり(特開平4−126856号公
報)、高融点繊維の断面形状を変更したりするものでは
熱処理する際の潜在捲縮発現で成型収縮が高すぎて不都
合であり、また、ウェッブ化の際のカードムラが大きい
といった欠点がある(特開平3−220354号公
報)。低融点繊維を全部融解し、串玉状に接着する場合
は、融着前に発生する低融点繊維の収縮のために、成型
形状が不安定にり、厚みムラや密度ムラを起こす欠点が
ある(特公平1−18183号公報)。しかし、いずれ
の場合も、熱成型後に更に処理して改良する方法につい
ては述べられていない。
However, the conventional fiber-formed cushion material has a hard texture, and the texture and hardness due to compression during use,
There was a drawback that the change in thickness was large. In particular, in order to improve the feeling and fatigue, changing the low melting point polymer or changing the cross-sectional shape of the low melting point fiber, the spinnability at the time of fiberizing becomes poor, and the process is complicated. (Japanese Patent Application Laid-Open No. 4-126856), there is a problem in that the cross-sectional shape of the high melting point fiber is changed and the molding shrinkage is too high due to latent crimp development during heat treatment. However, there is a drawback that the unevenness of the card is large when it is made into a web (JP-A-3-220354). When all low melting point fibers are melted and adhered in a skewered shape, there is a drawback that the molding shape becomes unstable due to the shrinkage of the low melting point fiber that occurs before fusion, resulting in uneven thickness and uneven density. (Japanese Patent Publication No. 1-18183). However, in neither case is there any mention of a method for further processing and improvement after thermoforming.

【0004】[0004]

【発明の目的】本発明の目的は、このような従来の繊維
成型クッション材の風合の硬さや使用中の圧縮による風
合、硬さ、厚みの変化が大きいという欠点を、圧縮処理
によって改良し、乗物用座席、家具クッション、寝具用
マット等に使用する繊維成型クッション材として、従来
より柔らかな風合を有し、かつ繰り返し圧縮を受けたと
きに風合、硬さ、厚みの変化の少ない繊維成型クッショ
ン材の製造方法を提供することにある。
OBJECT OF THE INVENTION The object of the present invention is to improve the drawbacks of the conventional fiber-molded cushioning materials, such as the hardness of the texture and the large changes in the texture, hardness and thickness due to compression during use, by a compression treatment. However, as a fiber molded cushioning material used for vehicle seats, furniture cushions, bedding mats, etc., it has a softer texture than before, and changes in texture, hardness, and thickness when repeatedly compressed. An object of the present invention is to provide a method for producing a small amount of fiber-molded cushion material.

【0005】[0005]

【発明の構成】即ち本発明は、「(請求項1) ポリエ
ステル系短繊維と、該繊維より融点が40℃以上低い融
点を有する低融点短繊維とからなるウェッブを、低融点
短繊維の融点以上、ポリエステル系短繊維の融点以下で
加圧、加熱し、低融点短繊維の交絡点の少なくとも一部
を融着結合せしめる繊維成型クッション材の製造方法に
おいて、加圧加熱したのち冷却後、40〜95%の圧縮
率で少なくとも一回の圧縮処理を行うことを特徴とする
繊維成型クッション材の製造方法。 (請求項2) 低融点短繊維が熱可塑性エラストマーか
らなる請求項1の繊維成型クッション材の製造方法。 (請求項3) 繊維断面において低融点短繊維の繊維表
面の過半が熱可塑性エラストマーによって覆われている
請求項1の繊維成型クッション材の製造方法。 (請求項4) 低融点短繊維を構成するポリマーがポリ
エステル系エラストマーである請求項2ないし3の繊維
成型クッション材の製造方法。」である。
That is, the present invention provides a web comprising a polyester type short fiber and a low melting point short fiber having a melting point lower than that of the polyester by 40 ° C. or more. As described above, in the method for producing a fiber-molded cushioning material in which at least a part of the entanglement points of the low-melting-point short fibers are fusion-bonded by being pressed and heated at a temperature not higher than the melting point of the polyester-based short fibers, after heating under pressure, cooling, A method for producing a fiber-formed cushion material, which comprises performing compression treatment at least once with a compression ratio of ˜95% (Claim 2) The fiber-formed cushion according to claim 1, wherein the low-melting-point short fibers are made of a thermoplastic elastomer. (Claim 3) A method for producing a fiber-molded cushioning material according to claim 1, wherein a majority of the fiber surface of the low melting point short fibers is covered with a thermoplastic elastomer in the fiber cross section. . (Claim 4) The process according to claim 2 or 3 of the fiber molded cushioning material is a polymer constituting the low melting staple fibers is a polyester-based elastomer. "A.

【0006】本発明におけるポリエステル系短繊維と
は、通常のポリエチレンテレフタレート、ポリブチレン
テレフタレート、ポリヘキサメチレンテレフタレート、
ポリテトラメチレンテレフタレート、ポリ−1,4−ジ
メチルシクロヘキサンテレフタレート、ポリピバロラク
トンまたはこれらの共重合体エステルからなる短繊維又
は、それらの繊維の混綿体、または上記のポリマーのう
ち2種以上からなる複合繊維などである。短繊維の断面
形状は円形、偏平、異形または中空のいずれであっても
よい。
The polyester short fibers in the present invention are ordinary polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate,
Short fibers made of polytetramethylene terephthalate, poly-1,4-dimethylcyclohexane terephthalate, polypivalolactone or a copolymer ester thereof, a blended body of those fibers, or two or more kinds of the above polymers Such as a composite fiber. The cross-sectional shape of the short fibers may be circular, flat, irregular or hollow.

【0007】ポリエステル系短繊維は低融点繊維により
融着されクッション材の骨組みとなるマトリックスであ
るため、ポリエステル系短繊維単独でも嵩高いことが必
要である。単独の嵩高性は、0.5g/ cm2 の荷重下
で50cm3 /g以上、10g/cm2 の荷重下で20
cm3 /g以上あることが好ましく、更に好ましくは、
それぞれ、60cm3 /g以上、25cm3 /g以上あ
ることが好ましい。これらの嵩高性が低いと、得られた
繊維成型クッション材の弾力性や圧縮反撥性が不充分と
なる。
Since polyester type short fibers are a matrix that is fused by low melting point fibers to form a frame of a cushion material, even polyester type short fibers alone need to be bulky. The bulkiness alone is 50 cm 3 / g or more under a load of 0.5 g / cm 2 and 20 under a load of 10 g / cm 2.
cm 3 / g or more, more preferably,
Each, 60cm 3 / g or more, and preferably in 25 cm 3 / g or more. If the bulkiness is low, the elasticity and compression repulsion of the obtained fiber molded cushion material will be insufficient.

【0008】ポリエステル系短繊維の単糸繊度は、2〜
500デニールの範囲が好ましく、更に好ましくは、4
〜200デニールである。単糸繊度が2デニールより小
さいと嵩高性が発揮されず、クッション性や反撥力が乏
しくなる。また500デニールよりも大きくなるとウェ
ッブ化が難しく、また、得られた繊維成型クッション材
の構成本数が少なくなるのでクッション性の乏しいもの
しか得られない。
The single yarn fineness of the polyester staple fiber is 2 to
A range of 500 denier is preferred, more preferably 4
~ 200 denier. If the single yarn fineness is less than 2 denier, the bulkiness is not exhibited, and the cushioning property and the repulsion force become poor. Further, when it is more than 500 denier, it is difficult to form a web, and the number of constituent fibers of the obtained fiber cushion material is small, so that only a cushioning material having poor cushioning properties can be obtained.

【0009】ポリエステル系短繊維の捲縮数は、4〜2
5個/インチ、捲縮度は20〜40%が好ましい。捲縮
数や捲縮度が小さ過ぎるとウェッブの嵩が出にくく、ウ
ェッブ化が困難になるので好ましくない。また、得られ
たクッション材の反撥性は乏しく、耐久性の低いものし
か得られない。捲縮数や捲縮度が大きすぎるとウェッブ
の嵩高性が低く、高密度のクッション材しか得られなか
ったり、ウェッブ化の際に繊維の絡みが強く筋状のムラ
等が発生するので好ましくない。
The number of crimps of the polyester type short fiber is 4 to 2
5 pieces / inch, and the crimping degree is preferably 20 to 40%. If the number of crimps or the degree of crimping is too small, the web is less likely to be bulky and web formation is difficult, which is not preferable. Further, the obtained cushioning material has poor resilience, and only a material having low durability can be obtained. If the number of crimps or the degree of crimping is too large, the bulkiness of the web is low, and only a high-density cushioning material can be obtained, or the fibers are strongly entangled when the web is formed, and streaky unevenness occurs, which is not preferable. .

【0010】一方、本発明の低融点短繊維は、ポリエス
テル系短繊維の融点より40℃以上低い融点を有する低
融点ポリマ−が少なくともその一部を構成する短繊維で
あり、加熱により少なくともその表面の一部が溶融し、
ポリエステル系短繊維と低融点短繊維または低融点短繊
維同士の交絡点で融着する。この融点差が40℃未満で
は、加工温度がポリエステル系短繊維の融点に近くな
り、ポリエステル系短繊維の物性や捲縮特性或いは繊維
成型クッション材のクッション性能が低下し、成型時収
縮が大きくなる。
On the other hand, the low melting point short fibers of the present invention are short fibers whose low melting point polymer having a melting point of 40 ° C. or more lower than the melting point of polyester short fibers constitutes at least a part thereof, and at least the surface thereof is heated. Part of the melted,
The polyester short fibers and the low melting point short fibers or the low melting point short fibers are fused at the entanglement points. If this difference in melting point is less than 40 ° C., the processing temperature will be close to the melting point of the polyester short fibers, the physical properties and crimping properties of the polyester short fibers or the cushioning performance of the fiber molded cushion material will deteriorate, and the shrinkage during molding will increase. .

【0011】熱融着性繊維としては、共重合ポリエステ
ル系繊維、熱可塑性エラストマ−繊維、ポリオレフィン
系繊維、ポリビニルアルコ−ル系繊維等がある。特に、
低融点ポリマ−成分を有する複合繊維は、形態保持安定
性や、成形性が優れているので好ましい。複合形態は、
サイドバイサイド型、芯鞘型、偏心芯鞘型等である。低
融点成分が表面に露出する断面形態が好ましい。しか
し、繰り返し圧縮変形を受け、圧縮量即ち変形量が大き
いクッション用途では(例えば、厚みの50%)、上記
熱固着点に変形応力が加わったとき変形が容易で、変形
応力が除かれたときは、歪みを残さず復元することが必
要である。繊維成型クッション材に大きな変形量が加わ
るときは、その繊維成型クッション材を構成している低
融点ポリマー交絡点(熱固着点)には更に大きな角度変
化や伸張、捩じれ等が加わる。従って、この熱固着点ポ
リマ−には充分な変形回復特性が必要であり、そのため
には、破壊伸度が高く、伸長回復特性の優れた熱可塑性
エラストマーが好ましい。特に、一度成型された後に、
成型熱処理冷却後の圧縮処理がより有効である。従来の
伸度、伸長弾性回復率が低い低融点ポリマーでは、圧縮
率40%程度の圧縮処理でも、熱固着点(結合点)が破
壊され圧縮硬さが著しく低下し、所望の厚みが得られ
ず、甚だしい場合には綿状になる。熱可塑エラストマー
は伸度や伸長回復が高いので、圧縮処理による低下は小
さい。
Examples of the heat-fusible fibers include copolyester fibers, thermoplastic elastomer fibers, polyolefin fibers, polyvinyl alcohol fibers and the like. In particular,
A composite fiber having a low melting point polymer component is preferable because it is excellent in shape retention stability and moldability. The complex form is
It is a side-by-side type, a core-sheath type, an eccentric core-sheath type and the like. A cross-sectional form in which the low melting point component is exposed on the surface is preferable. However, in cushioning applications in which the amount of compression, that is, the amount of deformation is large due to repeated compressive deformation (for example, 50% of the thickness), when the deformation stress is applied to the heat fixing point, the deformation is easy, and when the deformation stress is removed. Must be restored without leaving any distortion. When a large amount of deformation is applied to the fiber-molded cushion material, a larger angle change, extension, twist, etc. are applied to the low-melting point polymer entanglement point (heat-fixing point) constituting the fiber-molded cushion material. Therefore, this heat-fixing point polymer needs to have sufficient deformation recovery characteristics, and for that purpose, a thermoplastic elastomer having a high fracture elongation and an excellent elongation recovery characteristic is preferable. Especially after being molded once,
The compression treatment after cooling the molding heat treatment is more effective. In the conventional low melting point polymer with low elongation and elongation elastic recovery rate, the thermal fixation point (bonding point) is destroyed and the compression hardness is remarkably lowered, and the desired thickness can be obtained even with the compression treatment of about 40% compression rate. No, it becomes cotton-like in extreme cases. Since the thermoplastic elastomer has high elongation and elongation recovery, the decrease due to the compression treatment is small.

【0012】熱可塑エラストマーとしては、マトリック
ス繊維がポリエステル系繊維である本発明においては、
耐熱性があり、高温熱成型可能なポリエステル系エラス
トマーが特に好ましい。ポリエステル系エラストマーと
しては熱可塑性ポリエステルをハードセグメントとし、
ポリ(アルキレンオキシド)グリコールをソフトセグメ
ントとして共重合してなるポリエーテルエステルブロッ
ク共重合体、より具体的にはテレフタル酸、イソフタル
酸、フタル酸、ナフタレン−2,6−ジカルボン酸、ナ
フタレン2,7−ジカルボン酸、ジフェニル−4,4−
ジカルボン酸、ジフェノキシエタンジカルボン酸、3−
スルホイソフタル酸ナトリウム等の芳香族ジカルボン
酸、1,4−シクロヘキサンジカルボン酸等の脂環族ジ
カルボン酸、コハク酸、シユウ酸、アジピン酸、セバシ
ン酸、ドデカンジ酸、ダイマー酸等の脂肪族ジカルボン
酸、またはこれらのエステル形成誘導体等から選ばれた
ジカルボン酸の少なくとも一種と、1,4−ブタンジオ
ール、エチレングリコール、トリメチレングリコール、
テトラメチレングリコール、ペンタメチレングリコー
ル、ヘキサメチレングリコール、ネオペンチルグリコー
ル、デカメチレングリコール等の脂肪族ジオール、或い
は1,1−シクロヘキサンジメタノール、1,4−シク
ロヘキサンジメタノール、トリシクロデカンジメタノー
ル等の脂環族ジオール、又はこれらのエステル形成誘導
体などから選ばれたジオール成分の少なくとも一種、お
よび平均分子量が約400〜5000程度の、ポリエチ
レングリコール、ポリ(1,2−および1,3−プロピ
レンオキシド)グリコール、ポリ(テトラメチレンオキ
シド)グリコール、エチレンオキシドとプロピレンオキ
シドとの共重合体、エチレンオキシドとテトラヒドロフ
ランとの共重合体等のポリ(アルキレンオキシド)グリ
コールのうち少なくとも一種から構成される三元共重合
体などである。
As the thermoplastic elastomer, in the present invention in which the matrix fiber is a polyester fiber,
A polyester elastomer having heat resistance and capable of being thermoformed at high temperature is particularly preferable. As a polyester elastomer, thermoplastic polyester is used as a hard segment,
Polyetherester block copolymer obtained by copolymerizing poly (alkylene oxide) glycol as a soft segment, more specifically, terephthalic acid, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene 2,7 -Dicarboxylic acid, diphenyl-4,4-
Dicarboxylic acid, diphenoxyethanedicarboxylic acid, 3-
Aromatic dicarboxylic acids such as sodium sulfoisophthalate, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, succinic acid, oxalic acid, adipic acid, sebacic acid, dodecanedioic acid, aliphatic dicarboxylic acids such as dimer acid, Or at least one dicarboxylic acid selected from these ester-forming derivatives, 1,4-butanediol, ethylene glycol, trimethylene glycol,
Aliphatic diols such as tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol and decamethylene glycol, and fats such as 1,1-cyclohexanedimethanol, 1,4-cyclohexanedimethanol and tricyclodecanedimethanol. At least one diol component selected from cyclic diols or ester-forming derivatives thereof, and polyethylene glycol, poly (1,2- and 1,3-propylene oxide) glycol having an average molecular weight of about 400 to 5,000. , Poly (tetramethylene oxide) glycol, copolymers of ethylene oxide and propylene oxide, copolymers of ethylene oxide and tetrahydrofuran, etc. Terpolymer composed from one and the like.

【0013】ポリエステル系短繊維との接着性や温度特
性、強度、物性の面などから、ポリブチレン系テレフタ
レートをハードセグメントとし、ポリオキシテトラメチ
レングリコールをソフトセグメントとするブロック共重
合ポリエーテルポリエステルが特に好ましい。ハードセ
グメントを構成するポリエステル部分は、主たる酸成分
がテレフタル酸、主たるジオール成分がブチレングリコ
ール成分であるポリブチレンテレフタレートである。酸
成分の一部(通常30モル%以下)は他のジカルボン酸
成分やオキシカルボン酸成分で置換されてもよく、同様
にグリコール成分の一部はブチレングリコール成分以外
のジオキシ成分に置換されてもよい。また、ソフトセグ
メントを構成するポリエーテル成分は、テトラメチレン
グリコール以外のジオキシ成分で置換されたポリエーテ
ルであってもよい。なお、ポリマー中には、各種安定
剤、紫外線吸収剤、増粘分枝剤、艶消剤、着色剤、その
他各種の改良剤等も必要に応じて配合されてよい。
A block copolymerized polyether polyester having polybutylene terephthalate as a hard segment and polyoxytetramethylene glycol as a soft segment is particularly preferable from the viewpoints of adhesiveness with polyester short fibers, temperature characteristics, strength and physical properties. . The polyester portion constituting the hard segment is polybutylene terephthalate whose main acid component is terephthalic acid and whose main diol component is butylene glycol component. A part (usually 30 mol% or less) of the acid component may be replaced with another dicarboxylic acid component or an oxycarboxylic acid component, and similarly, a part of the glycol component may be replaced with a dioxy component other than the butylene glycol component. Good. Further, the polyether component constituting the soft segment may be a polyether substituted with a dioxy component other than tetramethylene glycol. Incidentally, various stabilizers, ultraviolet absorbers, thickening and branching agents, matting agents, coloring agents, and other various improving agents may be added to the polymer as required.

【0014】低融点短繊維の単糸繊度は2〜150デニ
ールが好ましく、繊維長は38〜255mm,捲縮は4
〜50個/インチが好ましい。この範囲から外れると、
混綿、ウェッブ化などの工程が難しくなる。また、繊維
成型クッション材のクッション性能や圧縮耐久性が低下
する。
The single yarn fineness of the low melting point short fibers is preferably 2 to 150 denier, the fiber length is 38 to 255 mm, and the crimp is 4
-50 pieces / inch is preferable. Outside this range,
Processes such as blending and webbing become difficult. Also, the cushioning performance and compression durability of the fiber-molded cushioning material are reduced.

【0015】低融点繊維の混綿比率は10〜70重量%
が好ましい。低融点繊維の比率が10重量%より少ない
と繊維構造体の接着点が不足し、圧縮反撥性、圧縮耐久
性が低下する。低融点繊維の比率が70重量%より高く
なると、繊維構造体の結合点の数が多すぎて、硬くなり
適度のクッション性が得られない。また低融点繊維の収
縮のため、所望の成型物形状が得られにくくなる。
The blending ratio of the low melting point fiber is 10 to 70% by weight.
Is preferred. When the ratio of the low melting point fiber is less than 10% by weight, the bonding points of the fiber structure are insufficient, and the compression rebound and the compression durability are reduced. When the ratio of the low melting point fiber is higher than 70% by weight, the number of bonding points of the fiber structure is too large and the fiber structure becomes hard, so that an appropriate cushioning property cannot be obtained. Further, due to the shrinkage of the low melting point fiber, it is difficult to obtain a desired molded product shape.

【0016】繊維成型クッション材の密度は0.006
〜0.2g/cm3 の範囲が好ましい。クッション材の
厚みは3mm以上が好ましい。密度がこの範囲未満で
は、繊維密度が少なすぎて、反撥性や圧縮耐久性が実用
範囲以下になる。密度が大きすぎると、逆に繊維密度や
結合点の密度が大きすぎて固くなる。また厚みが薄すぎ
るとクッション性が発揮されない。
The density of the fiber molding cushion material is 0.006
The range of up to 0.2 g / cm 3 is preferred. The thickness of the cushion material is preferably 3 mm or more. If the density is less than this range, the fiber density is too low, and the resilience and compression durability fall below the practical range. If the density is too high, on the contrary, the fiber density and the density of the bonding points become too high and the material becomes hard. If the thickness is too thin, cushioning properties will not be exhibited.

【0017】本発明では、ポリエステル系短繊維と低融
点短繊維とを混綿し、カードなどで開繊し、ウェッブ化
した後、必要な場合はウェッブを積層し、所定形状がえ
られるよう通気性を有するモールドに所定量のウェッブ
を詰め込み、或いはパンチングプレートで構成される平
板やキャタピラー式の上下コンベアーに積層ウェッブを
挟み込み、低融点繊維の融点より高くポリエステル系短
繊維の融点よりも低い温度で加圧、加熱処理を行い、低
融点繊維とポリエステル系短繊維との交絡点或いは低融
点繊維間の交絡点の少なくとも一部を熱融着することに
よって所定形状の繊維形成クッション材を得る。次い
で、冷却し、圧縮処理をする。この冷却は成型された繊
維成型クッション材をポリエステル系短繊維のガラス転
移温度より低い温度まで冷却することが必要である。こ
の冷却温度が高すぎると良好な圧縮処理効果が得られな
い。すなわち、冷却温度が高すぎると、骨格を構成する
繊維の剛性が低すぎて、不完全な熱融着部分或いは固着
部分が破壊されず、また両端が熱融着・固着した橋掛け
の繊維等が切断されない。従って、繰り返し圧縮して使
用される実用の際に、風合、硬さ、厚みの変化の少ない
繊維成型クッション材とすることができない。
In the present invention, polyester short fibers and low melting point short fibers are mixed, opened with a card or the like, made into a web, and if necessary, webs are laminated to obtain a desired shape. A mold having a predetermined amount of web, or sandwiching the laminated web between a flat plate composed of punching plates or a caterpillar type upper / lower conveyor, and heated at a temperature higher than the melting point of the low melting point fiber and lower than the melting point of the polyester short fiber. A fiber-formed cushioning material having a predetermined shape is obtained by performing pressure and heat treatment and heat-sealing at least a part of the entanglement points between the low melting point fibers and the polyester-based short fibers or the entanglement points between the low melting point fibers. Then, it is cooled and compressed. This cooling requires cooling the molded fiber molded cushion material to a temperature lower than the glass transition temperature of the polyester short fibers. If this cooling temperature is too high, a good compression treatment effect cannot be obtained. That is, if the cooling temperature is too high, the rigidity of the fibers that form the skeleton is too low to break the incomplete heat-sealed portion or the fixed portion, and the both ends are heat-sealed and fixed in a bridged fiber. Does not disconnect. Therefore, it cannot be used as a fiber-molded cushioning material with little change in texture, hardness, and thickness in practical use in which it is repeatedly compressed and used.

【0018】圧縮処理の圧縮率(初期荷重0.5g/c
2 で測定したクッション材の厚みに対する圧縮処理後
の厚み方向の圧縮量)は40〜95%必要である。好ま
しくは50〜90%である。この圧縮率が低すぎると、
圧縮の変形量が少なすぎて、不完全な熱融着部分或いは
固着部分を破壊又は剥離させることが出来ない。また圧
縮に対し障害となるような両端が熱融着した橋掛けの繊
維等を切断できない。従って実用中にそれらの破壊が徐
々に進行し、初期の硬さや風合、厚みなどの変化が起き
てくる。特に、使用初期にその変化が大きい。
Compressibility of compression treatment (initial load 0.5 g / c
The amount of compression in the thickness direction after the compression treatment with respect to the thickness of the cushion material measured in m 2 ) is required to be 40 to 95%. It is preferably 50 to 90%. If this compression rate is too low,
The amount of deformation of compression is too small to break or peel the incomplete heat-sealed portion or the fixed portion. Further, it is impossible to cut a bridged fiber or the like whose both ends are heat-sealed so as to hinder compression. Therefore, during practical use, their destruction gradually progresses, causing changes in initial hardness, texture, thickness, and the like. Especially, the change is large at the initial stage of use.

【0019】一方、圧縮処理の圧縮率が高すぎると、必
要以上に変形され、繊維成型クッション材が適正な変形
で変形して反撥に寄与し、除重後には回復する様な適切
な結合点まで破壊し、骨格繊維に塑性変形を起こさせる
結果、元の形状に戻らなくなる。その結果、反撥性が著
しく低下したり、厚みが薄くなったりする重大な問題が
発生する。
On the other hand, if the compression rate of the compression process is too high, the fiber molding cushion material is deformed more than necessary, and the fiber molding cushion material is deformed by proper deformation to contribute to the repulsion, and is restored after the weight is removed. As a result, the skeletal fibers are plastically deformed, and as a result, the original shape cannot be restored. As a result, there arises a serious problem that the resilience is remarkably reduced and the thickness is reduced.

【0020】圧縮処理の回数は、必要に応じ3〜5回圧
縮する。この圧縮処理方法は、繊維成型クッション材の
全体でもよいが、使用中に圧縮使用される部分に重点的
に処理してもよい。圧縮方法としては、平面の板状で繰
り返し所定の圧縮率までプレスしてもよく、或いは、ク
リアランスを設定した一対のニップローラを通過させて
もよい。荷重を設定し、同様なニップローラを通過させ
圧縮を加えてもよい。もちろん、これらを多段に行うの
は、好ましい実施態様である。また三次元曲面をもった
成型クッション材の場合には、空気透過性の低い織物や
通気性の無いフィルム等で覆い空気を抜いて圧縮する方
法や、ほぼ同じ圧縮面を持つ治具で圧縮する等の方法が
好ましい。
The number of times of compression processing is 3 to 5 times as necessary. This compression treatment method may be performed on the entire fiber-molded cushion material, or may be performed by focusing on the portion used for compression during use. As a compression method, a flat plate shape may be repeatedly pressed to a predetermined compression rate, or a pair of nip rollers having a clearance may be passed. A load may be set, and a similar nip roller may be passed through to apply compression. Of course, performing these in multiple stages is a preferred embodiment. Also, in the case of a molded cushioning material with a three-dimensional curved surface, it is compressed by covering it with a fabric with low air permeability or a non-breathable film to remove air and compress it with a jig that has almost the same compression surface. And the like are preferable.

【0021】[0021]

【発明の効果】加圧加熱処理後冷却し、圧縮処理を加え
ることにより、本発明の繊維成型クッション材は、従来
の繊維成型クッション材と比べて、風合がより柔軟であ
り、繰り返し圧縮使用されたときのクッション材の風合
や硬さ、厚みの変化が少ない。特に、クッション材に好
適な熱可塑性エラストマーによる低融点繊維を使ったと
きの圧縮処理の効果は大きく、初期の反撥性を大きく低
下させることがなく、使用中の変化も極めて小さい。ま
た、本発明の繊維成型クッション材は全て熱可塑性繊維
で構成されているので、使用後にメルトして再び新たな
繊維や成型プラスチック等にリサイクル可能である。ま
た燃焼での有毒ガスなどの発生も少ない。
EFFECTS OF THE INVENTION By applying pressure treatment after heating and cooling, the fiber-formed cushioning material of the present invention has a softer texture than conventional fiber-formed cushioning materials and can be repeatedly compressed and used. There is little change in the texture, hardness and thickness of the cushion material when it is pressed. In particular, when a low melting point fiber made of a thermoplastic elastomer suitable for a cushion material is used, the effect of the compression treatment is great, the initial rebound is not significantly reduced, and the change during use is extremely small. Further, since the fiber-formed cushioning material of the present invention is composed entirely of thermoplastic fibers, it can be melted after use and recycled again to new fibers or molded plastic. In addition, the generation of toxic gas during combustion is small.

【0022】本発明の方法で得られる繊維成型クッショ
ン材は三次元曲面形状や厚みを持った平面状の各種乗り
物用座席や家具クッション、寝具用マットン材として好
適である。
The fiber-molded cushion material obtained by the method of the present invention is suitable as a seat cushion for various vehicles, a three-dimensionally curved flat seat having various thicknesses, a furniture cushion, and a matton material for bedding.

【0023】以下に実施例により本発明を説明する。な
お、実施例における各評価項目はそれぞれ下記の方法に
従って評価した。 <捲縮性能:捲縮数、捲縮度>JIS−L−1015 <圧縮残留歪み>JIS−K−6401 <8万回圧縮残留歪み>JIS−K−6401 <8万回硬さ保持率>初期に75%予備圧縮後再び25
%圧縮したときの圧縮応力(F0) とJISK−640
1により8万回繰り返し圧縮を行い、30分放置後、7
5%予備圧縮後再び25%圧縮したときの圧縮応力(F
1) を〔(F1/F0)×100%〕で算出した。 <融点>DUPONT社製、熱示差分析計990型を使
用し、昇温20℃/分で測定し、融解ピークをもとめ
た。融解温度がハッキリ観測されない場合は、微量融点
測定装置(柳本製作所製)を用い、約3gのポリマーを
2枚のカバーガラスに挟み、ピンセットで軽く押さえな
がら、昇温速度20℃/分で昇温し、ポリマーの熱変化
を観測する。その際ポリマーが軟化して流動を始めた温
度(軟化点)をここでは融点とする。 <ウェッブの嵩性>JIS−L−1097
The present invention will be described below with reference to examples. The evaluation items in the examples were evaluated according to the following methods. <Crimp performance: Number of crimps, crimp degree> JIS-L-1015 <Residual compression strain> JIS-K-6401 <Residual compression strain 80,000 times> JIS-K-6401 <Hardness retention rate at 80,000 times> 25% after pre-compression of 75%
% Compressive stress (F0) and JISK-640
Repeatedly compressed 80,000 times with 1 and left for 30 minutes, then 7
Compressive stress (F
1) was calculated by [(F1 / F0) × 100%]. <Melting point> Using a thermal differential analyzer 990 type manufactured by DUPONT, measurement was performed at a temperature rise of 20 ° C./min to find a melting peak. If the melting temperature is not clearly observed, use a trace melting point measuring device (manufactured by Yanagimoto Seisakusho), sandwich about 3 g of polymer between two cover glasses, lightly press with tweezers, and raise the temperature at a heating rate of 20 ° C / min. Then, the thermal change of the polymer is observed. At this time, the temperature at which the polymer softens and begins to flow (softening point) is defined as the melting point. <Web bulkiness> JIS-L-1097

【0024】[0024]

【実施例1】テレフタル酸とイソフタル酸とを80/2
0(モル%)で混合した酸成分とブチレングリコールと
を重合し、得られたポリブチレン系テレフタレート38
重量%を更にポリテトラメチレングリコール(分子量2
000)62重量%と加熱反応させ、ブロック共重合ポ
リエーテルポリエステルエラストマーを得た。この熱可
塑性エラストマーの融点は155℃であった。この熱可
塑性エラストマーを鞘(シース)に、ポリブチレンテレ
フタレート(融点224℃)を芯(コア)に、シース/
コアの重量比で50/50に成るように常法により紡糸
した。なお、この複合繊維は、偏心シース・コア型複合
繊維とした。得られた繊維を2.0倍に延伸したのち、
80℃で乾燥し捲縮を発現させたのち、油剤を付与し、
64mmに切断した。得られた複合低融点繊維の単糸繊
度は9デニール、捲縮数は13個/インチ、捲縮度は3
0%であった。
Example 1 80/2 terephthalic acid and isophthalic acid
Polybutylene terephthalate 38 obtained by polymerizing an acid component mixed with 0 (mol%) and butylene glycol
% By weight of polytetramethylene glycol (molecular weight 2
000) 62% by weight and reacted by heating to obtain a block copolymerized polyether polyester elastomer. The melting point of this thermoplastic elastomer was 155 ° C. This thermoplastic elastomer is used as a sheath, polybutylene terephthalate (melting point 224 ° C.) is used as a core, and the sheath /
It was spun by a conventional method so that the weight ratio of the core was 50/50. The composite fiber was an eccentric sheath-core type composite fiber. After stretching the obtained fiber to 2.0 times,
After drying at 80 ° C to develop crimps, apply an oil agent,
It was cut to 64 mm. The obtained composite low melting point fiber has a single yarn fineness of 9 denier, a crimp number of 13 / inch, and a crimp degree of 3
It was 0%.

【0025】この複合繊維30重量%と、常法にて得ら
れたポリエチレンテレフタレート短繊維(単糸繊度14
デニール、繊維長64mm、捲縮数9個/インチ、捲縮
度34%、嵩高性0.5g/cm2 の荷重で79cm3
/g、10g/cm2 の荷重で34cm3 /g、断面形
状は中空、融点256℃)70重量%とを混綿し、カー
ドでウェッブ化し、積層し、積層ウェッブとした。この
ウェッブを、厚み5cm、密度0.035g/cm3
なるように平板形の通気性モールドに挟み込み、200
℃の熱風炉で5分間、加圧加熱処理し、続いて、室温で
冷却した。このとき、冷却されたクッション材は30℃
であった。
30% by weight of this composite fiber and polyethylene terephthalate short fiber (single yarn fineness 14
Denier, fiber length 64 mm, crimp number 9 / inch, crimp degree 34%, bulkiness 79 cm 3 under a load of 0.5 g / cm 2.
/ G, 34 cm 3 / g under a load of 10 g / cm 2 , a cross-sectional shape is hollow, and a melting point of 256 ° C.) 70% by weight were mixed and made into a web with a card and laminated to obtain a laminated web. This web was sandwiched in a flat air-permeable mold so that the thickness was 5 cm and the density was 0.035 g / cm 3 ,
The mixture was heat-treated under pressure in a hot air oven at 0 ° C. for 5 minutes, and subsequently cooled at room temperature. At this time, the cooled cushion material is 30 ℃
Met.

【0026】得られた平板型クッション材に対し、厚み
が15mmになるまで(圧縮率70%)、平板油圧プレ
ス機で0.3秒間の圧縮を3回行った。クッション材の
風合は極めてソフトで粗硬感がなく弾力性があった。ク
ッション材の性能を表1に示す。クッション材の耐久性
(8万回圧縮)、高温雰囲気下での耐久性(70℃圧縮
残留歪み)は冷却後に圧縮処理を行わなかった繊維成型
クッション材と比較して、非常に良好であった。8万回
圧縮処理後のクッション材のクッション性は、初期と比
較しても同じ程度の感触であった。結果を表1に示す。
The obtained flat plate type cushion material was compressed with a flat plate hydraulic press machine for 0.3 seconds three times until the thickness became 15 mm (compression rate 70%). The cushioning material had an extremely soft texture and was not elastic and had elasticity. Table 1 shows the performance of the cushion material. The durability of the cushion material (80,000 compressions) and the durability in a high temperature atmosphere (70 ° C compression residual strain) were very good as compared with the fiber molded cushion material that was not subjected to compression treatment after cooling. . The cushioning property of the cushioning material after the 80,000-time compression treatment was about the same as the initial feeling. The results are shown in Table 1.

【0027】[0027]

【比較例1】200℃の熱風炉で加圧加熱処理し、冷却
後に圧縮処理を行わないこと以外は実施例1と同様に加
工して繊維成型クッション材を得た。得られた繊維成型
クッション材は、粗硬感があり、硬く、弾力感に劣って
いた。このクッション材の性能を表1に示す。8万回圧
縮処理後の残留歪は悪く、8万回圧縮処理後の硬さ保持
率は非常に劣っていた。またこの8万回圧縮処理後のク
ッション材は、初期の処理前と比較すると明らかに大き
く感触が変わっていた。結果を表1に示す。
[Comparative Example 1] A fiber-molded cushion material was obtained by processing in the same manner as in Example 1 except that pressure heat treatment was carried out in a hot air oven at 200 ° C, and compression treatment was not performed after cooling. The obtained fiber-molded cushion material had a coarse and hard feeling, was hard, and was inferior in elasticity. The performance of this cushion material is shown in Table 1. The residual strain after the 80,000 compression treatment was poor, and the hardness retention after the 80,000 compression treatment was very poor. Further, the cushioning material after the 80,000-time compression treatment had a significantly different feeling compared to that before the initial treatment. The results are shown in Table 1.

【0028】[0028]

【実施例2】比較例1で得られた繊維成型クッション材
を、10mmのクリアランス(圧縮率80%)を持つ一
対のニップローラ(ローラ径20cm)の間を2m/分
で2回通過させた。得られたクッション材は、風合に粗
硬感がなく、弾力性に富んでいた。このクッション材の
性能を表1に示す。圧縮耐久性や硬さ保持率なども良好
であった。繰り返し圧縮後のサンプルは、圧縮前(初
期)との変化がなく良好であった。結果を表1に示す。
Example 2 The fiber molded cushion material obtained in Comparative Example 1 was passed twice at a speed of 2 m / min between a pair of nip rollers (roller diameter 20 cm) having a clearance of 10 mm (compression rate 80%). The obtained cushioning material did not have a feeling of coarse and hard texture and was rich in elasticity. The performance of this cushion material is shown in Table 1. The compression durability and hardness retention rate were also good. The sample after repeated compression was good with no change from that before compression (initial stage). The results are shown in Table 1.

【0029】[0029]

【実施例3】実施例1で得られたウェッブを所定の大き
さ、重量、形状にカットした。自動車のシートの形状が
出るようにした上下2組の通気性のある3次元形状のパ
ンチングメタルのモールドを用い、下側(座面でない
方)に、所定位置に所定の切出しウェッブを並べた。そ
して、上から座面形状のモールドをかぶせて固定した。
その後、200℃の熱風炉に入れ、10分間の熱処理を
行ない熱成型した。その後、室温で十分冷却し、自動車
シート型の繊維成型シートクッション材を得た。冷却
後、この座面と略同じ形状の圧縮治具を用い、上モール
ドを外し、下モールドが残った状態で、厚みが60%に
なるように5回の圧縮処理を行った。ここで得られた自
動車クッションシートは、その座部はソフトで弾力性が
あった。また比較用シートと取り替えながら行った6ケ
月間の着用テストでは、初期の風合はそのまま維持され
変化は少なかった。また、座面の凹みは少なく、ほとん
どわからなかった。
Example 3 The web obtained in Example 1 was cut into a predetermined size, weight and shape. Two sets of upper and lower breathable three-dimensional punching metal molds were formed so that the shape of an automobile seat was exposed, and predetermined cut webs were arranged at predetermined positions on the lower side (non-bearing surface). Then, the seat surface-shaped mold was covered and fixed from above.
Then, it was placed in a hot air oven at 200 ° C. and heat-treated for 10 minutes to perform thermoforming. Then, it was sufficiently cooled at room temperature to obtain an automobile seat type fiber molded seat cushion material. After cooling, a compression jig having substantially the same shape as this seat surface was used, the upper mold was removed, and the lower mold remained, and compression treatment was performed 5 times so that the thickness became 60%. The seat portion of the automobile cushion sheet obtained here was soft and elastic. In addition, in the wearing test for 6 months while replacing the sheet with the comparative sheet, the initial texture was maintained and the change was small. Also, there were few recesses on the seat surface, and it was almost invisible.

【0030】[0030]

【比較例2】圧縮処理を行わない以外は実施例3と同様
にして、自動車のクッションシートを得た。得られたク
ッションの座面は粗硬感があり、弾力性が乏しかった。
実施例3のシートと同時に取り替えながら行った6ケ月
間の着用テストでは、初期の風合が明らかに変ってい
た。また座面の凹みが部分的に大きく、悪い凹みかたで
あった。
Comparative Example 2 An automobile cushion sheet was obtained in the same manner as in Example 3 except that the compression treatment was not performed. The seat surface of the obtained cushion had a coarse and hard feeling and was poor in elasticity.
In the wearing test for 6 months while replacing the seat of Example 3 with the seat, the initial texture was obviously changed. In addition, the recess on the seat surface was partly large, which was a bad recess.

【0031】[0031]

【比較例3】比較例1で得られた繊維成型クッション材
を、厚みが2.3mmになるまで実施例1に示す方法で
2回圧縮を行った。得られたクッション材は、非常に柔
らかく、反撥性が低くなり過ぎ、クッション材の圧縮残
留歪みも高かった。また、走査型電子顕微鏡で構造を観
察すると、結合点が多く破壊され、マトリックスの中空
断面繊維もかなり破壊され、圧縮による残留歪みも大き
く、クッション材には不適であった。結果を表1に示
す。
Comparative Example 3 The fiber-molded cushion material obtained in Comparative Example 1 was compressed twice by the method shown in Example 1 until the thickness became 2.3 mm. The obtained cushioning material was very soft, the resilience was too low, and the compressive residual strain of the cushioning material was also high. In addition, when the structure was observed with a scanning electron microscope, many bonding points were broken, the hollow cross-section fibers of the matrix were also considerably broken, and the residual strain due to compression was large, which was unsuitable for a cushion material. The results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリエステル系短繊維と、該繊維より融
点が40℃以上低い融点を有する低融点短繊維とからな
るウェッブを、低融点繊維の融点以上、ポリエステル系
短繊維の融点以下で加圧、加熱し、低融点短繊維の交絡
点の少なくとも一部を融着結合せしめる繊維成型クッシ
ョン材の製造方法において、加圧加熱したのち冷却後、
40〜95%の圧縮率で少なくとも一回の圧縮処理を行
うことを特徴とする繊維成型クッション材の製造方法。
1. A web comprising polyester short fibers and low melting short fibers having a melting point lower than that of the fibers by 40 ° C. or more is pressed at a melting point of the low melting fibers or more and a melting point of the polyester short fibers or less. , Heating, in the method for producing a fiber molding cushioning material in which at least a part of the entanglement points of the low melting point short fibers are fusion-bonded, after heating under pressure and after cooling,
A method for producing a fiber-molded cushion material, comprising performing compression treatment at least once at a compression ratio of 40 to 95%.
【請求項2】 低融点繊維が熱可塑性エラストマーから
なる請求項1の繊維成型クッション材の製造方法。
2. The method for producing a fiber-molded cushioning material according to claim 1, wherein the low-melting point fiber is made of a thermoplastic elastomer.
【請求項3】 繊維断面において低融点繊維の繊維表面
の過半が熱可塑性エラストマーによって覆われている請
求項1の繊維成型クッション材の製造方法。
3. The method for producing a fiber molded cushion material according to claim 1, wherein a majority of the fiber surface of the low melting point fiber is covered with the thermoplastic elastomer in the fiber cross section.
【請求項4】 低融点繊維を構成するポリマーがポリエ
ステル系エラストマーである請求項2又は3の繊維成型
クッション材の製造方法。
4. The method for producing a fiber molded cushion material according to claim 2, wherein the polymer constituting the low melting point fiber is a polyester elastomer.
JP5274269A 1993-11-02 1993-11-02 Production of fiber-formed cushioning material Pending JPH07126973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5274269A JPH07126973A (en) 1993-11-02 1993-11-02 Production of fiber-formed cushioning material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5274269A JPH07126973A (en) 1993-11-02 1993-11-02 Production of fiber-formed cushioning material

Publications (1)

Publication Number Publication Date
JPH07126973A true JPH07126973A (en) 1995-05-16

Family

ID=17539310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5274269A Pending JPH07126973A (en) 1993-11-02 1993-11-02 Production of fiber-formed cushioning material

Country Status (1)

Country Link
JP (1) JPH07126973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308831A (en) * 2006-05-18 2007-11-29 Teijin Fibers Ltd Fiber cushioning material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308831A (en) * 2006-05-18 2007-11-29 Teijin Fibers Ltd Fiber cushioning material and method for producing the same

Similar Documents

Publication Publication Date Title
CA2063732C (en) Cushion structure and process for producing the same
JP2960820B2 (en) Method of filling fiber assembly, method of manufacturing molded cushion body, and apparatus therefor
JP4809599B2 (en) Seat seat, method of manufacturing the same, and seat seat recovery processing method
JP3157393B2 (en) Fiber molded high elastic cushioning material
JPH07126973A (en) Production of fiber-formed cushioning material
JP5346668B2 (en) Fiber cushion material, method for producing the same, and fiber product
JP2016096891A (en) Cushion body, seat, and method of manufacturing cushion body
JP2015198877A (en) Cushion body and seat
JP3150846B2 (en) Fiber molded cushion material
JP3641650B2 (en) Molded cushion material with improved durability against repeated large deformation and method for producing the same
JP2017169998A (en) Cushion body
JP5027442B2 (en) Manufacturing method of fiber cushion material
JP3935776B2 (en) Cushion structure manufacturing method
JP3181172B2 (en) Fiber molded cushion structure
JP3160249U (en) Fiber cushion material
JPH05163658A (en) Cushion structure and its use
JP3129619B2 (en) Molding method of fiber cushion material
JP3663495B2 (en) Side complex, method for producing the same, and cushion structure
JP3803447B2 (en) seat
JPH09201481A (en) Laminated body for interior
JP2001262455A (en) Fibrous solid cotton and method for producing the same
JPH05179549A (en) Cushion structure and its production
JP3288857B2 (en) Fiber molded cushion laminated structure and method of manufacturing the same
JP2001098452A (en) Cushioning material capable of restoring performance by reheating treatment
JP4789681B2 (en) Cushion body manufacturing method and seat seat manufacturing method