JPH07126396A - Organic/inorganic silicon polymer and its production - Google Patents

Organic/inorganic silicon polymer and its production

Info

Publication number
JPH07126396A
JPH07126396A JP27551893A JP27551893A JPH07126396A JP H07126396 A JPH07126396 A JP H07126396A JP 27551893 A JP27551893 A JP 27551893A JP 27551893 A JP27551893 A JP 27551893A JP H07126396 A JPH07126396 A JP H07126396A
Authority
JP
Japan
Prior art keywords
organic
compound
atom
group
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27551893A
Other languages
Japanese (ja)
Other versions
JP3722850B2 (en
Inventor
Masaaki Tani
昌明 谷
Yoshiaki Fukushima
喜章 福嶋
Akane Okada
茜 岡田
Katsuya Mizutani
克弥 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP27551893A priority Critical patent/JP3722850B2/en
Priority to US08/422,606 priority patent/US5527871A/en
Publication of JPH07126396A publication Critical patent/JPH07126396A/en
Application granted granted Critical
Publication of JP3722850B2 publication Critical patent/JP3722850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain a silicon polymer having both the characteristics of an inorganic material and those of an organic material by covalently bonding an organic polymer layer to a crystalline laminate structure composed of a tetrahedral structure having silicon or germanium as the central atoms and an octahedral structure having a metal as the central atom. CONSTITUTION:This silicon polymer comprises (A) a crystalline laminate structure composed of a tetrahedral structure having at least either Si or Ge or a combination thereof with at least one member selected from among Al, Fe and P as the central atom and an octahedral structure having at least one member selected from among Mg, Al, Ni, Co, Cu, Mn, Fe, Li, V and Zr as the central atom and (B) an organic polymer layer formed by convalently bonding organic groups each having a polymerizable reactive group to part of the Si or Ge atoms as the central atoms of the tetrahedral structure, and bonding the reactive groups of the organic groups to an organic compound polymerizable with the reactive group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コート材、樹脂へのフ
ィラーあるいは種々の機能性材料などへの利用が可能な
有機−無機重合体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic-inorganic polymer which can be used as a coating material, a filler for a resin or various functional materials, and a method for producing the same.

【0002】[0002]

【従来の技術】一般にコート材、成形体などの主成分材
料あるいはフィラーとしての無機材料は高硬度、耐熱性
などの特徴をもつが、液相もしくは溶液から迅速に緻密
な固相を形成するには加熱焼成を必要とする。また、こ
れらの無機材料は、有機溶媒や有機物相との親和性が良
くない。一方、有機材料は可撓性や常温での迅速な成膜
性などの特徴をもつが、硬度や耐熱性が劣るという欠点
がある。このため従来より、無機材料と有機材料との上
記の特徴を併せもち、しかも上記の欠点を可及的に制限
した無機−有機ハイブリッド材料とかかる材料を、たと
えば室温付近の温度などの容易な条件下で迅速に製造で
きる有効な製造方法の開発が望まれている。
2. Description of the Related Art Generally, a main component material such as a coating material or a molded product or an inorganic material as a filler has characteristics such as high hardness and heat resistance. However, it is necessary to form a dense solid phase rapidly from a liquid phase or a solution. Requires heating and firing. In addition, these inorganic materials have poor affinity with organic solvents and organic phases. On the other hand, organic materials have characteristics such as flexibility and rapid film formation at room temperature, but have the drawback of being poor in hardness and heat resistance. For this reason, conventionally, an inorganic-organic hybrid material having the above-mentioned characteristics of an inorganic material and an organic material in combination, and further limiting the above-mentioned drawbacks as much as possible, and such a material are provided under an easy condition such as a temperature near room temperature. It is desired to develop an effective manufacturing method that can be rapidly manufactured below.

【0003】かかる要望に答えようとする技術として、
特開平1−108272号公報には、無機−有機ハイブ
リッド塗料が開示されている。この塗料は、エポキシシ
ランの部分加水分解物とカルボニル基含有化合物と非シ
ラン系ベースの脂肪族ポリアミンとの反応生成物とから
なる耐摩耗性コーティング材料である。しかし、この場
合塗膜中の無機構造は有機ポリマーに導入された1部分
に限られ、しかも室温付近での有機反応による塗膜中に
無機構造部分が成長したり、成膜したりすることがない
ため、無機材料の特徴を充分に発現させることができ
ず、有機ポリマーに比べて飛躍的な向上は望めない。
As a technique for answering such a request,
JP-A-1-108272 discloses an inorganic-organic hybrid coating material. This paint is an abrasion resistant coating material consisting of a partial hydrolyzate of epoxysilane, a carbonyl group-containing compound and a reaction product of a non-silane based aliphatic polyamine. However, in this case, the inorganic structure in the coating film is limited to one portion introduced into the organic polymer, and further, the inorganic structure portion may grow or form a film in the coating film due to an organic reaction at around room temperature. Since it does not exist, the characteristics of the inorganic material cannot be sufficiently expressed, and a dramatic improvement cannot be expected as compared with the organic polymer.

【0004】次に本件出願人の出願に係る特開昭62−
74957号公報には、本発明とは利用分野が一致して
いないが、無機−有機ハイブリッド材料である有機化粘
土(層状粘土鉱物の層間にイオン交換反応により有機化
合物を導入した層間化合物)が開示されている。かかる
有機粘土は、上記出願に係る発明の目的を達成する上で
は極めて有効であるが、本発明が目的とする分野への適
用において必ずしも充分ではない。
Next, Japanese Patent Application Laid-Open No. 62-
Japanese Patent No. 74957 discloses an organized clay (an intercalation compound in which an organic compound is introduced between layers of a layered clay mineral by an ion exchange reaction), which is an inorganic-organic hybrid material, although the field of application does not correspond to that of the present invention. Has been done. Although such an organoclay is extremely effective in achieving the object of the invention according to the above application, it is not always sufficient for application to the field intended by the present invention.

【0005】上記の有機化粘土は、有機物をイオン交換
反応により粘土鉱物の層間に導入するため、イオン化の
困難な有機物、たとえばエポキシ部分を含むもの、末端
にアミノ基を有するものなどは導入できない。また粘土
鉱物固有のイオン交換容量までしか有機物が導入できな
い。さらに粘土鉱物と有機物とはイオン結合により結合
しているため、実用の際の操作などでイオン結合が切れ
て有機物が遊離するおそれがある。
Since the above-mentioned organized clay introduces the organic matter between the layers of the clay mineral by an ion exchange reaction, organic matter which is difficult to be ionized, for example, those containing an epoxy moiety and those having an amino group at the end cannot be introduced. In addition, organic matter can be introduced only up to the ion exchange capacity specific to clay minerals. Further, since the clay mineral and the organic substance are bound by an ionic bond, the ionic bond may be broken and the organic substance may be liberated by an operation in practical use.

【0006】[0006]

【発明が解決しようとする課題】本発明は、無機部と有
機部とが強固な結合をし堅牢で緻密な固相を形成した重
合体であり、無機部と有機部との比率を制御が容易な重
合体およびその製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is a polymer in which an inorganic part and an organic part are firmly bonded to each other to form a robust and dense solid phase, and the ratio of the inorganic part and the organic part can be controlled. An object is to provide an easy polymer and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、先に表面
に重合性の有機側鎖をもつ珪素系新規層状高分子を出願
した。珪素系新規層状高分子の有機側鎖がアクリル、エ
ポキシ、ビニル基のような同種の反応基をもつとき、反
応基の重合反応により賦形可能な重合体を得ることがで
きる。この重合体は無機成分を含まないものに比べ耐熱
性、硬度に優れ、無機材料にない可撓性をもつが、用途
によってはさらに高い可撓性をもつことが必要とされる
場合がある。本発明は上記の重合体に有機分子を結合さ
せることにより、無機部と有機部の割合を制御すること
で必要な物性が付与できることを見出し本発明を完成し
たものである。
The present inventors have previously filed an application for a novel silicon-based layered polymer having a polymerizable organic side chain on the surface. When the organic side chain of the silicon-based novel layered polymer has the same type of reactive groups such as acryl, epoxy and vinyl groups, a polymer capable of being shaped can be obtained by the polymerization reaction of the reactive groups. This polymer is superior in heat resistance and hardness to a polymer not containing an inorganic component and has flexibility not possessed by an inorganic material, but it may be required to have higher flexibility depending on the application. The present invention has completed the present invention by discovering that the desired physical properties can be imparted by controlling the ratio of the inorganic part and the organic part by binding an organic molecule to the above polymer.

【0008】本発明の第1の有機−無機重合体は、珪
素、Geから選ばれる少なくとも1種の原子、または該
原子の一部をAl、Fe、Pから選ばれる少なくとも1
種の原子により置換した原子を中心原子とする4面体面
構造とMg、Al、Ni、Co、Cu、Mn、Fe、L
i、V、Zrから選ばれる少なくとも1種の金属を中心
原子とする8面体面構造とからなる結晶性の積層構造体
と、該積層構造体に共有結合で結合した有機重合体層と
から構成される有機重合体であって、該積層構造体を形
成する4面体面構造の中心原子である珪素、Geから選
ばれる少なくとも1種の原子の少なくとも一部の原子
は、重合可能な反応基を有する有機基と共有結合により
結合し、該有機基の反応基は該反応基と重合反応する有
機化合物と結合して有機重合体層を形成していることを
特徴とする。
The first organic-inorganic polymer of the present invention comprises at least one atom selected from silicon and Ge or at least one atom selected from Al, Fe and P.
Tetrahedral structure having an atom replaced by a seed atom as a central atom and Mg, Al, Ni, Co, Cu, Mn, Fe, L
A crystalline laminated structure having an octahedral surface structure having at least one metal selected from i, V and Zr as a central atom, and an organic polymer layer covalently bonded to the laminated structure. Which is a central atom of the tetrahedral surface structure forming the laminated structure, at least a part of at least one atom selected from Ge and Ge has a polymerizable reactive group. It is characterized in that it is bound to an organic group it has by a covalent bond, and the reactive group of the organic group is bound to an organic compound which undergoes a polymerization reaction with the reactive group to form an organic polymer layer.

【0009】本発明の第2の有機−無機重合体の製造方
法は、下記のa)、b)およびc)を混合して混合溶液
とする混合工程(なお、製造する結晶性層状構造を有す
る有機重合体の4面体面構造の中心原子である珪素、G
eから選ばれる少なくとも1種の原子の一部をPにより
置換する場合には、下記のd)を添加する。また、製造
する結晶性層状構造を有する有機重合体の4面体面構造
の中心原子である珪素、Geから選ばれる少なくとも1
種の原子のうちの一部を、重合可能な反応基を有する有
機基と共有結合しない原子とする場合には、下記e)を
添加する。)と、該混合溶液にアルカリを加えて該混合
溶液のpHをアルカリ性に調整してそのまま、あるいは
エージングによりa)化合物中の珪素、Geから選ばれ
る少なくとも1種の原子、または該原子の一部をb)化
合物のAl、Fe、d)化合物中のPから選ばれる少な
くとも1種の原子により置換した原子を中心原子とする
4面体面構造と、b)化合物中のMg、Al、Ni、C
o、Cu、Mn、Fe、Li、V、Zrから選ばれる少
なくとも1種の金属を中心原子とする8面体面構造とが
結晶性の積層構造体を形成する積層構造形成工程と、該
積層構造体の4面体面構造の中心原子である珪素、Ge
から選ばれる少なくとも1種の原子の少なくとも一部の
原子にそれぞれ共有結合により重合可能な反応基を有す
る有機基と、該有機基と反応可能でかつ単独で重合体を
形成できる有機化合物と、を混合して有機基と有機化合
物とを共重合させて該積層構造体に有機化合物の重合体
層を形成する重合体形成工程、とからなることを特長す
る。
The second method for producing an organic-inorganic polymer of the present invention comprises a mixing step of mixing the following a), b) and c) to form a mixed solution (having a crystalline layered structure to be produced). Silicon, which is the central atom of the tetrahedral structure of the organic polymer, G
When a part of at least one atom selected from e is replaced by P, the following d) is added. Further, at least one selected from silicon and Ge, which are the central atoms of the tetrahedral surface structure of the organic polymer having a crystalline layered structure to be produced.
When some of the seed atoms are not covalently bonded to the organic group having a polymerizable reactive group, the following e) is added. ), An alkali is added to the mixed solution to adjust the pH of the mixed solution to be alkaline, or as it is, or by aging, a) silicon in the compound, at least one atom selected from Ge, or a part of the atom. B) a tetrahedral structure having an atom substituted by at least one atom selected from P in the compound, Al, Fe and d) of the compound, and b) Mg, Al, Ni, C in the compound
Laminated structure forming step of forming a crystalline laminated structure having an octahedral surface structure having at least one metal selected from o, Cu, Mn, Fe, Li, V and Zr as a central atom, and the laminated structure Silicon, which is the central atom of the tetrahedral structure of the body, Ge
An organic group having a reactive group capable of being polymerized by a covalent bond on at least a part of at least one atom selected from the group consisting of an organic compound capable of reacting with the organic group and forming a polymer by itself. A polymer forming step of mixing and copolymerizing an organic group and an organic compound to form a polymer layer of the organic compound in the laminated structure.

【0010】本発明の第1は、4面体面構造の中心原子
を形成する珪素およびGeから選ばれる少なくとも1種
の原子と、8面体面構造の中心原子を構成するMg,A
l,Ni,Co,Cu,Mn,Fe,Li,V,Zrか
ら選ばれる少なくとも1種の金属原子とが結晶性の積層
構造を形成している。この積層構造は、8面体面の両側
に4面体面が形成されたいわゆる2:1型構造のもの
と、8面体面の片側に4面体面が形成されたいわゆる
1:1型構造のものとがある。有機基を多く含ませたい
場合や、有機基相互の結合強度を向上させたい場合に
は、2:1型構造のものがより望ましい。
According to the first aspect of the present invention, at least one atom selected from silicon and Ge forming a central atom of a tetrahedral surface structure and Mg, A constituting a central atom of an octahedral surface structure.
At least one metal atom selected from 1, Ni, Co, Cu, Mn, Fe, Li, V, and Zr forms a crystalline laminated structure. This laminated structure includes a so-called 2: 1 type structure in which tetrahedral surfaces are formed on both sides of an octahedral surface, and a so-called 1: 1 type structure in which tetrahedral surfaces are formed on one side of the octahedral surface. There is. The 2: 1 type structure is more preferable when it is desired to include a large amount of organic groups or to improve the bonding strength between the organic groups.

【0011】この2:1型あるいは1:1型構造を形成
するには4面体面を構成する原子と8面体面を構成する
原子の割合を調製することで形成することができる。4
面体面の中心原子である珪素およびGeのうちの少なく
とも1種の一部はAl、FeおよびPから選ばれる1種
または複数の原子で置換することができる。これらA
l、Fe、Pは、珪素またはGeとの中心原子置換によ
り容易に導入できる。
The 2: 1 type or 1: 1 type structure can be formed by adjusting the ratio of the atoms forming the tetrahedral surface to the atoms forming the octahedral surface. Four
A part of at least one of silicon and Ge, which are the central atoms of the facet, can be replaced with one or more atoms selected from Al, Fe and P. These A
l, Fe and P can be easily introduced by central atom substitution with silicon or Ge.

【0012】4面体面構造を形成する原子には、その一
部または全部が重合性の反応基をもつ有機基と共有結合
で結合している。この有機基の導入可能量は最大限で4
面体の中心原子1個当たり1〜3個という充分すぎる程
導入できる。この有機基は、有機基の反応基と結合する
反応基を有し、それ自身も重合して重合体を形成できる
有機化合物と共重合して有機−無機重合体の有機部を形
成している。このため有機化合物の積層構造体との配合
比率を調整することで有機−無機重合体の有機性、無機
性を変化させることができる。
Part or all of the atoms forming the tetrahedral surface structure are covalently bonded to an organic group having a polymerizable reactive group. The maximum amount of organic groups that can be introduced is 4
It is possible to introduce as much as 1 to 3 atoms per one central atom of the face piece. This organic group has a reactive group that is bonded to the reactive group of the organic group, and is itself copolymerized with an organic compound capable of polymerizing to form an organic part of the organic-inorganic polymer. . Therefore, the organicity and inorganicity of the organic-inorganic polymer can be changed by adjusting the compounding ratio of the organic compound to the laminated structure.

【0013】したがって、この有機−無機重合体は、た
とえばコート材などとして使用する際は有機性を高めて
可撓性や常温で迅速な成膜性などの有機材料の特徴を確
保でき、かつ、無機性を高めてフィラーなどとして使用
する際の有機溶媒や有機物相との親和性も確保できる。
さらに、この有機−無機重合体は、有機基が共有結合で
4面体面構造を構成する原子に結合しているので無機部
と有機部との両者の結合が堅牢であり、コート材やフィ
ラーとして使用する際の他の組成成分との混合および実
用にあたっての各種の操作をおこなっても両者の間の結
合が損なわれることはない。
Therefore, when this organic-inorganic polymer is used as, for example, a coating material, the organic property can be enhanced to secure the characteristics of the organic material such as flexibility and rapid film formation at room temperature, and It is possible to secure the affinity with an organic solvent or an organic phase when it is used as a filler by increasing the inorganicity.
Furthermore, in this organic-inorganic polymer, the organic group is covalently bonded to the atoms forming the tetrahedral surface structure, so that the bond between both the inorganic part and the organic part is robust, and as a coating material or filler. Even if the composition is mixed with other composition components and various operations for practical use are performed, the bond between them is not impaired.

【0014】また、この有機−無機重合体は、従来の粘
土ハイブリッド複合材料などと比べても、より多くの表
面有機基をもつため極微量の積層構造体の添加で有機化
合物重合体の耐熱性などの物性の改善を図ることができ
る。積層構造体の添加量は原理的には0%を超え100
%未満の添加で有用な重合体の成形物を得ることができ
るが0.05重量%から85重量%が望ましい。
Further, since this organic-inorganic polymer has more surface organic groups than conventional clay hybrid composite materials and the like, the addition of a very small amount of laminated structure makes the organic compound polymer heat resistant. It is possible to improve the physical properties such as. The additive amount of the laminated structure exceeds 0% in principle and 100
Useful polymer moldings can be obtained with additions of less than%, but 0.05 to 85% by weight is desirable.

【0015】本発明の有機−無機重合体の中でも、以下
のものはシランカップリング剤として用いられる安価な
オルガノアルコキシシランから容易に合成かのうであ
り、また反応性の高い有機側鎖をもつことが望ましい。
これは、アミノ、エポキシ、メルカプト、アクリル、メ
タクリルまたはビニル基をもつ有機側鎖をもち、これと
共有結合したSiを中心としてそのまわりに酸素が4面
体配位した構造の層と、Mgを中心原子とし、そのまわ
りに酸素が8面体配位した構造の層とが積層した結晶性
の積層構造体を有する有機珪素系重合体である。
Among the organic-inorganic polymers of the present invention, the following ones can be easily synthesized from inexpensive organoalkoxysilanes used as silane coupling agents and may have highly reactive organic side chains. desirable.
It has an organic side chain having an amino, epoxy, mercapto, acryl, methacryl or vinyl group, and has a layer with a structure in which oxygen is tetrahedrally coordinated around Si with covalently bonded Si as the center, and Mg as the center. It is an organosilicon polymer having a crystalline laminated structure in which atoms are formed and a layer having a structure in which oxygen is octahedrally coordinated is laminated around the atoms.

【0016】本願の第2の発明の製造方法は、各成分を
混合する混合工程と、混合物のpHを調製して無機部の
結晶性積層構造を形成する積層構造形成工程と、積層構
造体に有機化合物を加えて重合させる重合体形成工程と
からなる。混合工程では、4面体面を構成する原子を有
する化合物a)、8面体面を構成する原子を有する化合
物b)と、必要に応じてPを有する化合物d)またはシ
リコンアルコキシド、ゲルマニウムアルコキシド、また
はゲルマニウムハロゲン化物e)と極性溶液c)を混合
液とする。4面体面を構成する原子を有する化合物a)
としては、たとえば、アルコキシ基および重合可能な官
能基を有するオルガノアルコキシシランなどの有機珪素
化合物、オルガノゲルマニウムなどの有機ゲルマニウム
化合物などが挙げられる。8面体面を構成する原子を有
する化合物b)としては、Mg、Al、Ni、Co、C
u、Mn、Fe、Li、V、Zrから選ばれる少なくと
も1種の金属原子の無機塩、有機塩、アルコキシドなど
を用いる。このうち、Al、Feは8面体面を構成する
原子となると共にその一部は4面体面を構成する原子
(珪素、Geの一部を置換する原子となる。極性溶媒
c)としては水、アルコール、アセトン、有機酸、無機
酸などのうちの1種または2種以上の混合した極性溶液
が利用できる。上記の化合物a)、b)は必ずしも完全
に溶解する必要はなく、ある程度の分散状態であっても
目的を達成できる。
The manufacturing method of the second invention of the present application comprises: a mixing step of mixing the respective components; a layered structure forming step of adjusting the pH of the mixture to form a crystalline layered structure of the inorganic part; And a polymer forming step of adding an organic compound and polymerizing. In the mixing step, a compound a) having an atom forming a tetrahedral surface, a compound b) having an atom forming an octahedral surface, and a compound d) having P as necessary, or a silicon alkoxide, a germanium alkoxide, or a germanium. A mixture of the halide e) and the polar solution c). Compound a) having atoms that form a tetrahedral surface
Examples thereof include organosilicon compounds such as organoalkoxysilanes having an alkoxy group and a polymerizable functional group, organogermanium compounds such as organogermanium, and the like. Examples of the compound b) having atoms forming the octahedron surface include Mg, Al, Ni, Co and C.
An inorganic salt, organic salt or alkoxide of at least one metal atom selected from u, Mn, Fe, Li, V and Zr is used. Of these, Al and Fe are atoms that form the octahedron surface, and part of them are atoms that form the tetrahedron surface (atoms that replace some of silicon and Ge. Polar solvent c) is water, A polar solution prepared by mixing one or more of alcohols, acetone, organic acids and inorganic acids can be used. The above compounds a) and b) do not necessarily have to be completely dissolved, and the object can be achieved even in a dispersed state to some extent.

【0017】なお、混合時にPを有する化合物d)を添
加することができる。この化合物d)中のPが4面体面
を構成する原子(珪素、Ge)の一部を置換する原子と
なる。この化合物d)としては、リン酸またはその誘導
体、Pの無機塩、Pの有機塩等がある。また混合時に、
シリコンアルコシド、ゲルマニウムアルコキシド、また
はゲルマニウムハロゲン化物e)を添加することができ
る。この化合物e)も化合物a)と同様にし積層構造体
に組み込まれる。これは本願ではアルコキシ基は特に有
機基と定義していない。この化合物e)の添加により4
面体面構造の中心原子である珪素またはGeのうちの一
部を重合可能な反応基を有する有機基と共有結合してい
ない原子とする。この化合物e)を化合物a)に対して
所定の比率で併用することにより積層構造体中の無機部
の割合が調整できる。
Incidentally, the compound d) having P can be added at the time of mixing. P in the compound d) becomes an atom that replaces a part of the atoms (silicon, Ge) forming the tetrahedral surface. Examples of the compound d) include phosphoric acid or a derivative thereof, an inorganic salt of P, an organic salt of P, and the like. Also when mixing,
Silicon alcosides, germanium alkoxides, or germanium halides e) can be added. This compound e) is also incorporated into the laminated structure in the same manner as the compound a). In this application, alkoxy groups are not specifically defined as organic groups. 4 by addition of this compound e)
A part of silicon or Ge, which is the central atom of the planar structure, is an atom that is not covalently bonded to an organic group having a polymerizable reactive group. By using the compound e) together with the compound a) in a predetermined ratio, the ratio of the inorganic part in the laminated structure can be adjusted.

【0018】積層構造形成工程では、調製された混合溶
液のpHをアルカリ性にして積層構造体の成長を促進す
る。混合溶液をアルカリ性にするpH値は、原料系の選
択などの要因により一律には規定できないが、たとえ
ば、pH8〜10程度であるが、積層構造の結晶が成長
して混合溶液のゲル化が希望する程度以上の速さで進行
するpHで、かつ結合している有機基が損なわれる様な
強アルカリ性でなければよい。この積層構造形成工程は
室温でも十分進行するが、有機基を損なわない程度の一
定の高さの温度条件でおこなうこともできる。この積層
構造形成工程は、原料の選択や反応条件次第で、直ちに
完了する場合もある。またある程度、たとえば1〜2日
間程度のエージングを要する場合もある。得られたゲル
状の積層構造体は、一旦溶媒を除去して乾燥粉末として
単離するのが好ましい。
In the laminated structure forming step, the pH of the prepared mixed solution is made alkaline to promote the growth of the laminated structure. The pH value that makes the mixed solution alkaline cannot be uniformly regulated due to factors such as the selection of the raw material system, but is, for example, about pH 8 to 10. However, crystals of a laminated structure grow and gelation of the mixed solution is desired. The pH is not so strong that the organic group bonded is impaired at a pH that progresses at a speed higher than that. This step of forming a laminated structure proceeds sufficiently even at room temperature, but it can also be carried out under a temperature condition of a constant height that does not damage the organic groups. This laminated structure forming step may be completed immediately depending on the selection of raw materials and reaction conditions. In addition, aging may be required to some extent, for example, about 1 to 2 days. The obtained gel-like laminated structure is preferably isolated once as a dry powder by removing the solvent.

【0019】本発明の積層構造形成工程で積層構造体が
形成されるメカニズムは必ずしも明確ではないが、極性
溶液c)に前記のa)、b)、d)、e)各成分を溶解
または分散させて混合溶液のpHをアルカリ性に調整す
ると、金属を中心原子とする8面体面の結晶構造が先行
して成長しつつこれに追従してオルガノアルカルコキシ
シランの珪素またはGeがアルコキシ基の加水分解の後
の脱水縮合により8面体面に結合し、この珪素またはG
eを中心に4面体面の結晶構造が成長して4面体面と8
面体面との積層構造が形成されていくものと推定してい
る。したがって、珪素またはGeの4面体面の一部に有
機基が直接結合した状態でも珪素またはGeの4面体面
は8面体面に追従して形成され、結局無機質の積層構造
が形成されると考えている。
The mechanism by which the laminated structure is formed in the laminated structure forming step of the present invention is not necessarily clear, but the a), b), d) and e) components are dissolved or dispersed in the polar solution c). Then, if the pH of the mixed solution is adjusted to be alkaline, the crystal structure of the octahedral surface having the metal as the central atom grows in advance, and the silicon or Ge of the organoalkalcoxysilane follows the growth of the crystal structure, resulting in the hydrolysis of the alkoxy group. Bonding to the octahedron surface by dehydration condensation after decomposition, this silicon or G
The crystal structure of the tetrahedron plane grows around the
It is presumed that a laminated structure with the face surface will be formed. Therefore, it is considered that the tetrahedral surface of silicon or Ge is formed following the octahedral surface even when the organic group is directly bonded to a part of the tetrahedral surface of silicon or Ge, and eventually an inorganic laminated structure is formed. ing.

【0020】重合体形成工程では、積層構造体に有機化
合物を混合し通常の重合法により積層構造体の有機基を
有機化合物に共重合させる。この場合必要に応じて開始
剤あるいは加熱により重合を進行させる。重合法はいわ
ゆる、注型重合、塊状重合、懸濁重合などが適用でき
る。また、光線を照射して光重合させることもできる。
この有機化合物は粉体である積層構造体に均一に混合さ
せるため常温または加熱により液状となるか溶媒に可溶
であることが必要である。これらの条件を満たすもので
あれば利用できるが、たとえば、有機基がアクリル系で
あればアクリル系有機化合物、ビニル基をもつ有機化合
物が適当であり、エポキシ系であればエポキシ基をもつ
有機分子もしくは重合末端がアミノ基になるようなポリ
マーを形成する有機化合物が適当である。またここでい
う有機化合物は必ずしも低分子量である必要はなく、高
分子もしくはオリゴマーであってもよい。この有機化合
物の量を調製することで有機部の無機部に対する比率を
制御することができる。
In the polymer forming step, an organic compound is mixed with the laminated structure and the organic group of the laminated structure is copolymerized with the organic compound by a usual polymerization method. In this case, the polymerization is promoted by an initiator or heating, if necessary. As the polymerization method, so-called cast polymerization, bulk polymerization, suspension polymerization and the like can be applied. It is also possible to irradiate with light rays to cause photopolymerization.
This organic compound must be liquid at room temperature or heated or soluble in a solvent in order to uniformly mix it with a powdery laminated structure. Any organic compound satisfying these conditions can be used. For example, if the organic group is an acrylic group, an acrylic organic compound or an organic compound having a vinyl group is suitable, and if it is an epoxy group, an organic molecule having an epoxy group. Alternatively, an organic compound that forms a polymer whose polymerization end is an amino group is suitable. The organic compound mentioned here does not necessarily have a low molecular weight and may be a polymer or an oligomer. By adjusting the amount of this organic compound, the ratio of the organic part to the inorganic part can be controlled.

【0021】添加する有機化合物が液状であればそのま
ま積層構造体に添加混合すればよい。また加熱により液
状となる有機化合物の場合は熱浴中での添加、混合が必
要である。溶媒中で両者を混合する際は、積層構造体が
膨潤し、かつ有機化合物が溶解するような共通溶媒を用
いる必要がある。添加する有機化合物もしくは溶媒によ
っては積層構造体が即座に分散せず時間が必要となるば
あいがあるが、その場合はミキサーなど強制攪拌したり
超音波を加えるなどして有機化合物もしくは溶媒の分散
を促進することができる。
If the organic compound to be added is in a liquid state, it may be added and mixed as it is to the laminated structure. Further, in the case of an organic compound which becomes liquid by heating, addition and mixing in a hot bath are necessary. When mixing both in a solvent, it is necessary to use a common solvent that swells the laminated structure and dissolves the organic compound. Depending on the organic compound or solvent to be added, the laminated structure may not be dispersed immediately and it may take time, but in that case, the organic compound or solvent is dispersed by forcibly stirring with a mixer or applying ultrasonic waves. Can be promoted.

【0022】加える有機化合物によっては重合に必要な
触媒、もしくは開始剤などが必要である。また上記の有
機化合物に加えて顔料、可塑剤のような成分を加えるこ
とができる。本発明の有機−無機重合体は、有機部と無
機部とが共有結合で結合されており表面に有機部と内部
の無機部とで形成されている。このため本発明の有機−
無機重合体は、従来のFPRなどの複合材料で合成樹脂
とその中に分散している無機物の間に化学結合がなく単
に混合している状態のものとは異なる。また粘土表面に
有機イオンを含む樹脂と結ばれている粘土−ハイブリッ
ド複合材料もあるが、これは粘土と有機イオンの間の結
合はイオン結合のため共有結合と異なり結合力が弱く切
れやすい。ところが本発明では樹脂層の有機部と無機部
とが共有結合で結ばれ他の結合に比べて強固な結合を形
成している。
Depending on the organic compound to be added, a catalyst, an initiator or the like necessary for polymerization is required. In addition to the above organic compounds, components such as pigments and plasticizers can be added. In the organic-inorganic polymer of the present invention, the organic part and the inorganic part are covalently bonded, and the surface is formed with the organic part and the internal inorganic part. Therefore, the organic-
The inorganic polymer is different from a conventional composite material such as FPR in which a synthetic resin and an inorganic substance dispersed therein have no chemical bond and are simply mixed. There is also a clay-hybrid composite material in which the surface of clay is bound to a resin containing an organic ion, but this is different from a covalent bond because the bond between the clay and the organic ion is an ionic bond, and thus the bond strength is weak and easy to break. However, in the present invention, the organic part and the inorganic part of the resin layer are covalently bonded to each other to form a stronger bond than other bonds.

【0023】[0023]

【作用】本発明の有機−無機重合体は、結晶性の無機構
造部分が、4面体面と8面体面とが積層された構造で形
成されており、該4面体面を構成する中心原子には、重
合性の有機基が共有結合で結合し、該有機基が他の重合
性の有機化合物と共重合して有機部を形成している。そ
のため有機部と無機部とが積層しており、有機部を主体
とした場合は無機部により有機部に高硬度、高耐熱性を
付与することができる。逆に無機部が主体となっている
場合には、有機物で覆われた無機材料としてフィラー、
コート材として使用することができる。
In the organic-inorganic polymer of the present invention, the crystalline inorganic structure portion is formed by a structure in which tetrahedral surfaces and octahedral surfaces are laminated, and the central atom forming the tetrahedral surface is Has a polymerizable organic group bound by a covalent bond, and the organic group is copolymerized with another polymerizable organic compound to form an organic part. Therefore, the organic part and the inorganic part are laminated, and when the organic part is the main component, the inorganic part can impart high hardness and high heat resistance to the organic part. On the contrary, when the inorganic part is mainly composed of a filler as an inorganic material covered with an organic substance,
It can be used as a coating material.

【0024】このため、他の有機物との親和性が高く可
撓性のあるフィラー、コート材とすることができる。ま
たこの有機−無機重合体の製造方法では、工程中で有機
部と無機部の割合を容易に制御することができる。すな
わち、共重合させる有機化合物の量や、混合工程で添加
するアルコキシシランの量などにより有機−無機重合体
中の有機部、無機部の割合を制御できる。
Therefore, it is possible to provide a flexible filler and coating material having high affinity with other organic substances. Further, in this method for producing an organic-inorganic polymer, the ratio of the organic part and the inorganic part can be easily controlled during the process. That is, the ratio of the organic part and the inorganic part in the organic-inorganic polymer can be controlled by the amount of the organic compound to be copolymerized and the amount of the alkoxysilane added in the mixing step.

【0025】この有機−無機重合体は、無機構造のうち
の4面体面を構成する中心原子と有機基とが共有結合で
結合しており、この有機基は有機層部を構成する有機化
合物と共重合して重合体を形成している。このため無機
部と有機部とが従来のイオン結合で無機部に有機部が結
合している場合に比べ強固に結合しており、操作時およ
び使用時に無機部と有機部との間の結合が切れて両者が
剥離するのが防止できる。
In this organic-inorganic polymer, the central atom constituting the tetrahedral surface of the inorganic structure and the organic group are bonded by a covalent bond, and this organic group is combined with the organic compound constituting the organic layer part. Copolymerizes to form a polymer. For this reason, the inorganic part and the organic part are strongly bonded as compared to the case where the organic part is bonded to the inorganic part by a conventional ionic bond, and the bond between the inorganic part and the organic part during operation and use is It is possible to prevent the both from breaking and peeling.

【0026】この有機−無機重合体の製造は、極性溶液
に所定の原料を溶解し、溶液のpHを弱アルカリ性にす
ることで容易に積層構造体が形成できる。この積層構造
体に有機化合物を添加混合して通常の重合法により製造
することができる。そして無機部と有機部の比率は混合
工程および重合工程での配合仕込み比を変えるのみで容
易にできる。
In the production of this organic-inorganic polymer, a laminated structure can be easily formed by dissolving a predetermined raw material in a polar solution and making the pH of the solution weakly alkaline. An organic compound can be added to and mixed with this laminated structure to be manufactured by a usual polymerization method. The ratio of the inorganic part to the organic part can be easily changed only by changing the blending ratio in the mixing step and the polymerization step.

【0027】[0027]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1) (混合工程)1Nの水酸化ナトリウム水溶液200ml
に水4000mlを加えて希釈した水酸化ナトリウム水
溶液(A液)を調整した。別に1000mlのメタノー
ルに3−メタクリロキシプロピルトリメトキシシラン
(MPTS)49.6gと塩化マグネシウム6水和物2
0.4gを加えてよく攪拌してB液を調整した。 (積層構造形成工程)B液を攪拌しながらA液を添加混
合して混合液をゲル化させて珪素原子を中心とする4面
体面構造とマグネシウム原子を中心とする8面体面構造
とが積層した結晶性の積層構造を有する積層構造体を合
成した。このゲル化物を濾過、水洗、真空乾燥して粉末
状として単離した。この積層構造体は4面体面の珪素を
中心原子に、有機基のメタクリル酸が活性基として珪素
にプロピル基を介して共有結合を形成して有機基を形成
している。 (重合工程)上記の積層構造生成物1gにメタクリル酸
2−ヒドロキシエチル(HEMA)2g、光重合開始剤
としてベンゾイルイソプロピルエーテル0.03gを加
えて攪拌混合した。この混合液をアクリル板に(膜厚1
00μmおよび500μm(0.5mm)程度に)塗布
し、高圧紫外線ランプで1時間紫外線を照射して光重合
させた。その結果、アクリル板上にHEMAとメタクリ
酸残基とが共重合した有機重合体層をもつ有機−無機重
合体のコート膜が形成された。このコート膜の表面硬度
を鉛筆法により測定したところどちらも6Hであり、H
EMA単独重合体の表面硬度6B以下に比べてより向上
していた。このことにより有機−無機重合体が有機重合
体の表面硬度を向上させることが可能であることを示し
ている。また、0.5mmと従来のVV系ハードコート
材料(50μm以下)にくらべ厚塗りが可能となった。 (実施例2)実施例1で作製した積層構造体12gにメ
タクリル酸メチル(MMA)5g、光重合開始剤として
ベンゾインイソプロピルエーテル0.07gを加えて攪
拌混合した。この混合液をアクリル板状に膜厚100μ
m程度に塗布し、高圧紫外線ランプで1時間紫外線を照
射して光重合させた。その結果、MMAと積層構造体の
メタクリ酸残基とが共重合した有機重合体層をもつ有機
−無機重合体のコート膜が形成された。このコート膜の
表面硬度を鉛筆法により測定したところ9Hであり、M
MA重合体の表面硬度6Bに比べて著しく向上してい
た。
EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1) (Mixing step) 200 ml of 1N sodium hydroxide aqueous solution
An aqueous solution of sodium hydroxide (Liquid A) diluted with 4000 ml of water was prepared. Separately, in 1000 ml of methanol, 49.6 g of 3-methacryloxypropyltrimethoxysilane (MPTS) and magnesium chloride hexahydrate 2
0.4 g was added and well stirred to prepare a liquid B. (Layered structure forming step) While stirring Solution B, Solution A is added and mixed to gel the mixed solution to form a tetrahedral surface structure centered on silicon atoms and an octahedral surface structure centered on magnesium atoms. A laminated structure having the above crystalline laminated structure was synthesized. The gelled product was filtered, washed with water, and dried under vacuum to be isolated as a powder. In this laminated structure, methacrylic acid as an organic group forms a covalent bond to silicon as an active group through a propyl group with silicon as a central atom on the tetrahedral surface to form an organic group. (Polymerization step) 2 g of 2-hydroxyethyl methacrylate (HEMA) and 0.03 g of benzoyl isopropyl ether as a photopolymerization initiator were added to 1 g of the above laminated structure product, and mixed with stirring. This mixed solution was applied to an acrylic plate (film thickness 1
It was applied to about 00 μm and about 500 μm (0.5 mm)) and irradiated with ultraviolet rays for 1 hour with a high-pressure ultraviolet lamp to cause photopolymerization. As a result, a coat film of an organic-inorganic polymer having an organic polymer layer in which HEMA and a methacrylic acid residue were copolymerized was formed on the acrylic plate. When the surface hardness of this coat film was measured by the pencil method, both were 6H.
The surface hardness of the EMA homopolymer was higher than that of 6B or less. This shows that the organic-inorganic polymer can improve the surface hardness of the organic polymer. Further, the thickness is 0.5 mm, which enables thicker coating than the conventional VV type hard coat material (50 μm or less). (Example 2) 5 g of methyl methacrylate (MMA) and 0.07 g of benzoin isopropyl ether as a photopolymerization initiator were added to 12 g of the laminated structure produced in Example 1 and mixed with stirring. This mixed solution is applied in the shape of an acrylic plate to a film thickness of 100 μm.
It was applied to about m and was irradiated with ultraviolet rays for 1 hour with a high-pressure ultraviolet lamp to cause photopolymerization. As a result, a coat film of an organic-inorganic polymer having an organic polymer layer in which MMA and a methacrylic acid residue of the laminated structure were copolymerized was formed. When the surface hardness of this coating film was measured by the pencil method, it was 9H, and M
The surface hardness of the MA polymer was significantly improved as compared with 6B.

【0028】(実施例3)実施例1で作製した積層構造
体をHEMAに対して0.05、0.5、1、3、6.
5、12.5、25、50、75、85重量%の割合と
なるようにHEMAに混合した試料を作製した。この各
試料に光重合開始剤のベンゾイルイソプロピルエーテル
1重量%加えて攪拌混合した。これを20mm×10m
m×1mmの型に流し込み高圧紫外線ランプで1時間紫
外線を照射して光重合させて板状物を得た。上記で得た
各板状物についてDMA(動的粘弾性)を測定した。D
MAの測定から得られた損失弾性率E”のピークにより
各板状重合体のガラス転移点を求めた。その結果を図お
よび表1に示す。
(Embodiment 3) The laminated structure produced in the embodiment 1 is compared with HEMA in 0.05, 0.5, 1, 3, 6.
Samples were prepared by mixing with HEMA at the ratios of 5, 12.5, 25, 50, 75 and 85% by weight. 1% by weight of benzoyl isopropyl ether as a photopolymerization initiator was added to each sample and mixed with stirring. 20mm x 10m
It was poured into a m × 1 mm mold and irradiated with ultraviolet rays for 1 hour with a high-pressure ultraviolet lamp to carry out photopolymerization to obtain a plate-like material. DMA (dynamic viscoelasticity) was measured for each plate obtained above. D
The glass transition point of each plate polymer was determined from the peak of loss elastic modulus E ″ obtained from the measurement of MA. The results are shown in FIG.

【0029】表1にはHEMA重合体中に配合した積層
構造体の割合とガラス転移温度との関係を示した。表1
に示すように積層構造体に0.05重量%HEMAに加
え重合した珪素系重合体は、HEMA単独の重合体に比
べてガラス転移温度が約4℃高くなる。さらにHEMA
に配合する積層構造体の量が増えるにしたがい有機珪
Table 1 shows the relationship between the ratio of the laminated structure compounded in the HEMA polymer and the glass transition temperature. Table 1
As shown in FIG. 5, the silicon-based polymer obtained by adding 0.05% by weight of HEMA to the laminated structure for polymerization has a glass transition temperature higher by about 4 ° C. than that of a polymer containing HEMA alone. Further HEMA
As the amount of laminated structure added to

【0030】[0030]

【表1】 素系重合体のガラス転移温度も上昇し、積層構造体の添
加量が50重量%の場合はHEMA単独の重合体に比べ
てガラス転移温度が15℃高くなっている。さらに積層
構造体の添加割合が75重量%以上では有機−無機重合
体のガラス転移温度を示さなくなる。したがって、無機
性の強い有機−無機重合体になっている。
[Table 1] The glass transition temperature of the base polymer also rises, and when the amount of the laminated structure added is 50% by weight, the glass transition temperature is 15 ° C. higher than that of the polymer of HEMA alone. Furthermore, when the addition ratio of the laminated structure is 75% by weight or more, the glass transition temperature of the organic-inorganic polymer is not exhibited. Therefore, the organic-inorganic polymer has a strong inorganic property.

【0031】図1は表1のデータを線グラフとして描い
たもので、少量の積層構造体の添加でガラス転移温度が
急激に上昇することを示している。さらにこの有機−無
機重合体のガラス転移温度yと積層構造体xの含有率と
の間にはy=96.752+5.3755logxの関
係があることが判明した。このことは光重合時に積層構
造体とHEMAが反応し結合していることを示す。また
0.05重量%といった極少量の積層構造体の添加でH
EMA重合体の耐熱性を高めるのに寄与することが判明
した。
FIG. 1 is a line graph of the data in Table 1 and shows that the glass transition temperature rises sharply with the addition of a small amount of laminated structure. Further, it was found that there is a relationship of y = 96.752 + 5.3755logx between the glass transition temperature y of this organic-inorganic polymer and the content of the laminated structure x. This indicates that the laminated structure and HEMA react with each other and bond during photopolymerization. In addition, the addition of a very small amount of laminated structure, such as 0.05% by weight
It has been found to contribute to increasing the heat resistance of the EMA polymer.

【0032】[0032]

【発明の効果】この有機−無機重合体は、有機部を形成
する共重合性の有機化合物の種類により色、表面の親水
性/疎水性、比誘電率などの特性を付与することができ
る。また、有機−無機重合体は、有機部と無機部との比
率を変えることにより、有機重合体のフィラーやコート
材などの用途に利用できる。
The organic-inorganic polymer can impart properties such as color, surface hydrophilicity / hydrophobicity, and relative dielectric constant depending on the type of the copolymerizable organic compound forming the organic portion. In addition, the organic-inorganic polymer can be used for applications such as a filler and a coating material for the organic polymer by changing the ratio of the organic part and the inorganic part.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この図は、積層構造体の含有%による重合体
のガラス転移温度の変化の様子を示す線グラフである。
FIG. 1 is a line graph showing how the glass transition temperature of a polymer changes with the content% of the laminated structure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 茜 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 水谷 克弥 愛知県名古屋市中村区名駅4丁目7番23号 豊田通商株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akane Okada Aichi Prefecture Aichi-gun Nagakute-cho, Nagachote 1 41st side road, Toyota Central Research Institute Co., Ltd. (72) Inventor Katsumi Mizutani Nakamura-ku, Nagoya City 4-7-23 Toyota Tsusho Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 珪素、Geから選ばれる少なくとも1種
の原子、または該原子の一部をAl、Fe、Pから選ば
れる少なくとも1種の原子により置換した原子を中心原
子とする4面体面構造とMg、Al、Ni、Co、C
u、Mn、Fe、Li、V、Zrから選ばれる少なくと
も1種の金属を中心原子とする8面体面構造とからなる
結晶性の積層構造体と、該積層構造体に共有結合で結合
した有機重合体層とから構成される有機重合体であっ
て、 該積層構造体を形成する4面体面構造の中心原子である
珪素、Geから選ばれる少なくとも1種の原子の少なく
とも一部の原子は、重合可能な反応基を有する有機基と
共有結合により結合し、該有機基の反応基は該反応基と
重合反応する有機化合物と結合して有機重合体層を形成
していることを特徴とする有機−無機重合体。
1. A tetrahedral surface structure having at least one atom selected from silicon and Ge or an atom obtained by substituting a part of the atom with at least one atom selected from Al, Fe and P as a central atom. And Mg, Al, Ni, Co, C
A crystalline laminated structure having an octahedral surface structure having at least one metal selected from u, Mn, Fe, Li, V, and Zr as a central atom, and an organic compound bonded to the laminated structure by a covalent bond. An organic polymer composed of a polymer layer, wherein at least a part of at least one atom selected from silicon and Ge, which is a central atom of the tetrahedral surface structure forming the laminated structure, is Characterized by being covalently bonded to an organic group having a polymerizable reactive group, and the reactive group of the organic group is bonded to an organic compound which undergoes a polymerization reaction with the reactive group to form an organic polymer layer. Organic-inorganic polymers.
【請求項2】 下記のa)、b)およびc)を混合して
混合溶液とする混合工程(なお、製造する結晶性層状構
造を有する有機重合体の4面体面構造の中心原子である
珪素、Geから選ばれる少なくとも1種の原子の一部を
Pにより置換する場合には、下記のd)を添加する。ま
た、製造する結晶性層状構造を有する有機重合体の4面
体面構造の中心原子である珪素、Geから選ばれる少な
くとも1種の原子のうちの一部を、重合可能な反応基を
有する有機基と共有結合しない原子とする場合には、下
記e)を添加する。)と、 該混合溶液にアルカリを加えて該混合溶液のpHをアル
カリ性に調整してそのまま、あるいはエージングにより
a)化合物中の珪素、Geから選ばれる少なくとも1種
の原子、または該原子の一部をb)化合物のAl、F
e、d)化合物中のPから選ばれる少なくとも1種の原
子により置換した原子を中心原子とする4面体面構造
と、b)化合物中のMg、Al、Ni、Co、Cu、M
n、Fe、Li、V、Zrから選ばれる少なくとも1種
の金属を中心原子とする8面体面構造とが結晶性の積層
構造体を形成する積層構造形成工程と、 該積層構造体の4面体面構造の中心原子である珪素、G
eから選ばれる少なくとも1種の原子の少なくとも一部
の原子にそれぞれ共有結合により重合可能な反応基を有
する有機基と、該有機基と反応可能でかつ単独で重合体
を形成できる有機化合物と、を混合して有機基と有機化
合物とを共重合させて該積層構造体に有機化合物の重合
体層を形成する重合体形成工程、とからなる有機−無機
重合体の製造方法。 a)少なくとも1のアルコキシ基をもち、かつ重合可能
な反応基を有する有機基と共有結合で結合した珪素を有
する化合物、少なくとも1のアルコキシ基またはハロゲ
ンをもち、かつ重合可能な反応基を有する有機基と共有
結合で結合したGeを有する化合物、少なくとも1つの
アルコキシ基またはハロゲンをもち、かつ重合可能な反
応基を有する有機基と共有結合で結合したGeを有する
化合物から選ばれた少なくとも1種の化合物。 b)Mg、Al、Ni、Co、Cu、Mn、Fe、L
i、V、Zrから選ばれる少なくとも1種の金属の無機
塩、有機塩あるいはアルコキシド。 c)無機または有機の1種類あるいは2種類以上を混合
した極性溶媒。 d)Pを有する化合物。 e)少なくとも1つのアルコキシ基を有するシリコンア
ルコキシド、少なくとも1つのアルコキシ基を有するゲ
ルマニウムアルコキシド、ゲルマニウムハロゲン化物か
ら選ばれる少なくとも1種の化合物。
2. A mixing step of mixing the following a), b) and c) into a mixed solution (wherein silicon, which is the central atom of the tetrahedral surface structure of the organic polymer having a crystalline layered structure to be produced): When a part of at least one atom selected from Ge is replaced by P, the following d) is added. Further, an organic group having a reactive group capable of polymerizing a part of at least one atom selected from silicon and Ge, which are central atoms of the tetrahedral surface structure of the organic polymer having a crystalline layered structure to be produced. When the atom is not covalently bonded with, the following e) is added. ), An alkali is added to the mixed solution to adjust the pH of the mixed solution to be alkaline, or as it is, or by aging, a) silicon in the compound, at least one atom selected from Ge, or a part of the atoms. B) compound Al, F
e, d) a tetrahedral surface structure having as a central atom an atom substituted with at least one atom selected from P in the compound, and b) Mg, Al, Ni, Co, Cu, M in the compound.
Laminated structure forming step of forming a crystalline laminated structure having an octahedral plane structure having at least one metal selected from n, Fe, Li, V and Zr as a central atom, and four sides of the laminated structure Silicon, which is the central atom of the body structure, G
an organic group having a reactive group capable of being polymerized by a covalent bond on at least a part of at least one atom selected from e, and an organic compound capable of reacting with the organic group and forming a polymer by itself. And a polymer forming step of forming a polymer layer of an organic compound in the laminated structure by mixing an organic group and an organic compound to prepare a polymer layer of the organic compound in the laminated structure. a) a compound having at least one alkoxy group and having silicon which is covalently bonded to an organic group having a polymerizable reactive group, an organic compound having at least one alkoxy group or halogen and having a polymerizable reactive group At least one compound selected from compounds having Ge covalently bonded to a group, compounds having Ge covalently bonded to an organic group having at least one alkoxy group or halogen and having a polymerizable reactive group Compound. b) Mg, Al, Ni, Co, Cu, Mn, Fe, L
An inorganic salt, organic salt or alkoxide of at least one metal selected from i, V and Zr. c) A polar solvent in which one or more kinds of inorganic or organic are mixed. d) A compound having P. e) At least one compound selected from silicon alkoxide having at least one alkoxy group, germanium alkoxide having at least one alkoxy group, and germanium halide.
JP27551893A 1992-12-28 1993-11-04 Organic-inorganic polymer and method for producing the same Expired - Lifetime JP3722850B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27551893A JP3722850B2 (en) 1993-11-04 1993-11-04 Organic-inorganic polymer and method for producing the same
US08/422,606 US5527871A (en) 1992-12-28 1995-04-12 Layered inorganic-organic polymer shaped article thereof and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27551893A JP3722850B2 (en) 1993-11-04 1993-11-04 Organic-inorganic polymer and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07126396A true JPH07126396A (en) 1995-05-16
JP3722850B2 JP3722850B2 (en) 2005-11-30

Family

ID=17556588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27551893A Expired - Lifetime JP3722850B2 (en) 1992-12-28 1993-11-04 Organic-inorganic polymer and method for producing the same

Country Status (1)

Country Link
JP (1) JP3722850B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200063A (en) * 1997-10-21 1999-07-27 Boehringer Mannheim Gmbh Surface coating method
WO2002062872A1 (en) * 2001-02-08 2002-08-15 Asahi Kasei Kabushiki Kaisha Organic domain/inorganic domain complex materials and use thereof
JP2006036852A (en) * 2004-07-23 2006-02-09 Toray Ind Inc Layered structure and organic-inorganic composite material
US7009021B2 (en) 2002-08-05 2006-03-07 Kabushiki Kaisha Toyota Jidoshokki Paint composition, proces for producing wear-resistant coating film using the same, and wear-resistant coating film comprising the same
JP2007154037A (en) * 2005-12-05 2007-06-21 Toyota Central Res & Dev Lab Inc Zn COMPLEX-CONTAINING LAYERED POLYMER AND ITS PRODUCTION METHOD, CALCIUM CARBONATE SYNTHESIS CATALYST, AND SYNTHETIC METHOD OF CALCIUM CARBONATE
WO2013065638A1 (en) * 2011-10-31 2013-05-10 株式会社豊田中央研究所 Bivalent-trivalent metal organic-inorganic layered composite, and manufacturing method for same
JP2013095824A (en) * 2011-10-31 2013-05-20 Toyota Central R&D Labs Inc Bivalent-trivalent metal organic-inorganic layered complex and method for manufacturing the same
US9138778B2 (en) 2010-04-14 2015-09-22 Kansai Paint Co., Ltd. Method for formation of multi-layered coating film, and coated article

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200063A (en) * 1997-10-21 1999-07-27 Boehringer Mannheim Gmbh Surface coating method
WO2002062872A1 (en) * 2001-02-08 2002-08-15 Asahi Kasei Kabushiki Kaisha Organic domain/inorganic domain complex materials and use thereof
GB2390094A (en) * 2001-02-08 2003-12-31 Asahi Chemical Ind Organic domain/inorganic domain complex materials and use thereof
GB2390094B (en) * 2001-02-08 2004-11-10 Asahi Chemical Ind Organic domain/inorganic domain hybrid material and use thereof
US7009021B2 (en) 2002-08-05 2006-03-07 Kabushiki Kaisha Toyota Jidoshokki Paint composition, proces for producing wear-resistant coating film using the same, and wear-resistant coating film comprising the same
JP2006036852A (en) * 2004-07-23 2006-02-09 Toray Ind Inc Layered structure and organic-inorganic composite material
JP2007154037A (en) * 2005-12-05 2007-06-21 Toyota Central Res & Dev Lab Inc Zn COMPLEX-CONTAINING LAYERED POLYMER AND ITS PRODUCTION METHOD, CALCIUM CARBONATE SYNTHESIS CATALYST, AND SYNTHETIC METHOD OF CALCIUM CARBONATE
US9138778B2 (en) 2010-04-14 2015-09-22 Kansai Paint Co., Ltd. Method for formation of multi-layered coating film, and coated article
WO2013065638A1 (en) * 2011-10-31 2013-05-10 株式会社豊田中央研究所 Bivalent-trivalent metal organic-inorganic layered composite, and manufacturing method for same
JP2013095824A (en) * 2011-10-31 2013-05-20 Toyota Central R&D Labs Inc Bivalent-trivalent metal organic-inorganic layered complex and method for manufacturing the same

Also Published As

Publication number Publication date
JP3722850B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
US5527871A (en) Layered inorganic-organic polymer shaped article thereof and process for producing the same
AU2002300128B2 (en) Polymer compound containing silicon ester moiety and composition therefrom
JP3899546B2 (en) Layered organic titanosilicate and molded body of layered organic titanosilicate
CN115093182B (en) In-situ organic-inorganic polymerization modified cement-based composite material and preparation method thereof
JP2000129078A (en) Preparation of nano-composite material
KR20090087448A (en) Organic-inorganic hybrid nanomaterials and method for synthesizing same
JP3952482B2 (en) Layered organosilicon polymer, molded product thereof, and production method thereof
JP3722850B2 (en) Organic-inorganic polymer and method for producing the same
US3799799A (en) Coating of mica reinforcement for composite materials
CN101443271A (en) Compositions useful to make nanocomposite polymers
Pietras et al. New approach to preparation of gelatine/SiO2 hybrid systems by the sol-gel process
JP2966881B2 (en) Hydraulic composition for autoclave curing
JPH11199671A (en) Production of organic and inorganic composite particle
JP4671050B2 (en) Silicon-containing water-soluble polymer compound and production method thereof, primer composition, coating agent composition, and article coated and treated with the composition
JPH09295809A (en) Clay compound and its production
JP4134412B2 (en) Organic inorganic composite
See et al. A reactive core–shell nanoparticle approach to prepare hybrid nanocomposites: effects of processing variables
JPH1171465A (en) Composite material
AU607292B2 (en) Process for preparing flowable, stable and hardenable suspensions and thus-obtaining compositions
JP6991527B2 (en) Method for producing silica-containing fine particles, method for coating the surface of a base material, and catalyst for sol-gel reaction.
CN111217968A (en) Polyolefin triblock copolymer responding to multiple effects on environment and preparation method thereof
JPS58151321A (en) Inorganic oxide and its manufacture
CN109503035A (en) A kind of argillaceous it is super hydrophilic it is antifog can self-healing laminated film preparation method
JPH07102016A (en) Polymer cross-linked with metal compound ion and production thereof
AU2012338962A1 (en) Polymer modified substrates, their preparation and uses thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A131 Notification of reasons for refusal

Effective date: 20040827

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050107

A521 Written amendment

Effective date: 20050303

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Effective date: 20050415

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Effective date: 20050914

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110922

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120922

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120922

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120922

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350